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Assessing Landsat Classification 
Accuracy Using Discrete Multivariate 
Analysis Statistical Techniques 

These techniques allow the Landsat data user to quantitatively 
compare the different aspects of image processing and to determine 
which perform better under varied conditions. 

INTRODUCTION 

T HE NEED FOR TECHNIQUES to assess the accuracy 
of Landsat derived information cannot be un- 

derstated. Without methods for measuring and 
comparing the accuracy attained using various clas- 
sification schemes, improvement of these schemes 
is impossible. The objective of this paper is to in- 
form the users of remotely sensed data of some rel- 
atively new and unknown techniques for assessing 
Landsat classification accuracy. It is not within the 

here uses discrete multivariate analysis techniques. 
These techniques are appropriate because they are 
designed for the analysis of discrete data. Classifi- 
cation data are discrete because the data either fall 
into a particular land-cover category or they do not. 
For example, a pixel can be classified as pine, hard- 
wood, or water but not as half pine and half water. 
Most previous accuracy assessment techniques have 
used parametric statistical techniques which assume 
continuous data and normal distributions. 

ABSTRACT: Discrete multivariate analysis techniques have been used to evaluate the 
accuracy of land-cover classifications from Landsat digital image y .  Error matrices 
or contingency tables were taken from the literature and then analyzed using three 
techniques. The first technique permitted direct comparison of corresponding cell 
values in different matrices by "nomnalizing" each matrix through a process called 
"iterative proportional fitting." The second technique provided a method of testing 
for signijicant differences between error matrices which vary by only a single 
variable. The third technique allowed for multivariable comparisons between ma- 
trices to be made and is the most powerful of the techniques. It was concluded 
that these techniques could help researchers better evaluate variables or factors 
affecting class$cation accuracy. 

scope of this paper to present all the theoretical and 
practical details of the statistical analysis involved 
here. However, it is hoped that even those users 
with little to no statistical background will be able 
to see the usefulness of these techniques from this 
presentation. 

The method of accuracy assessment described 
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The most common way to represent the accuracy 
of a Landsat classification is in the form of an error 
matrix or contingency table (e.g., Card, 1982; Mead 
and Meyer, 1977; Hoffer, 1975). An error matrix is 
a square array of numbers set out in rows and col- 
umns which express the number of pixels assigned 
as a particular land-cover type relative to the actual 
land cover as verified in the field or from inter- 
preted aerial photographs. The columns usually rep- 
resent the reference data (i.e., assumed correct) and 
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the rows indicate the computer assigned land-cover 
category (i.e., Landsat data). 

This form of expressing accuracy as an error ma- 
trix is an effective way to evaluate both errors of 
inclusion (commission errors) and errors of exclusion 
(omission errors) present in the classification. Also, 
the error matrix allows the analyst to determine the 
performance for individual categories as well as for 
the overall classification (Hoffer and Fleming, 1978). 
In the ideal situation, all the non-major diagonal 
elements of the error matrix would be zero, indi- 
cating that no pixel had been misclassified. 

Once the error matrix has been generated, a very 
simple procedure can be used to determine the 
overall accuracy. Because the values on the major 
diagonal represent those pixels that have been cor- 
rectly classified, these values are summed up and 
divided by the total number of pixels classified. This 
number is then the overall performance accuracy of 
an error matrix, and is the most common use of the 
error matrix in accuracy assessment. 

Until recently, this measure of overall perfor- 
mance accuracy was the extent of most accuracy as- 
sessments. However, additional statistical tech- 
niques are now being used to further assess classi- 
fication accuracy. These methods can be divided 
into two groups: analysis of variance and discrete 
multivariate analysis (often called contingency table 
analysis). 

Analysis of variance makes use of only the diag- 
onal elements in the error matrix. Also, the tech- 
nique requires that the data be normally distrib- 
uted. As previously mentioned, classification data 
are discrete and multinomially distributed (each cat- 
egory is binomially distributed). The diagonal ele- 
ments of the error matrix can be converted to a 
normal distribution using various transformations 
(Snedecor and Cochran, 1976). However, another 
assumption of analysis of variance is that the cate- 
gories in the error matrix are independent. This as- 
sumption is often not met in remotely sensed data 
because of the confusion between categories. For 
additional details and examples of this technique, 
see Rosenfield (1982). 

