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ABSTRACT: In the overlapping area of adjacent photogrammetric models features are normally
digitized In both models and are, therefore, subject to averaging. Though this process does
not act as a significant difficulty when performed manually by the operator, it poses inter
esting problems when data are stored digitally and a computer solution is preferred. In this
case, the problem consists in determining the overlapping area, identifying and averaging
conjugate (corresponding) lines, and replacing the original by the averaged lines. The solution
proposed in this paper is based on discrete geometry and digital image processing methods,
hence resembling the draftsman's problem-solving ability much more closely than methods
which are based on Euclidean geometry. After extensive testing on a Mclntosh personal
computer, the software prototype has been implemented in a Kern MAPS200/300 digitizing
and editing system.

photogrammetric models, line-matching almost
inevitably becomes a problem, because data in the
overlapping area of two adjacent models differ due
to unavoidable errors related to the data acquisition
process. A topographic feature, such as a contour
line, is normally digitized as a string of points and
recorded either by equal time or distance intervals,
or by a combination of the two. It is, therefore, very
unlikely that all the points recorded in the two models
are identical.

Contour interpolation based on heights measured
in some manner, along profiles or by means of a
grid, lead to the same problem, assuming that in
terpolation is performed independently in a model
or parts of a model. The contours will not match
exactly along the dividing line even if the neigh
boring sections overlap. Line-matching can be used
to overcome this defect.

If we assume that several models have been in
dependently digitized and data are stored in a com
mon ground-control coordinate system, then the task
of line-matching may be divided into determining
the overlapping area, identifying and averaging
conjugate (corresponding) lines, and, finally, re
placing the original by the averaged lines. This pa
per describes all phases in this process, but emphasis
is placed on identifying and averaging conjugate
lines, because this presents a major challenge when
approached by conventional methods. Confronted
with the problem of identifying and averaging con
jugate lines between neighboring models, one is
easily tempted to solve the problem by applying
Euclidean geometry; because the lines are given as
a sequence of points, it seems most obvious to com
pare distances between points on different lines,
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INTRODUCTION

SINeE THE SPREAD of computers through univer
sities and corporations in the late 1950s, photo

grammetrists have been increasingly attracted by
numencal methods. Today it is not very difficult to
adjust, rigorously and simultaneously, hundreds or
even thousands of photogrammetric models. The
computation of digital height models is another ex
ample demonstrating the relative ease with which
we treat problems involving a large number of ob
servations, by manipulating them according to sta
tistical methods such as, for example, the least
squares method.

More recently, the computer has been used to
perform tasks previously left to an operator or
draftsman; in photogrammetry, for manuscript
plotting and editing, and also in cartography. In
many respects, these a?plications differ a great deal
from the problems referred to above. For one thing,
the statistical treatment and analysis of data is fairly
well known and understood; once appropriate al
gorithms have been developed, the task is reduced
to a mere data processing problem. The second class
of problems does not behave in the same way, and,
surpriSingly enough, tasks solved with the greatest
of ease by a draftsman often defy computer meth
ods. This problem area is more complex than it might
seem at first glance, and the temptation is strong,
if not irresistible, to apply the same methodology
which has proved so successful for solving adjust
ment problems. This paper describes a departure
from our traditional methods which proves to be
superior in the case of line-matching two adjacent
photogrammetric models.

In the compilation of a map involving several
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FIG. 2. Overlapping area between two adjacent models.
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resented by lines of various types and forms: solid
lines, dashed lines, heavy lines, parallel lines, etc.
Regardless of the particular representation, these
lines are generally stored as a sequence of points
accompanied by a pen-down pen-up code. For the
remainder of this paper, only this generic line rep
resentation is considered, even though different line
types (e.g., parallel lines) and forms (e.g., a line
pattern of dash-point-dash) may considerably add
to the complexity of the problem.

As stated, the part of the line digitized in one
model is independent of its continuation in the next

FIG. 1. (a) Distances between points on line 1 and line 2
are longer by comparison with those between lines 1 and
3, even though line 2 is closer to line 1. (b) Projection of
line 2 onto line 1 results in greater distances by comparison
with line 3, although line 2 is closer to line 1.

IDENTIFYING CONJUGATE LINES

look for the shortest distance in each case, and av
erage these distances. An examination of Figure 1a.
quickly reveals the pitfalls in this approach; the
shortest distance between two points on different
lines is no guarantee that the two conjugate lines
have been found. Even the more sophisticated ap
proach of computing the distance of points pro
jected onto the line segments may lead us badly
astray, as may be seen in Figure lb.

