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Selecting Band Com binations from 
MuItispectraI Data 
The procedure provides a single preferred choice, decided uniquely by 
the statistics of a scene or su bscene, and taking full account of any 
correlations that exist between different bands. 

INTROIIU(:TION nents will often account for more than 99 percent 

HE PROBLEM of selecting N-band subsets from P of scene variance (Lillesand and Kiefer, 1979). How- T bands of multispectral data is an old one, but ever use of principal components introduces a new 
it has become now that data problem The colors of features in the combined 

from the Landsat-4 Thematic Y~~~~~ (T~, )  are in image are colnpletely data dependent, and it is 

widespread use ( ~ i l l i ~ ~ ~ ,  1984; chave, et .l,, therefore difficult for an interpreter to apply any 
1982; chaveZ et a l , ,  1984), Because the human eye previous experience of color-surface relationships to 

employs three primary colors, and the Thematic the analysis of a principal components image. The 

M~~~~~ returns bmds of data, one problem final potential of principal colnponent images is still 

that inevitallly arises is that of making the ef- largely unexplored, and an alternative approach is 

fective three-band color composite images. The "OW presented' 

choice is non-trivial, because three bands can be DEFINITION OF THE METHOD selected from seven in 35 ways. Also. any band can 
be assigned any color. This kives a total'of 210 dif- Consider the 7 by 7 variance-covariance matrix, 
ferent possible color presentations of T ~ I  three-band M, for a scene or subscene (ignoring for the moment 
images. the fact that the T ~ I  thermal band is of inherently 

ABSTRACT: The question of selection of band subsets frotrz inultispectral itnage data, 
with particular reference to the choice of color covzbinations from Landsat-4 The- 
inutic Mapper data, is addressed. An algorithm for band subset selection is pro- 
cided, and a relationship to multispectral image entropy is established. 

In this paper a general logic is presented for se- 
lecting N bands from P(>N) bands of image data. 
For convenience of presentation, the discussion is 
given mainly in terms of selecting a three-band set 
from the seven bands of TM. However, the method 
is quite general. The procedure provides a single 
preferred choice, decided uniquely by the statistics 
of a scene or subscene, and taking full account of 
any correlations that exist between different bands. 

It should be remarked here that one general ap- 
proach to this problem of band choice is through 
the use of principal component images (Taylor, 1974; 
Merembeck, 1977). In a statistical sense, the use of 
the first three principal component images in a color 
combination presents as much information as pos- 
sible, using three colors. For a Landsat Multispec- 
tral Scanner (MSS) image, these first three compo- 
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lower resolution than the rest). Any triplet of bands 
will be represented within this 7 by 7 matrix by a 
3 by 3 submatrix. 

Considering now the three-dimensional subspace 
spanned by any particular band triplet, the associ- 
ated variance-covariance matrix defines an ellipsoid 
within the  subspace. Further,  the sum of the  
squared principal axes of this ellipsoid represents 
the total variance accounted for by these three 
bands (see Figure 1). One could plausibly (but as 
we shall see, wrongly) argue that the best three 
bands are those with the largest sum of squared 
principal axes, which hence account for the largest 
total variance. This is, after all, exactly the argument 
applied in employing principal component images. 
Because the trace of a matrix is invariant under ro- 
tational transformations, and because the sum of 
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constant probability) 

FIG. 1. The variance-covariance ellipsoid, principal axes *, %, 6. 

squared principal axes is equal to that trace, the 
band triplet that accounts for the most possible vari- 
ance can be found from the original variance-co- 
variance matrix simply by selecting the three bands 
with the largest diagonal elements. There is no need 
to examine all 35 band combinations. 