Discrete multivariate analysis, on the other hand, 
does not assume that the categories are independent 
nor does it require any transformation of the data. 
Instead, these techniques are designed specifically 
to deal with categorical data. Discrete multivariate 
analysis also uses the entire error matrix and not 
just the diagonal elements. As suggested by Card 
(1982), "contingency table analysis is the most nat- 
ural framework for accuracy assessment, both for 
the convenient display of empirical results and for 
the ease of statistical analysis." 

Three different methods of comparing error ma- 
trices using discrete multivariate analysis tech- 
niques were  evaluated in this study. The first 

method allows for direct comparison of error ma- 
trices through a process called normalization. The 
second method computes a measure of agreement 
between error matrices which can be used to test if 
the matrices are significantly daerent .  The third 
method provides for the simultaneous examination 
of all factors affecting the classification. 

The first comparison procedure (Bishop et al., 
1975) allows corresponding cell values in ddferent 
error matrices to be directly compared. This com- 
parison is made possible by a standardizing process 
called normalization. Normalization of an error ma- 
trix is performed by a procedure called "iterative 
proportional fitting." The rows and columns of a ma- 
trix are successively balanced until each row and 
each column adds up to a given value (say 1.0). This 
process forces each cell value to be influenced by 
all the other cells values in its corresponding row 
and column. Each cell is then a combination of 
ground truth and computer classification and is rep- 
resentative of both omission and commission errors 
for that land-cover category. 

Prior to the normalization procedure, comparison 
of corresponding cell values in different matrices 
was only possible if the matrices had the same 
s a m ~ l e  size. Even then. the cell value mav have 
been misleading because errors of omission and 
commission were ignored. However, due to the nor- 
malization procedure, the corresponding cell values 
of two or more error matrices can now be compared 
directly without regard for differences in sample 
size and including omission and commission errors. 
Although there is no test for significance between 
corresponding cell values, direct comparison can 
provide a relative measure of which is better be- 
cause all columns and rows in the matrices are re- 
quired to sum to a certain marginal. 

The normalization procedure converges to a 
unique set of maximum likelihood estimates and as 
such is the most appropriate algorithm to use in this 
case (Fienberg, 1970). However, an assumption 
made by this procedure is that all cells are of equal 
weight or importance. This assumption is not always 
valid in remotely sensed data. However, it is pos- 
sible to modify the fitting procedure to deal with 
categories of unequal importance (Bishop et al. ,  
1975). In either case, this method does provide a 
way of eliminating the effect of sample size while 
incorporating omission and commission errors into 
the accuracy measurement. 

The second method of comparison examined here 
is a procedure that tests if the overall agreement in 
two separate error matrices is significantly different. 
A measure of overall agreement is computed for 
each matrix based on the difference between the 
actual agreement of the classification (i.e., agree- 
ment between computer classification and reference 
data as indicated by the diagonal elements) and the 
chance agreement which is indicated by the product 
of the row and column margiqals. This measure of 
agreement, called KHAT (i.e., K ) ,  is calculated by 
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where r is the number of rows in the matrix, xii is 
the number of observations in row i and column i 
(i.e., the ith diagonal element), xi+ and x + ~  are the 
marginal totals of row i and column i, respectively, 
and N is the total number of observations (Bishop 
et al., 1975). Notice that the numerator of this equa- 
tion is similar to the observed minus the expected 
calculation performed in a chi-square analysis. 

A KHAT value is coinputed for each matrix and is 
a measure of how well the classification agrees with 
the reference data (i.e., a measure of overall accu- 
racy). Confidence intervals can be calculated for 
KHAT using the approximate large sample variance 
(Bishop et al . ,  1975, p. 396) 

- 1 8, (1 - 01) 
+ 

2(1 - 01)(20102 - 03) s ( K )  = - 
N (1 - 8,)' (1 - 0 2  

where 

A test for significance of KHAT can be performed 
for each matrix separately to determine if the agree- 
ment between the classification and the reference 
data is significantly greater than zero. In other 
words, a test can be performed to see if the classi- 
fication is significantly better than a random assign- 
ment of land-cover categories to pixels. More im- 
portantly, a pairwise test of significance can be per- 
formed between two independent KHAT'S using the 
normal curve deviate to determine if the two error 
matrices are significantly different (Cohen, 1960). 
The test statistic for significant difference in large 
samples is given by 

The confidence intervals and significance tests a r -  
based on the asymptotic normality of the KHAT (K) 
statistic. 

