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The creation of map products from lidar point clouds 
requires rigorous quality control procedures. Re-
view processes include manual inspection (“eyes 
on”) by a qualified technician in an interactive point 

cloud editing environment and increasingly automated quality 
checking tools to measure accuracy, precision, and other qual-
ity metrics. Increasing the efficiency of this review process is 
an important research area for lidar data producers and data 
users. Smaller lidar surveys, such as those collected by drones, 
require the same quality review and assessment tools for mea-
suring accuracy and precision as larger scale surveys, so can 
benefit from more automation as well. 

In this article we report on improved methods to automati-
cally assess the accuracy and precision of lidar point clouds. 
We reference the ASPRS Positional Accuracy Standards for 
Digital Geospatial Data (2nd Edition) (the ‘ASPRS Standard’ or 
the ‘Standard’) throughout as the authoritative reference for 
lidar data quality assessment and reporting for map products. 
First, we will discuss the automatic detection of 3D lidar tar-
gets (“Accuracy Stars”) in point cloud data to measure vertical 
and horizontal accuracy and derive translation/rotation cor-
rections for the data. In the second part of the article, we dis-
cuss our use of computational geometry to measure and report 
precision over large project areas using Principal Component 
Analysis (PCA). Combined, these two techniques allow for 
more automated quality checking of lidar point cloud accuracy 
and precision, reducing the need for manual interaction and 
scaling efficiently over large (or small) project areas. 

ACCURACY
Lidar accuracy assessment is typically done via classical 
methods inherited from photogrammetry. Vertical accuracy 
checking against the lidar surface at a known checkpoint (sur-
vey nail) is the most common approach in use today. Surface 
modelling of the lidar data is done using accepted Triangular 
Irregular Network (TIN) or Inverse Distance Weighted (IDW) 
methods. The orthogonal distance between the checkpoint and 
the lidar surface gives the vertical error. Using a collection of 
such checkpoints provides the statistical Root Mean Square 
Error (RMSE) in the vertical for the surface, assuming the 
checkpoints are well-distributed across the area. A minimum 
of 30 checkpoints are required by ASPRS for “Tested to Meet 
…” accuracy reporting. Many drone lidar projects will have 
less than 30 checkpoints and will be reported as “Produced to 
Meet …”. Specific wording for each of these cases is outlined in 
the Standard, Section 7. 15. 

The fit of a product (the lidar surface) to known checkpoints 
is the First Component of Positional Error. It is what has been 
traditionally reported as the “accuracy” of lidar data by ven-
dors and data producers. With the increasing accuracy of lidar 
sensors, the ASPRS Standard now acknowledges the inherent 
error in the position of the checkpoints themselves is becom-
ing significant and must also be considered when reporting 
the accuracy achieved. The uncertainty (error) in the check-
point position, typically reported by the surveyor collecting the 
checkpoints, needs to be included in the final stated product 

accuracy. The statistical RMSE value of the checkpoint posi-
tions is referred to as the Second Component of Positional Er-
ror. Product accuracy is the Root Sum of Squares Error (RSSE) 
of the two components. See Section 7. 11 in the Standard for 
details. Practically, this means for lidar datasets the reported 
accuracy cannot be better than the checkpoint accuracy and 
typically will be slightly higher than the surface-to-checkpoint 
value measured by traditional point-to-TIN methods. Users 
should not assume this checkpoint error contribution is negli-
gible when assessing a lidar system’s achievable accuracy for 
a derived mapping product. 