To see what is wrong with this approach, consider 
an extreme case where there happens to be perfect 
correlation between a pair of bands. For conve- 
nience, suppose that those bands are 1 and 2, and 
suppose that the variance of band 1 (and therefore 
of 2) is larger than that of any other band. The 7 by 
7 matrix M then has the form 

where a > b, c, . . . 
The rotation matrix that will diagonalize the 

upper left 2 by 2 submatrix then has the form 

and, thus, after rotation the upper left 2 by 2 sub- 
matrix will have the form 

As expected, one eigenvalue is zero; but the other 
is the sum of the variances from the original bands 
1 and 2. Because a is assumed to be large, both 
bands 1 and 2 will be included in the triplet that 
accounts for maximum variance-despite the fact 
that if either one of them is used, adding the other 
contributes no new information. 

The problem lies in the use of total variance as 
the measure for the information content of the band 
triplets. This is equivalent to use of the sum of 
squares of ellipsoid principal axes, and there is no 
penalty associated with a very small principal axis 
provided that it occurs in association with a large 
axis (see Figures 2 and 3), as was the case for the 
above example. 

We propose the use of a different measure for the 
information content of the triplet, and one that 
avoids the  undesirable property demonstrated 
above. We will select the ellipsoid of maximum 
volume. This discourages selection of pairs of bands 
with high correlation, because in such cases one ei- 
genvalue will be close to zero and the corresponding 
ellipsoid volume will be small. 

Because the ellipsoid volume is 4aabcl3, where 
a, b ,  and c are the principal axes of the ellipsoid, 
the volume of the ellipsoid associated with a partic- 
ular band triplet is a constant multiple of the square 
root of the product of the eigenvalues for the 3 by 
3 variance-covariance matrix of that triplet. How- 
ever, under rotational transformation the product of 
the eigenvalues is equal to the determinant of the 

A 1 +  A2 large, 

A 1  X A 2  mnU 

FIG. 2. High correlation, bands 1 and 2. 
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A1 + A p  smaller than in Ryre 2 

x i2 
larger than in Figure 2 

reasonably logical and well-motivated, but in many 
cases it can be given further justification in terms of 
a standard image processing concept. 

Suppose that the P bands of data can be described 
by a P-dimensional normal distribution, with prob- 
ability density function given by Duda and Hart 
(1973): i.e., 

p(x) = 1IK exp[-(x - P)T M-I (X - %)I21 (4) 
where f is the mean of the distribution, M is the P 
by P variance-covariance matrix, and K = ( 2 ~ ) " ~  
1M1112 is the normalizing factor that gives unit prob- 
ability when integrated over all space. 

Then any N-band subset will similarly be de- 
scribed by an N-dimensional normal distribution of 
the form 

where i is the mean of the subset distribution, Ms 
is the corresponding N by N variance-covariance 
matrix, and Ks the appropriate normalizing factor 

FIG. 3. Low correlation, bands 1 and 2, but lower in&- that ensures unit value for the integrated proba- 
vidual variances. bility. 

The e n t r o ~ v  of such an N-band subset of data is 

original 3 by 3 submatrix. Thus, we can select the 
band triplet that provides the ellipsoid of maximum 
volume simply by computing and ranking in order 
the determinants of each 3 by 3 principal submatrix 
of the original matrix M. The band triplets associ- 
ated with these determinants will then be ranked 
in order of decreasing overall information content. 
Given the original matrix M, the total computation 
to achieve this ranking is trivial. It requires a few 
hundred multiplications, followed by a sort of a list 
of 35 items. A BASIC program to perform this is 
given as an Appendix to this paper. 

This procedure gives the best triplet, but the as- 
signment of colors is still to be made. Now we can 
make use of the actual variances (the diagonal ele- 
ments of M). Because the eye is most sensitive to 
green, next to red, and least to blue, we will assign 
green to the band triplet member of maximum vari- 
ance (i.e., most variation within the image), red to 
the triplet member of second largest variance, and 
blue to the triplet member of smallest variance. The 
definition of bands for production of a color image 
is now complete. 

The procedure described in the last section seems 

given by ~ & d  (1982): i.e., 

S = -$ p(z) In p(z) dz 
all N-space, V. 