The above test between two independent KHAT'S 

allows any two error matrices to be compared in 
order to determine if they are significantly different. 
In other words, error matrices generated from sev- 
eral classification algorithms can now be compared, 

two at a time, to determine which classifications are 
significantly better than the rest. Researchers can 
also use this procedure to test the effects of indi- 
vidual factors on the accuracy of the classification. 
However, this procedure would be limited in that 
only one factor in the classification mav vary at a 
time. For example, in order to determine which 
date of imagery yields the best results, all other 
factors (i.e., algorithm, analyst, Landsat scene, etc.) 
must be held constant. Actually, this condition is 
fairly common in accuracy assessments; therefore 
the procedure can be quite useful. 

The third method of comparison allows one to 
simultaneously analyze more than a single factor af- 
fecting the classification accuracy. The log-linear 
model approach as described by Fienberg (1980) 
and Bishop et al. (1975) is a method of comparison 
by which many variables (factors) affecting the ac- 
curacy and their interactions can be tested together 
to determine which are necessary (i.e., significant) 
in fully explaining the classification accuracy. 

In this method, the simplest model (combination 
of variables and their interactions) that provides a 
good fit to the data (error matrices) is chosen using 
a model selection procedure. This procedure, which 
is similar to model selection procedures used in 
regression (i.e., forward selection, etc.), allows the 
user to ~ystelnaticall~ search all combina- 
tions of variables and their interactions and choose 
the simplest combination that provides a good fit to 
the data. First, all uniform order log-linear models 
(i. e.,  models with all possible n-way interactions, 
where n = 1 to the number of variables) are ex- 
amined and the simplest good fit model is chosen. 
Each interaction of the chosen model is then tested 
for significance. If the interaction is not significant, 
it is dropped from the model. This process con- 
tinues for each interaction until a model is found in 
which all the factors and interactions are significant. 
A more detailed description of this stepwise model 
selection procedure can be found in Section 5.3 of 
Fienberg (1980). The criteria for determining the 
significance of a model are based on the Likelihood 
Ratio, G2, and the  corresponding degrees of 
freedom for the model. 

This procedure uses a method of successive ~ p -  
proximations (i. e . ,  "iterative proportional fitting") 
which converges to the maximum likelihood esti- 
mates of the minimum sufficient statistics as defined 
by the model. In other words, the "iterative pro- 
portional fitting" procedure attempts to fit the 
model of interest to the data. This procedure is very 
tedious and titne-consuming and is almost always 
done on the computer. The Likelihood Ratio, G', is 
then used as a measure of "goodness of fit" of the 
model to the data. The Likelihood Ratio statistic, 
G2, (Equation 2) is used in place of the Pearson chi- 
square statistic, X" (Equation 3) because G2 can be 
partitioned, as in the model selection procedure, 
and still retain an approximate chi-square distribu- 
tion. Therefore, the critical value for testing if the 
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model of interest is a good fit can be obtained from TABLE 1. THE ORIGINAL  AN^ NORMALIZED ERROR 
a chi-square table with the appropriate degrees of MATRICES FOR A NON-SUPERVISED 10 CLUSTER CLASSIFICATION 

freedom (Fienberg, 1980; Bishop et al., 1975). OF THE LUDWIG MOUNTAIN AREA 

observed 
G2 = 22 (observed) log 

(expected) 

(observed-expe~ted)~ x2 = 2 
expected (3) 

Therefore, the log-linear model approach allows 
for analysis of multi-way error matrices with many 
factors. For example, error matrices generated 
using different dates, different algorithms, and dif- 
ferent analysts all of the same scene of imagery can 
be put together and the factors necessary to explain 
the classification accuracy determined. A possible 
practical result would be that the date of the im- 
agery was insignificant and therefore the date of the 
imagery could be selected with other objectives in 
mind. 

It should be realized here that performing any of 
these three comparison methods by hand would be 
very tedious. Computer programs have been 
written to implement all three techniques (Con- 
galton et al., 1981; Congalton et al., 1982). How- 
ever, due to space limitations, these programs will 
not be presented in this paper. 