Why do we try so hard to solve this problem by
Euclidean geometry when a draftsman solves it with
great ease? A human being "sees" a line in its en
tirety, consisting of all the intermediate points, ma
terialized as small patches. The mathematical
abstraction with the two end points is meaningless
to him. If, for example, the best matching line has
to be found for a given line, a draftsman's decision
is always based on the full information of the lines
or, we may say, on the solid representation as dis
tinct from the abstract representation. Because this
approach is far more efficient, it has been adopted
for solving the line-matching problem. Conse
quently, the lines are represented by raster ele
ments rather than by their end points, and discrete
geometry is preferred to Euclidean geometry. A
classic approach to the solution of the line-matching
problem, based on analytical geometry, has been
proposed by Shmutter and Doytsher (1982).

There are many features crossing model bound
aries: contour lines, roads, rivers, and railways, to
mention just a few. The features are graphically rep-

DETERMINATION OF THE OVERLAPPING AREA

If photogrammetric models or map sheets are dig
itized independently, then the first step in solving
the line-matching problem is to determine the over
lapping area, in order to consider only relevant data
in the subsequent steps. This is a fairly straightfor
ward task and does not impose any serious prob
lems. Initially, perimeters of both models are found
by consecutively comparing minimum and maxi
mum coordinate values. Next, the two perimeters
are intersected and the resulting polygon is the pe
rimeter of the overlapping area as depicted in Figure
2. The exact shape of the perimeter, however, is not
of importance; it suffices to replace it by a surround
ing rectangle. The approximation of the overlapp;ng
area by a rectangle allows for simple clipping al
gorithms to be applied. In other words, the over
lapping area is regarded as a window against which
all features of both models are clipped, using stan
dard methods of interactive computer graphiCS as
described, for example, in Foley and Van Dam (1982).
Note that true clipping is not necessary; in fact, there
are advantages to be gained by including in the line
matching process the entire line segment crossing
the boundary of the overlapping area. Hence, cross
ing line segments need not be cut off by clipping.
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of the two end points. We therefore leave the realm
of analytical geometry and computer graphics; in
stead, we turn to discrete geometry and rely on im
age-processing methods. Figure 4 demonstrates the
contrast between the analytical and discrete repre
sentation of lines. The latter allows a quick decision
on which line is closer to line 1 (Figure 4b). The
analytical representation of the same lines almost
resembles a picture puzzle when one is faced with
making this decision (Figure 4a).

In discrete geometry, a line is represented as ras
ter elements, sometimes also called pixels, though
this term should be used in connection with images
rather than with line drawings. The transition from
an analytical to a discrete representation is com
monly referred to as rastering and is, in fact, a form
of discretization. In our problem, the lines under
consideration are rastered using Bresenham's al
gorithm as described in Foley and van Dam (1982).
Figure 5 shows the result of this intermediate step.
The raster elements of a line simply form a string
of x and y integer values. Note that rastering leads
to a loss of accuracy. That is, the original coordi
nates of the end points of the line's vector repre
sentation cannot be accurately recovered, on account
of the rounding effect of rastering. Clearly, the error
increases proportionately to the size of the raster
elements.

Even when the raster elements for all the lines
are available, we still need to find the conjugate
line. Our only guide is the determination of iden
tical raster elements: the candidate line with the most
identical raster elements to the line of the first model
is the conjugate line. As may be seen in Figure 5,
line 2 has no identical element, line 3 has two, and
line 4 has one. In accordance with the rule as stated,
line 3 should be the conjugate line. This is obviously
wrong and necessitates a refinement of the rule: the

(A)

(8)
FIG. 4. (a) Analytical representation of lines by two points
and a pen command. (b) Discrete representation of lines.
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model. The task of line-matching is to link the parts
together as if the line were digitized continuously,
without interruption at the model boundary. When
we consider not only the digitizing errors but also
the systematic errors, which tend to increase toward
the edge of a model, there is good reason to digitize
lines, especially those representing natural features,
so that they overlap. Thus, the operator is not forced
to continue precisely where he left off in the pre
vious model. It is even better to disregard the dig
itized portion completely, in order to avoid that the
operator "interprets" measurements to conform to
the digitized line from the previous model.

Where does this leave us in our attempt to iden
tify and average conjugate lines? At the outsset, when
the preliminary procedure has been completed, we
have no idea what lines are conjugate; in other words,
which of them belong to each other and, in fact,
represent the same feature. Focusing on one line of
the first model, all lines in the second model that
are of the same feature class are eligible as conjugate
lines and must somehow be compared with that in
the first model.