(6) 

Thus, using Equation 5, and changing the origin 
of coordinates to the point 2, 

S = ln(Ks) + 112 zTMs-' z p(z) dz (7) 

Thus, 

2 Ks [S - ln(Ks)] = zT Ms- z exp( - lhzT Ms-I Z) dz. 

(8) 

Rotating to principal axes, and noting that, be- 
cause this is a pure rotation the Jacobian of the 
transformation is unity, the form zT Ms-I z becomes 
diagonal; thus, 

where a,, a,, a,, . . . , a, are the square roots of 
the eigenvalues of Ms. (This matrix is positive semi- 
definite; thus, its eigenvalues are non-negative.) 
Thus, 

.\' 
2 KS [ S  - In(&)] = fy:la: exp(- y ~ 1 2 a ~ ) d y I ~  exp ( - xyy2a:)dy2 . . . dy, + (N - 1) similar terms. 

-r - x  2 

(10) 



Using the integrals 

I: exp ( - y212u2) dy = 6 u 

and 

variances are decided, however, not only by the 
scene content, but also by the design of the The- 

(11) matic Mapper (in an ideal instrument, all single 
band variances would on average be the same, so 
that each band on average occupies the same frac- 
tion of available grey levels; this is not true for the 
Thematic Mapper). Thus, the selection algorithm 

(y2IU" exp ( -  y2/2u" dy = 6 U, (12) defines preferred band combinations for particular 
scenes and sensors. The bands favored for Thematic 
Mapper may not be those for another instrument, 

we then have even for an instrument with identical spectral win- 

Because Ks = ( 2 ~ ) ~ ' ~  (MsI1l2, we have at once 

Apart from an additive constant, the entropy for the 
case of a normal distribution of data is thus half the 
logarithm of the determinant of the variance-co- 
variance matrix. Choosing the N-band subset that 
maximizes this determinant is thus exactly equiva- 
lent to choosing the subset of N bands of maximum 
entropy. 

For Thematic Mapper data, the procedure has 
been applied to a number of U.S. scenes of very 
different ground cover, including Washington, 
D.C., Death Valley, and Cement, Oklahoma. The 
results for Washington and for Death Valley are 
given in Tables 1 and 2, together with the associated 
variance-covariance matrices. The following com- 
ments apply to them, and to all other scenes studied 
to date: 

(1) The band combination 1,4,5 (in the order 
blue, red, green) is usually, but not always, the se- 
lected triplet. In cases where it does not rank first, 
it usually ranks second. In the experiments con- 
ducted to date, the algorithm usually selects one 
band each from the visible, near infra-red, and short 
wave infra-red regions; and within those regions, 
bands of high individual variance are favored. 

(2) Bands 1,4, and 5 of the original bands usually 
have a relatively high individual variance. These 

dows. 
(3) The natural color combination 1,2,3 and the 

standard false color combination 2,3,4, both place 
far down in the rankings. In the case of the Wash- 
ington, D.C. image, the natural color combination 
is 29th (lower than anything except some thermal 
band combinations, which are low for another 
reason to be discussed shortly); the 2,3,4 combina- 
tion was ranked in 16th place. For Death Valley, the 
1,2,3 natural color combination ranked 32nd, and 
the 2,3,4 combination just above it, at 31st. This is 
presumably a consequence of the very high corre- 
lations between the first four bands of the Death 
Valley scene. 

(4) Triplets that rank high always include either 
band 5 or band 6 (note: the bands here are ordered 
by increasing u;aveZength, so the thermal band is 
band 7). This emphasizes the great importance of 
bands 5 and 6 on general information-bearing 
grounds. " 

(5) In independent experiments performed using 
many different band and color combinations of The- 
matic Mapper data, experienced interpreters unfa- 
miliar with the analysis described here consistently 
ranked the 1,4,5 combination as one of their best 
choices (Colvocoresses, 1983). 