The data used to test the individual effects of dif- 
ferent classification algorithms on Landsat classifi- 
cation accuracy were part of a study done by Hoffer 
(1975) on mountainous terrain in southwest and cen- 
tral Colorado. Each algorithm was used to classlfy 
the image into one of four broad land-cover cate- 
gories: conifer (C), deciduous (D), agriculture (A), 
and water (W). The four classification algorithms 
used were a non-supervised 20-cluster algorithm, a 
non-supervised 10-cluster algorithm, a modified su- 
pervised algorithm, and a modified clustering al- 
gorithm. The original and the normalized error ma- 
trices for each of the four algorithms are given in 
Tables 1 to 4. Table 5 presents a comparison of 
overall performance and normalized performance 
accuracies for the four algorithms. Note that both 
accuracies yield the same ranking (best to worst) 
except for the non-supervised 20-cluster algorithm. 
This discrepancy is due to the weighting of the 
major diagonal by the other cell values in its row 
and column. 

As previously mentioned, normalization allows 
direct comparison of corresponding cell values in 
each of the four error matrices. For example, Table 
6 contains the percent correct and normalized 
values for the deciduous category in each matrix. In 
the percent correct calculation only errors of omis- 
sion are accounted for. However, the normalized 
value considers both omission and commission er- 
rors as well as negating the effect of sample size. 

Reference Data 

C D A W  

Reference Data 

The result of considering both omission and com- 
mission errors in the accuracy figure is clearly dem- 
onstrated by comparing the values of the two non- 
supervised algorithms for the deciduous category. 
Notice that the 10-cluster algorithm classified 120 
out of 176 deciduous pixels correctly for a percent 
correct value of 68 percent, while the 20-cluster al- 
gorithm classified only 72 out of 176 deciduous 
pixels correctly for a percent correct of only 41 per- 
cent. However, notice that the normalized value for 
the 10-cluster algorithm is 0.7415 while the nor- 
malized value for the 20-cluster algorithm is 0.7817. 
This apparent discrepancy in results is due to the 
large commission error in the 10-cluster algorithm 
error matrix (see Tablel). The practical application 
of this result is that perhaps the 10-cluster algorithm 
is not that much better than the 20-cluster algorithm 
at classdying the deciduous category, despite what 
is indicated by the percent correct value. 

The data supplied by Hoffer (1975) were also used 
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TABLE 2. THE ORIGINAL AND NORMALIZED ERROR TABLE 3. THE ORIGINAL AND NORMALIZED ERROR 
MATRICES FOR A NON-SUPERVISED 20 CLUSTER CLA~SIFICA~ON MATRICES FOR A MODIFIED SUPERVISED CLASSIFICATION OF 

OF THE LUDWIG MOUNTAIN AREA THE LUDWIG MOUNTAIN AREA 

Reference Data Reference Data 

C D A W  D A W  

Reference Data 

C D A W  

to test for significant differences between error ma- 
trices. The error matrices generated from the four 
classification algorithms can be tested to see which 
are significantly different. The KHAT statistic can 
then be used as an accuracy measurement (i.e., 
measure of agreement) to determine which of the 
significantly different matrices and hence algorithms 
are best. Table 7 shows the results of the painvise 
significance tests. This table also contains the KHAT 

value and its associated variance for each matrix. 
Notice that the test between the non-supervised 10- 
cluster algorithm and the non-supervised 20-cluster 
algorithm is not significant. This result indicates that 
there is no justification for spending the extra time 
to use the 20-cluster approach because the 10- 
cluster approach works just as well. All other pair- 
wise combinations of error matrices are significantly 
different. Therefore, based on KHAT values, the 
modified clustering algorithm is the best, while the 
modified supervised algorithm is the worst at clas- 

Reference Data 

C D A W  

C 0.6671 0.2941 0.0103 0.0276 

3 D 0.2963 0.6461 0.0154 0.0414 N = 4 
P - 
I 

X + +  3.1305 
A 

0.0294 0.0448 0.9064 0.0201 - = - = 0.6261 
N 4 

W- 0.0072 0.0150 0.0679 0.9109 

X + +  = 3.1305 

sifying this image. These results agree with the 
overall performance accuracy values given in Table 
5. They also agree with normalized performance ac- 
curacy values given in Table 5 except for some con- 
fusion between the  modified clustering and 20- 
cluster non-supervised approaches. In this case the 
normalized values for the two approaches differ by 
only 0.003. However, this confusion does confirm 
that the use of omission and commission errors in 
the accuracy measurement (normalization) can alter 
the results completely. 

