Certification and Licensure directly impacts all practicing Geospatial professionals. However, it is a challenge in the current environment of fast-paced technological advancement to ensure those providing geospatial products and services are both capable and qualified to fulfill the needs of clients and customers. How do users of current and future technologies choose providers? How do they know that the product or service they are receiving will have a reasonable expectation for correctness and completeness? Certification and licensure have provided traditional paths for demonstrating knowledge and technical proficiency. “Certification” has historically been used to evaluate and ensure technical competence, while “licensure” has traditionally been the mandate of legislation (at both the state and federal level) premised by the need to “protect the public health, safety and welfare.” Traditional requirements to become licensed include a combination of a defined level of formal education, experience, and testing.

Licensing has long been a requirement for doctors, lawyers, engineers, and land surveyors. As technologies have advanced, many states have realized the need to license photogrammetrists, providers of a variety of geospatial information (e.g., GIS practitioners), and those providing lidar data collection and processing services (a.k.a. topographic mapping products & services). As more states enact legislation relating to existing and new geospatial products and services, it is difficult for practicing professionals, state and national organizations, and the public to keep up with changes to existing rules and regulations. The American Society for Photogrammetry and Remote Sensing (ASPRS), as the leading scientific organization representing the photogrammetry and remote sensing profession, provides a resource to readily access this new and changing information through its published maps and variety of geospatial mapping products and services.1 The “Licensure Maps and Regulations” website1 shown in Figure 1 provides metadata on State Surveying Regulations; State Licensure Map for GIS Services, Lidar and Topographic Products, Georeferenced Imagery and Authoritative Imagery, respectively, with references to each state’s existing Regulations, Board Websites, Individual State Regulations and also provides a Composite State Regulation Document.

Currently there are twenty-one (21) states that have existing regulations relating to georeferenced imagery products and services, thirty-three (33) that have existing regulations relating to authoritative imagery products and services, forty-seven (47) states with regulations relating to topographic mapping-related products and services (which includes lidar services), and fifteen (15) states with existing regulations relating to GIS-related products and services.

Having a list of the current regulations is just the first step. Every provider of a potentially regulated product or service should be aware of and understand how specific state regulations impact their practice because each state regulates geospatial products and services differently. Products or services that are regulated in one state may not be regulated the same way (or at all) in another state. For the practicing geospatial professional (whether it be an engineer, surveyor, photogrammetrist, GISP or UAS pilot), knowledge of an individual area of practice is essential. Knowledge of state, local and possibly even federal regulations are required to properly perform services, provide products, and fulfill contractual requirements for clients.

As mentioned earlier, the geospatial industry is constantly going through rapid changes as advancements are made in measurement technologies and capture platforms. The lower cost and easy access to measurement technologies (e.g. imagery and lidar systems) combined with the new and readily available low-cost UAS have allowed for an unprecedented opportunity for both individuals and firms to get into the business of collecting data to support an ever-expanding variety of geospatial products and services. The field-to-finish (e.g., black box) software solutions supporting these new advancements allow for virtually anyone to provide products that appear to be the same as those that have historically been created utilizing validated geospatial methodologies.

At almost every major geospatial conference in the last few years, the “big” giveaway is a UAS. Does this mean that...
anyone can use this technology to create and provide services to the public? Various states have proposed or enacted legislation that clearly states otherwise. Over the last few years, there have been regulations enacted by over twenty (20) states regarding UAS use. The 2012 FAA enacted its Section 333 exemption policies, and in November 2015 published its report, Unmanned Aircraft Systems (UAS) Registration Task Force (RTF) Aviation Rulemaking Committee (ARC) Task Force Recommendations Final Report, in which it recommended that all UAS flying within U.S. airspace that have a mass of more than 250 grams (~0.55 pounds) be registered with the FAA.

The new legislation and rules are examples of how the landscape of certification and licensure is being affected by new technologies. Rapid changes in technology require us to continually ask the questions as to which geospatial products and services should require certification and which should require licensure. How will the current and future practice of certified and/or licensed professional practice be affected by these changes? The answers to these questions will define the future of all practicing geospatial professionals, whether they are engineers, surveyors, photogrammetrists, GISP's or UAS pilots.

To help facilitate appropriate regulations regarding certification and licensure, the ASPRS Professional Practice Division (PPD) proactively engages states to discuss potential legis-

5http://www.asprs.org/Divisions/Professional-Practice-Division.html
ative changes and assists states by reviewing current and proposed state licensure laws related to geospatial products and services. ASPRS PPD works with individual states to ensure that there is an available licensure path for appropriately educated and experienced professionals. ASPRS PPD also actively engages other national geospatial organizations (URISA, NSPS, MAPPS, etc.) to coordinate efforts of regulation review and interpretation, with the goal of appropriately advising legislative bodies on legislation relating to existing and future geospatial products and services. Additionally, ASPRS has formed its Unmanned Aerial Systems Division whose “objectives include outreach and education, liaising with UAS-interested parties outside the Society, development and promotion of standards and best practices, establishment of calibration and validation sites, and credentialing and certification activities.”

While it is in the best interest of every practicing professional to be active in their individual national organizations, it is incumbent upon every practicing geospatial professional to stay up to date on the specific rules affecting their practice. This combination of these two items is the only way to ensure the appropriate implementation of certification and licensing requirements, while also ensuring the protection of the health, safety, and welfare of the public in our fast-paced geospatial world.

Author

Mike Zoltek is a land surveyor, photogrammetrist, and GIS professional with over 30 years of geospatial experience. As the National Geospatial Program Director at GPI Geospatial, Inc (GPI), Mike is responsible providing operational oversight while leading new geospatial initiatives for the firm. A licensed surveyor who holds active surveying/photogrammetry registrations in 26 states, Mike has extensive experience with a wide variety of geospatial services, ranging from boundary surveying to remote sensing services. Mike currently serves as a member of Florida’s State Board of Professional surveyors & Mappers, is the chair of the ASPRS Evaluation for Certification Committee and serves on the ASPRS Standards Committee that is currently updating the ASPRS standards for geospatial products and services. Mike has presented numerous technical seminars at universities and community colleges, as well as at industry conferences, and as has served as expert witness in boundary litigation cases in the state of Florida.

STAND OUT FROM THE REST

EARN ASPRS CERTIFICATION

ASPRS congratulates these recently Certified and Re-certified individuals:

CERTIFIED MAPPING SCIENTIST – REMOTE SENSING

Josephine Horton, Certification #RS239
Effective June 18, 2022, expires June 18, 2027

CERTIFIED LIDAR TECHNOLOGIST

Savannah Rae Carter, Certification #LT075
Effective June 15, 2022, expires June 15, 2025

RECERTIFIED PHOTOGRAMMETRIST

Frank Taylor, Certification #R1208CP
Effective August 14, 2022, expires August 14, 2027
Frank Sokoloski, Certification #R842CP
Effective July 2, 2022, expires July 2, 2027
Bryan Deslauriers, Certification #R1533CP
Effective September 6, 2022, expires September 6, 2027

CERTIFIED PHOTOGRAMMETRIST

James B. Gillis, Certification #CP1664
Effective August 1, 2022, expires August 1, 2027

RECERTIFIED MAPPING SCIENTIST UAS

Charles Devaney, Certification #R004UAS
Effective November 3, 2022, expires November 3, 2027

ASPRS Certification validates your professional practice and experience. It differentiates you from others in the profession. For more information on the ASPRS Certification program: contact certification@asprs.org, visit https://www.asprs.org/general/asprs-certification-program.html.