In order to limit the search process, a top-down
approach is used by which, in a first coarse step,
the lines of the second model are reduced to a few
candidate lines, again applying a method of inter
active computer graphics. As shown in Figure 3, a
rectangle enclosing the line, commonly referred to
as extent or bounding box, is computed for all the
lines. Candidate lines are lines whose extents over
lap with that of the line in the first model (line 1).
Comparison of these extents can be programmed
extremely efficiently using clipping techniques.

The next step in our top-down approach requires
a more datailed analysis, in order to determine which
of the candidate lines is closest to the line of the
first model and is, in fact, the conjugate line. Be
cause an operator solves this problem so easily, a
computer method that mimics the operator's prob
lem-solving abilities seems particularly promising.
As stated, the operator perceives the line in its en
tirety, not as an abstract representation in the form

FIG. 3. Extents (boundary boxes) enclosing lines 1, 2, and
3. Overlapping extents contain candidate lines.
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FIG. 5. Rastering of lines 1 to 4.
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AVERAGING CONJUGATE LINES

subsequently be decreased until a stopping criterion
is reached. In every iteration, the number of iden
tical raster elements is multiplied by a weighting
that is reciprocal to the raster size.

We conclude that a determination of conjugate
lines involves rastering of lines with various raster
sizes, and a comparison of the raster elements.

Rastering is a common real-time process used in
many computer graphics systems. Hence, very ef
ficient algorithms are available. The process of com
paring raster elements is a search process for which
various fast algorithms are available. Not surpris
ingly, the procedure described in this paragraph can
be programmed extremely efficiently in terms of
throughput time. However, line-matching need not
be implemented in an interactive environment where
speed is of utmost importance; a batch mode is quite
adequate, and operator interaction is required only
at the end to control and to solve interactively all
the cases the program rejected or failed to solve
properly.

FIG. 7. Large-size raster elements yield more identical ele
ments (dark quadrangles) between two conjugate lines.

The procedure described above results in the pos
itive and unambigous determination of the conju
gate lines, i.e., in identifying the two lines that
represent the same feature in the overlapping area.
V!e are .now .left with the task of finding an average
line which will replace the two conjugate lines. Again,
we propose to apply a method that mimics the
problem-solving abilities of a draftsman when con
fronted with this problem. The draftsman's solution
probably comes close to finding the skeleton of the
area defined by the two conjugate lines. In image
processing, determining a skeleton is referred to as
thinning and is a well-known task; cf. Pavlidis (1982).
Before a thinning algorithm can be applied, the con-
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number of identical raster elements must be reason
ably large so that the decision can be based on sta
tistical methods. But how do we increase the number
of identical raster elements?

Two different approaches have been developed
and tested, depending on the class to which a line
may belong. Lines can be grouped into two classes:
a first with relatively long vectors, and a second
with short vectors, where a short vector has a length
comparable to or even smaller than the average dis
tance that the two conjugate lines are apart from
each other. Stated differently, assuming that the size
of a raster element is a fraction of the shortest vec
tor, say one-fifth or thereabouts, then there may
well be no identical raster elements except where
the lines intersect. This problem can easily be over
come when the thickness of the line is incresed, a
process also called painting or brushing the line.
Every raster element is considered as the center of
a 3 by 3 mask that is continually dragged along the
line, element by element, resulting in more raster
elements representing the line. Clearly, the same
effect cannot be obtained by starting with a larger
size raster element. After thickening the lines we
obviously find more identical raster elements, and
the process can be repeated iteratively, using in
creasing mask sizes, until a suitable stopping cri
terion can be satisfied (see Figure 6).

Where the vectors of the original lines are consid
erably longer than the distance between the lines,
a top-down approach has proved more efficient in
terms of computer time, even though the above
mentioned process can also be applied. In this case,
we begin with raster elements that are as large as
one-third of the shortest vector. Because, in this class
of lines, the shortest vector is still quite long, the
first iteration will yield many identical raster ele
ments for every line (see Figure 7). In order to make
the conjugate line converge, the raster size must

FIG. 6. A 3 by 3 mask dragged along a line.



FIG. 8. Closed area between two conjugate lines.
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vectors to be found should be comparable to those
of the original lines. The same also holds true for
the shortest to the longest vector. Further, changes
of direction between consecutive vectors should be
similar. These rules are just a few out of all the
aspects that a skilled draftsman takes into account
with great ease in solving this problem manually.

A special algorithm has been developed to match
the rules mentioned above. The solution reflects a
typical bottom-up approach, starting from the mi
croscopic world of individual raster elements and
ending in the macroscopic world of straight lines
defined by two points. For every raster element, the
position of the two adjacent elements is computed
with respect to the N-neighbor relationship, N =
(0,1...8) (cf. Figure 10). The difference between two
N-neighbors should be four for a straight line, but
only in the eight possible directions as shown in
Figure 10. All other straight lines have a different
pattern, as may, for example, be seen by examining
Figure 7 more closely. This effect must be attributed
to the process of discretization: in analytical geom
etry the number of different directions is unlimited,
but in discrete geometry it is severely limited be
cause there are only eight possible directions be
tween two adjacent raster elements. The more raster
elements there are between the two points in a line,
the greater will be the number of distinct directions.