The data used to test the multifactor effect of dif- 
ferent classification algorithms and enhancement 
techniques on classification accuracy were supplied 
by Gregg et al. (1979). These data were collected as 
part of an operational study of Landsat imagery for 
inventory purposes in the State of Washington. In 
this example, two classification algorithms, two en- 
hancement techniques, ten reference data catego- 
ries, and ten Landsat data categories were studied 
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TABLE 4. THE ORIGINAL AND NORMALIZED ERROR TABLE 5. A COMPARISON OF THE OVERALL PERFORMANCE 
MATRICES FOR A MODIFIED CLUSTERING CLASSIFICATION OF AND THE NORMALIZED PERFORMANCE ACCURACY FOR THE 

THE LUDWIG MOUNTAIN AREA FOUR A L G O ~ H M S  

Reference Data Overall Normalized 
Performance Performance 

C D A W  Algorithm Accuracy Accuracy 

modified 
C clustering 0.8592 0.8503 

nonsupervised 

4 D 20 clusters 0.7845 0.8506 
Q nonsupervised 
Y 

W 10 clusters 0.7663 0.8222 
-J 

A 
modified 

,a supervised 0.7136 0.6261 

Reference Data 

C D A W  

0.7860 0.1222 0.0040 0.0874 

0.1355 0.8240 0.0133 0.0267 N = 4 

3.4015 
0.0299 0.0349 0.9209 0.0153 8, + = - = 0.8503 

4 

0.0486 0.0189 0.0619 0.8706 

L 

X++ = 3.4015 

resulting in a four-way table of dimension 2 by 2 by 
10 by 10. Unfortunately, due to the size of this four- 
way table, it cannot be printed here. However, the 
original data can be found in the paper cited above. 

As previously described, a model selection pro- 
cedure was used to determine the simplest good fit 

model to the data. Table 8 contains the uniform 
order log-linear models for these data. Notice that, 
because this is a four-way table, the uniform order 
models consist of the models with all three-way, all 
two-way, and all one-way interactions. The uniform 
order model of all four-way interactions (i.e., [ 12  3 
41) is the complete or saturated model and will al- 
ways fit the data. However, the object here is to 
find the simplest good fit model. 

In this example, classification algorithm (denoted 
variable [I]), enhancement technique (denoted vari- 
able [2]), and the reference data (denoted variable 
[3]) are called the explanatory variables while the 
Landsat data (denoted variable 143) are called the 
response variable. This terminology results because 
the first three variables are being used to try to 
explain the response (i.e., Landsat classification). 
The interaction terms in the model are represented 
as combinations of these variables enclosed in 
brackets (e.g., [l 21 is the interaction between al- 
gorithm and enhancement). 

Table 8 shows that the two-way interaction uni- 
form order model is the simplest good fit model as 
determined by the Likelihood Ratio, G2. Therefore, 
this model will be used as the first step in the model 
selection procedure. Notice that this model contains 
six two-way interaction terms. The object then is  to 
systematically remove all other non-significant fac- 
tors or their interactions. Table 9 shows the steps of 

TABLE 6.  A COMPARISON OF THE DECIDUOUS CLASSIFICATION FOR THE FOUR CLASSIFICATION .~LGORITHMS. 

Number of Pixels 
Number of Correctly in the Deciduous % Normalized 

Algorithm Classified Pixels Category Correct Value 

nonsupervised 
10 clusters 

nonsupervised 
20 clusters 

modified 
supervised 

modified 
clustering 
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TABLE 7. THE RESULTS FOR THE TEST OF AGREEMENT TABLE 9. THE MODEL SELECTION PROCESS FOR THE FOUR- 
BETWEEN ERROR MATRICES FOR THE FOUR WAY TABLE COMPARING ENHANCEMENT TECHNIQUES AND 

CLASSIFICATION ALGORITHMS CLASSIFICATION ALGORITHMS 

Result Model G2 df Result 

Painvise Comparison Z Statistic' 95% 90% [121[131[141[231[241 10732.65712 315 Poor fit 

(10 N-S) & (20 N-S) 0.475 NS2 NS [12][13][14][23][34] 230.22104 243 good fit 
(10 N-S) & (MS) 3.009 S S 
(10 N-S) & (MC) - 2.936 S S [12][13][14][24][34]B 147.83246 243 good fit 
(20 N-S) & (MS) 2.434 S S 
(20 N-S) & (MC) -3.281 S S [12][13][23][24][34] 227.51772 243 good fit 
(MS) & (MC) -5.624 S S 

[12][14][23][24][34] 156.53131 243 good fit 

146.04061 235 good fit 

KHAT model B best and good fit not significant 
Error Matrix Statistic Variance G2(B) - G2(A) = 1.96818 - x&f so drop [23] 