OTHER CONSIDERATIONS AND COMMENTS 

(I) The statistical analysis performed here used 
Thematic Mapper fully corrected or P tapes (which 
were readily available) in which the original histo- 
grams had already been modified by the gains and 
offsets. It would be preferable to work with data that 
have had no gains or offsets applied, i.e., with A 
tapes prior to any radiometric correction. If band 

TABLE 1 ~ .  VARIANCE-COVARIANCE MATRIX FOR THE WASHINGTON, D.C.  SCENE, WITH REDUCED VARIANCE OK THE 

THERMAL CHANNEL 
-- 

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7* 

* Thermal band is Band 7. 
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TABLE 1 ~ .  RANKED RESULTS FOR WASHINGTON, D.C. 
SCENE, WITH REDUCED THERMAL VARIANCE 

Rank Determinant Band Combination* 

* Thermal channel is Band 7. 

selection of this type becomes common, it would be 
desirable to have such A tapes available as standard 
products. 

(2) The thermal band is of lower resolution than 
the rest; thus, it would not be appropriate to give 
it the same weight in the selection process. How 
should one therefore deweight it? There is no clear 
answer to this question, but one could argue as fol- 

lows: The maximum information that a scene can 
contain is given by the number of pixels, because 
in the limiting case, where there is no correlation 
between pixels, each would carry independent in- 
formation about some feature of the surface. In such 
a case, the amount of information that the thermal 
band can contribute is only 1116th that of the other 
bands, because there are 16 times fewer pixels. 
Therefore, one should deweight the thermal 
channel by a factor of 16. Such deweighting was 
performed in the experiments reported here. How- 
ever, we should also note that this made no differ- 
ence at all to the preferred band triplets, because 
even without deweighting we found no case where 
a triplet involving the thermal channel was in the 
top five. In practice, scene autocorrelation should 
certainly modify the weight factors (Labovitz and 
Masuoka, 1984). 

(3) It is obvious when one looks at images created 
from the triplet 1,4,5 that for some applications this 
combination will be inferior to others, such as nat- 
ural color and standard false color; for example, 
bridges are more easily seen on the 1,2,3 natural 
color combination. This restates the old truth, that 
one man's noise is another man's signal. However, 
the preferred triplets do tend to provide images of 
unusual clarity, with less residual striping than is 
seen in, for example, the natural color images. This 
is because the selection algorithm favors bands of 
high variance where strong contrast stretching is not 
necessary, and where the small grey level differ- 
ences of residual striping are thus not amplified 
during image enhancement operations. 

(4) Combinations such as 1,4,5 produce images 
with colors that are at first sight unfamiliar and un- 
usual, but the assigned colors are not scene-depen- 
dent. Thus, in contrast to the scene-dependent 
colors of principal component or ratio images, the 
interpreter quickly learns to associate colors with 
particular ground condition. We therefore believe 
that there are definite advantages to seeking color 
composites of the original individual bands, rather 
than through band ratios or other band combina- 
tions. 

(5) The approach developed here applies equally 
well to the problem of determining the best N bands 
from M original bands, regardless of the size of N 

TABLE 2 A .  VARIANCE-COVARIANCE MATRIX FOR THE DEATH VALLEY SCENE, WITH REDUCED VARIANCE ON THE 

THERMAL CHANNEL 

Band 1 Band 2 Band 3 

198.55 
125.40 
181.12 
163.27 
276.44 
162.93 
22.50 

Band 4 

176.41 
112.95 
163.27 
159.70 
262.74 
152.99 

14.79 

Band 5 

246.36 
178.63 
276.44 
262.74 
627.47 
366.90 
75.38 

Band 6 Band 7* 

* Thermal band is Bend 7. 



TABLE 28. RANKED RESULTS FOR DEATH VALLEY SCENE, Only image data studied so far with this have 
WITH REDUCED THERMAL VARIANCE been those from the Thematic Mapper. Thus, 

Rank Determinant Band Combination* sensor and scene characteristics cannot be decou- 
pled. A similar analysis, for multispectral data from 

1 1462581 1, 4, 5 other instruments, might be revealing. It might 
2 859695 1, 5, 6 allow band selection due to a particular sensor to be 
3 684248 1, 3, 5 separated from band selection due to the funda- 
4 601687 1, 4, 6 mental reflective and emissive properties of the 
5 432952 3, 4, 5 
6 346425 1. 5. 7 

Earth's surface. 