Horizontal positional accuracy is reported like vertical accu-
racy, with both First and Second component errors contribut-
ing to the final horizontal accuracy. Reporting is typically done 
as the radial or planimetric (XY) accuracy achieved rather 
than as individual single-axis errors. Traditionally, lidar data-
sets have used identifiable visible targets in the point cloud for 
horizontal error measurement. These can be specific targets 
deployed during the survey flights, like photogrammetric pan-
els, or targets of opportunity that have been surveyed, such as 
building corners, manhole covers, road markings etc. The pla-
nimetric (XY) position of such targets in the point cloud is col-
lected manually in post-processing, but this is labor-intensive 
and prone to interpretation error in the manual capture. Au-
tomating both the vertical and horizontal accuracy checking 
using detection algorithms to identify and locate the targets 
reduces the labor required, is less prone to user error, elimi-
nates errors of interpretation in target location, and allows for 
a more rigorous calculation of offsets and corrections to be ap-
plied to the point cloud. 

Our algorithmic approach to target detection relies on us-
ing monumented Ground Control Targets (GCTs) that can be 
“seen” within the point cloud. Such targets can be 2-dimen-
sional (XY) such as checkerboard or concentric targets on 
the ground or they can be 3-dimensional (XYZ) objects such 
as spheres or discs configured in a well-defined pattern and 
mounted above the ground. Color contrast, such as alternating 
black and white segments, or high-reflectivity paint is used to 
enhance the detectability in the point cloud. 

One 3D target we have tested extensively is an Accuracy 
Star (AS) (see Figure 1). This target consists of six high-re-
flectivity discs placed on rigid arms defining a hexagon. The 
discs are co-planar and leveled to the base. The algorithm de-
termines the centerpoint of the hexagon formed by the discs 
in the point cloud and compares this to the known centerpoint 
measured independently (or provided by a co-mounted GNSS 
receiver) to accurately determine the XYZ offsets for the point 
cloud. This provides the first component (point cloud to check-
point) accuracy while the accuracy of the AS location itself 
provides the second component (checkpoint position). Quality 
metrics on the fit of the algorithm are also provided. Transla-
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tions to correct the point cloud can be automatically computed 
from a single 3Dtarget, but when three or more 3D targets are 
deployed the algorithm can solve for a full 6-degree translation 
and rotation correction of the point cloud while quantifying 
both vertical (Z) and radial (XY) accuracy. The corrections can 
be saved for reference or automatically applied to the point 
cloud depending on the workflow. 

A recent field test was performed with our partners at Earl 
Dudley, LLC to assess the accuracy of a TrueView 680 (Riegl 
VUX-based design) drone lidar survey of a highway intersec-
tion. A single Accuracy Star (AS) was set up over a known 
survey point. Two passes of the TrueView 680 were flown and 
the data post-processed in LP360 to a georeferenced and strip-
matched point cloud. The target detection algorithm identified 
the AS in the point cloud with a high degree of confidence due 
to the point density and open sky above the target. The XYZ 
offsets measured using the AS were used to automatically ap-
ply a correction to the point cloud. The adjusted point cloud 
was then compared to 21 photogrammetric panel points sur-
veyed by total station and digital level. The resulting RMSE(z) 
was 0. 33 cm (0. 011 feet). The surveyed positional accuracy 
RMSE(z) (First Component) of the AS was 0. 5 cm (0. 016 feet) 
(Second Component) for a final total RMSE(z) for the lidar sur-
face of 0. 57 cm (0. 019 feet). 

The use of 3D targets such as the Accuracy Star is not al-
ways required on a project. By extending the target detection 
algorithm to work with more traditional checkerboard targets 
and concentric circle targets, examples of which are shown in 
Figure 2, the same automated tools can be applied. This allows 
for XYZ offsets and corrections to be automatically extracted 
from the 2D targets, but not a full 6-degree solution with rota-
tion. This is a practical intermediate use case for most survey-
ors; a more rigorous solution than traditional survey nails (Z 
assessment only) but requiring less set-up and hardware than 
a full set of 3D targets. 