10 cluster non-supervised 
(10 N-S) 0.605 0.00073735 

20 cluster non-supervised 
(20 N-S) 0.586 0.00087456 Model G2 df Result 

Modified Supervised 
(MS) 0.476 0.00109972 [121[131[141[241 10733.8278 324 poor fit 

Modified Clustering [121[131[141[341 231.3918 252 good fit 
(MC) 0.718 0.00076218 [121[131[241[341 229.4802 252 good fit 

' Use equatlon (1) to calculate Z statishc 
[121[141[241[34] 158.4941 252 good fit 

NS = non-slgnficant result, s = significant result [131[141[241[341C 148.0034 252 good fit 

model C best and good fit not significant 
G2(C) - G2(B) = 0.17094 - x ; ~ ~  so drop [12] 

this process. The next step in the model selection 
process then is to eliminate a two-way interaction 
term from the two-way uniform order model. Six 
new models result, each with a different combina- 
tion of the  five remaining two-way interaction Model G2 df Result 

terms. These six new models are tested for "good- [131[141[24] 10733.99876 325 poor fit 
ness of fit" based on the Likelihood Ratio, G2, and [131[141[341[21 231.43485 253 good fit 
the appropriate degrees of freedom (df), and model [131[241[341 229.52108 253 good fit 
B is chosen to be the simplest best fit model. The [141[241[341D 158.66500 253 good fit 
missing two-way interaction term is tested for sig- 
nificance by comparing the fit of the two-way uni- model D best and good fit not significant 

form order model. labeled A. (see Table 8) with G2(D) - G2(C) = 10.66162 - ~ h ,  so drop [13] 

model B. The test i s  possible be'cause partititoning 
the Likelihood Ratio still results in a chi-square dis- 
tribution. Because the test is not significant, the [2 
31 interaction term is dropped from the model (see 
Table 9). 

TABLE 8. THE UNIFORM ORDER MODELS FOR THE FOUR- 
WAY TABLE COMPARTNG ENHANCEMENT TECHN~QUES AND 

CLASSIFICATION ALGORITHMS 

Model G2 df Result 
- 

[11[21[31[4] 10888.87281 352 poor fit 

[12][13][14][23][24][34]* 145.86428 234 good fit 

20.90917 54 good fit 

Model G2 df Result 

[141[241[31 10734.29202 334 poor fit 
[141[341[2] 242.09646 262 good fit 
[241[341[11E 229.81433 262 good fit 

model E best and good fit choose D 
G2(E) - G2(D) = 71.14933 - xLf significant so 

can't drop [14] 

This same process is repeated, yielding model C 
as the simplest best fit model. Also, the test shows 
the [l 21 interaction term to be not significant; 
therefore, it is dropped from the model. Again the 
process is repeated, leading to model D and the 
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elimination of the [l 31 interaction. Note that one 
of the possible models tested here contained a one- 
way interaction term. The process is repeated one 
last time, resulting in model E as the simplest best 
fit model. However, the test between models D and 
E was significant; therefore, the [ l  41 interaction 
cannot be dropped from the model without losing 
some information about the data. Therefore, model 
D ( [ l  41 [2 41 [3 41) is selected as the simplest best 
fit model to the data. 

Model D indicates that there are no three-way 
interactions necessary to explain the data. Instead, 
there is a combined effect due to each explanatory 
variable (i.e., algorithm, enhancement, and refer- 
ence data) separately with the response variable. In 
other words, for this example each factor is signifi- 
cant in the performance of classifying the image and, 
therefore, none can be eliminated. 

The three techniques described here should be 
very helpful in comparing and assessing Landsat 
classification accuracy data that are in the form of 
error matrices. These techniques allow the Landsat 
data user to quantitatively compare the different as- 
pects of image processing and determine which per- 
form better under varied conditions. Wide use of 
these quantitative methods could lead to greater im- 
provement in our application of Landsat imagery. 
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The theme chosen for this symposium-sponsored by the Canadian Remote Sensing Society-is "Re- 
mote Sensing for the Development and Management of Frontier Areas," with emphasis on oceans, the 
northland, and wilderness regions. The conference will consist of plenary, technical, and poster sessions. 

The Technical Program Committee invites authors to submit a 600-word abstract of papers proposed for 
presentation at the symposium, no later than 29 February 1984, to the following address: 
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