15 127643 2, 4, 6 
16 121117 1, 6, 7 
17 107494 4, 5, 7 
18 103781 2, 3, 5 
19 89506 2, 5, 7 
20 76827 1, 2, 6 
21 75913 1, 3, 4 
22 49163 3, 6, 7 
23 40621 4, 6, 7 
24 39230 2, 3, 6 
25 37614 1, 4, 7 
26 31621 2, 6, 7 
27 21579 1, 3, 7 
28 21322 1, 2, 4 
29 20256 5, 6, 7 
30 9168 3, 4, 7 
31 8118 2, 3, 4 
32 7895 1, 2, 3 
33 7197 2, 4, 7 
34 5037 1, 2, 7 
35 2407 2, 3, 7 

* Thermal channel is Band 7. 

and M. Thus, the algorithm should be very useful 
in dealing with airborne scanner data, where the 
number  of original channels is often large. 

The analysis given here provides a simple tech- 
nique for selecting a small set of bands from N bands 
of data, where N may be large. The results obtained 
for Thematic Mapper data are interesting and re- 
vealing, because they select certain preferred three- 
band sets in a way that appears almost scene-inde- 
pendent. In particular, the 1,4,5 band combination 
consistently ranks high, regardless of image loca- 
tion. However, it should be emphasized that the 

I would like to thank Jon Dykstra of Earth Sat- 
ellite Corporation and Takeshi Ando and Hiroshi 
Watanabe of the Japan Petroleum Exploration Com- 
pany, Ltd., for their enlightening comments and 
suggestions. 
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APPENDIX 
THE BEST-BAND PROGRAM 

20 PRINT "SELECTION OF BEST THREE BANDS BASED ON ELLIPSOID VOLUME" 
30 PRINT "DEATH VALLEY WITH REDUCED THERMAL VARIANCE" 
40 DIM R(36),Q(36) 
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50 DIM U(36),V(36) 
60 DIM M(8,8) 

70 REMARK: M is the variance-covariance matrix for the scene or subscene. 
80 REMARK: The arrays R,Q,U and V are storage arrays used in the program. 
90 REMARK: Note that the program assumes that band 7 is the thermal data, and band 6 is the 2.2 

micrometre data. 
100 REMARK: The instructions 190 to 230 (except for 220, which sets a count) reduce the variance 

of the thermal channel to allow for the lower spatial resolution of the thermal channel pixel. 

190 FOR1 = I TO6 
200 M(1,7) = M(1,7) I 4  
210 NEXT 
220 C = 1 
230 M(7,7) = M(7,7) 116 
240 PRINT "RANK DETERMINANT COMBINATION" 
250 FOR I = 1 TO 5 
260 FOR J = I + 1 TO 6 
270 FOR K = J + 1 TO 7 
280 D l  = M(I,I) (M(J,J) M(K,K) - M(J,K) f 2) 
290 D2 = M(I,J) (M(J,K) M(I,K) - M(I,J) M(K,K)) 
300 D3 = M(1,K) (M(I,J) * M(J,K) - M(I,K) * M(J,J)) 
310 DT = D l  + D2 + D3 

315 REMARK: The next instruction makes the determinant an integer; this is not necessary, it is done 
for convenience of output only. 

320 DT = INT (DT) 
330 N = 100*1 + 1 0 * J  + K 
340 R(C) = DT:Q(C) = N 
3 5 0 C = C + l  
360 NEXT 
370 NEXT 
380 NEXT 

385 REMARK: The next piece of code sorts the determinant into descending order. 
390 FOR I = 1 TO 35 
400 N = 0 
410 FORJ = 1 TO35 
420 IF R(I) < R(J) THEN 440 
4 3 0 N = N + 1  
440 NEXT 
450 U(N) = R(I):V(N) = Q(I) 
460 NEXT 
470 FOR I = 1 TO 35 
480 PRINT I,U(I),V(I) 
490 NEXT 
510 END 
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