PRECISION
For lidar datasets, precision is commonly interpreted as the 
repeatability of the point data without regard to survey control 
or network accuracy. Practically it is a measure of the noise 
or “fuzziness” of the point cloud on a hard surface such as a 
road or roof. Many factors contribute to the precision of a given 
lidar sensor; laser shot noise, sensor stability, consistency of 
the position solution, rigidness of the calibration and boresight 
to name a few. The ASPRS Standard defines two measures 
of precision of interest to lidar data users; within-swath (in-
traswath or smooth surface precision) which applies to data 
from a single pass of the instrument, and swath-to-swath, (or 
interswath precision) which applies to data in the overlap area 
of two or more passes. 

Historically, assessment of precision has been done by de-
termining the noise level of the point cloud on test surfaces 
(e. g. , impervious hard surfaces). Recommended test methods 
include creating an elevation difference raster and computing 
a RMSE between min/max elevations (smooth surface) or be-
tween flight lines (interswath dZ) in each cell or performing a 
planar fit to the test surface and reporting the standard devia-

Figure 1. Accuracy Star Field Set-Up. 

Figure 2. Checkerboard and Circular Panels Used for 
Automated Accuracy Assessment.
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tion of the fit. These values are then compared to the preci-
sion tolerances allowed for a given vertical accuracy class (see 
Table 7. 2 in the Standard). The general guideline is that the 
smooth surface precision (within swath) should be no greater 
than 0. 6x the vertical accuracy class required for the derived 
map product. Restrictions on the allowable swath-to-swath 
value for a given Quality Level (QL) level are also documented. 

The test methods for smooth surface precision (within 
swath) are limited to spot-checking areas and often are labor-
intensive, for example to identify suitable test plots for the 
analysis. They do not scale well to large projects. The Stan-
dard does not state a specific number of test points for pre-
cision assessment but does recommend testing precision “to 
the greatest extent possible” (see Section C. 10). A more au-
tomated, comprehensive test of the precision achieved over 
the entire project area is desirable. To develop such methods, 
we have been investigating applying computational geometry 
techniques based on a Principal Component Analysis (PCA) of 
the point cloud across the entire dataset. We want a rigorous, 
automated way to measure precision (noise) on smooth sur-
faces across both large and small data sets and present both 
qualitative and quantitative results back to the user. We want 
the measurements to be unbiased with respect to local slope 
and curvature of the terrain. We also assume no apriori infor-
mation on the location of these smooth surfaces is available. 

The approach we have been developing involves calculating 
the standard deviation along the surface normal (SDASN) for a 
given cell size across the entire project area. To accomplish this, 
we apply a Principal Component Analysis (PCA) to measure 
the local linearity, planarity, and sphericity of the neighbor-
hood. While this analysis could be run for each individual point 
using a spherical neighborhood in 3D space, for computational 
efficiency we use a raster approach with a 2D grid and apply 
the PCA analysis to each cell in the grid. This gives us lineari-
ty, planarity, and sphericity, along with the standard deviation 
along the surface normal (SDASN) for each cell. This also gives 
us an estimate of local curvature for each cell by calculating 
the corresponding surface variation from the PCA parameters. 

The measurement of smooth surface (intraswath) precision 
follows directly from the above analysis. The algorithm identi-
fies cells with a high level of planarity, a low level of spheric-
ity, and an absence of local curvature. Cells that meet these 
criteria are taken as planar (smooth) but are not necessarily 
horizontal. They have a SDASN that is an unbiased (by local 
slope and curvature) measure of precision of the point cloud in 
that cell. Unlike a basic dZ check that measures min/max el-
evation differences in a cell, SDASN quantifies the deviation of 
the points perpendicular to the planar fit to the local surface. 
We rasterize the entire grid to colorize the cells for qualita-
tive analysis (like the popular “dZ” rasters used for overlap 
assessment) and extract the numerical values for a quantita-
tive statistical analysis. The analysis can be restricted to only 
planar cells within a single flight line (intraswath) or planar 
cells with multiple flight lines (interswath), depending on the 
use case. The user is presented with a greyscale or colorized 
raster that highlights only those planar surfaces that exceed 
the specified value (for Pass/Fail testing) or based on a color 

ramp of user-defined bands. Quantitative measurements of 
the precision can also be extracted during the analysis. This 
approach allows for rapid assessment of lidar data precision 
in an automated and comprehensive method across the entire 
project area, automatically identifying those surfaces appro-
priate for precision testing. 

Several examples of SDASN analysis are presented below 
from field tests conducted using a TrueView drone lidar sys-
tem for small site testing and using publicly available 3DEP 
lidar data for broad area tests. All analysis was performed in 
the LP360 software suite using SDASN tools in development 
for future release. 

The 3DEP project chosen for testing was from Utah; UT_
StrawberryRiver_2019. This area is forested, with steep el-
evations and limited road access. The test data comprised 152 
LAS files covering ~100 sq. mi. with 100 GB of QL1 data. The 
data was previously ground classified, allowing for the SDASN 
analysis to be performed against the ground surface. An exam-
ple of the resulting raster product is shown in Figure 3. This is 
a 5 sq. mile area rasterized with 2 m pixels showing the rela-
tive SDASN (noise) values from Low (Black) to High (White) 
for the ground class. Terrain structure is revealed along with 
areas of high relative noise in the point cloud that indicate 
potential problem areas. 

Figure 3. SDASN Raster Showing Low-to-High Precision 
(Noise).

The choice of cell size is an interesting one and we are con-
tinuing to investigate this parameter. For a rigorous PCA re-
sult, we want 10+ points per cell. The confidence level of the 
results drops off as we move to less dense data. Practically, we 
think this means we will need at least four points per sq. m 
to achieve minimum acceptable results. Our approach works 
well for QL1 or better data (or on dense drone lidar datasets) 
but will be less reliable for sparser QL2 data. We are investi-
gating ways to increase the reliability with less dense data (be-
yond just increasing the cell size) to get more reliable results 
with QL2 data sets. 
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Figure 4. High SDASN Sections (White) Along Steep Slopes. 

Figure 5. Dynamic Drift Between Flight Lines in High SDASN Areas. 

Investigating the potential problem areas, Figure 4 and 
Figure 5 show a section of high noise on the side of a steep 
slope that, upon closer investigation, reveals a dynamic drift 
between flight lines that increases to a maximum of 45 cm 
before returning to within tolerance further along the flight 
line. Due to the remote location and lack of flat, open surfaces, 
such a dynamic error would not have been identified by the 
traditional sample plot testing for swath-to-swath precision. 

Investigating small sites surveys, Figure 6. shows a SDASN 
raster for a drone lidar (TrueView 535) flight used to assess 
sensor calibration and boresight. In this use case the PCA 
analysis has been limited to only 0. 5 m planar cells. The col-
orization is from Low/Green (< 2 cm) to High/Red (> 8 cm) and 
shows the smooth surface precision (intraswath) on flat surfac-
es (the road, parking lots, and building roofs). The point data is 
unclassified. RMSE of the precision was 1. 2 cm. Continued on next page

Figure 6. SDASN Raster of Planar Surfaces on Drone Lidar 
Calibration Site. 
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Figure 7. Poor Ground Classification Identified by High SDASN Values.

Finally, as a secondary use for SDASN, we have been exam-
ining using the rasters to assist in the QC of the lidar ground 
surface. Misclassifications of the ground points often charac-
terize as deviations from a smooth surface and an SDASN 
analysis can make these areas visually “pop” for the reviewer 
in the QC raster. We are investigating how to optimize this 
use case further and extend it to other features such as build-
ings. Figure 7. shows an example of a bust in the ground class 
easily identified in the SDASN QC raster. 

In conclusion we have observed significant improvements in 
the efficiency and the reliability of quality checks performed 
on lidar point clouds by using automated 3D target detection 
for accuracy assessment and data correction and Standard De-
viation Along Surface Normal (SDASN) analysis for precision 
assessment over an entire project area. These techniques ap-
ply equally well to both large and small project sites.
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