In order to determine a straight line, we have to
take into account N-neighbor differences other than
four. A closer look at the result of rasterization re
veals that Bresenham's algorithm never produces
any other N-differences except three, four, or five.
We therefore conclude that, whenever an N-differ
ence differs from three, four, or five, the three raster
elements concerned do not belong to a straight line.
Rigorously applied, this rule leads to relatively short
vectors. In the less than ideal world in which we
live, we find it expedient to slacken this rule and
accept N-differences of two or even one. This, of
course, leads us into generalization, because the more
deviations from the stringent rule we are willing to
accept, the coarser will be the approximation and
the greater the degree of generalization. Equally im
portant is the question of how many N-differences
in succession other than four are tolerable. For ex
ample, an N-difference of three should be followed
by one of five, in order to bring the raster elements
into a straight line again. If, for example, a differ
ence of three is followed by another of three or one

VECTORIZATION OF THE SKELETON

orerlapping area
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jugate lines have to be completed to form a closed
polygon, as shown in Figure 8.

The problem is to find two pairs of suitable points
that, when connected by a straight line, close the
polygon. This might seem fairly straightforward at
first glance, but a closer look at Figure 8 shows that
it is not. The procedure is quite elaborate and de
serves mention. The program developed will elim
inate spikes as they may occur at the beginning or
at the end of digitizing a line. During the process
of determining the conjugate lines, the program
computes and stores the location of best match, viv
idly demonstrated in Figure 8. Hence, the last point
of line 1 and the first of line 2, which both belong
to the part of best match, are known and have a
valid claim to be considered as starting points for
the closing vector (see Figure 8). The end points of
the two vectors are chosen in such a way that a
certain portion of line 1 and 2 is included in the area
to be thinned, depending on the distance between
digitized points.

Thus far, the perimeter of the area has been es
tablished. In order to bring the thinning algorithm
into effect, the area ought to be filled with raster
elements. Once again, filling touches on some in
teresting problems. It starts with a raster element,
the seed that is computed near the end point of one
of the closing vectors.

The thinning algorithm imitates a parallel process
and begins by examining all the raster elements along
the boundary of the area. The raster elements not
belonging to the skeleton are then removed. Thin
ning is an iterative process; the area is peeled off in
every iteration until its width is reduced to a single
raster element. The remaining raster elements form
the skeleton, shown in Figure 9.

The lines are originally digitized as a sequence of
points; they are stored in vector format. But the
skeleton, that is, the average of the two conjugate
lines, is in a raster format. Thus, the remaining task
in our line-matching problem is to transform the
skeleton from a raster to vector representation. The
objective is to approximate the string of raster ele
ments by a sequence of straight lines or vectors, but
preserve the character of the original lines. This is
a rather vague statement indeed that can be further
defined qualitatively, i.e., the average length of the
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FIG. 9. Skeleton of area shown in Figure 8.
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FIG. 10. Eight-neighbor code.

of four, this must be considered as a definite bend
in the line and thus as the end point of the straight
line. Ultimately, the algorithm merely checks the N
differences of successive raster elements. If a dif
ference of three is not compensated by one of five
(or vice verse), the algorithm concludes that it in
dicates the end of a straight line.

CONCLUSIONS

The problems in photogrammetry and cartogra
phy suitable for solving by computers may be ar
bitrarly divided into two categories. The first includes
problems that can be formulated more or less easily
by mathematical models, on which the develop
ment of suitable algorithms can be based to take full
advantage of the computer's data-processing capa
bility, which is far superior to that of a human being.
For the second category, the opposite holds true,
because it concerns problems to which conventional
methods that may have proved successful in the
first category can be applied only with difficulty or
not at all. Line-matching is a typical example of the
second category; it belongs to a type of problem
normally solved by a draftsman, whose problem
solving ability is often far superior to computer
methods.

Because conventional methods often fail, new
methods have to be found. Methods that resemble
the draftsman's problem-solving abilities are likely
to be a good choice, because he solves this type of
problem with great ease. Suitable methods can be
borrowed from discrete geometry and digital image

processing or from the higher realm of artificial in
telligence. Unfortunately, these methods are still
unexplored territory to many photogrammetrists and
cartographers. But obviously, we are merely at the
beginning of a new, exciting, and challenging era
in which the computer will increasingly be used for
non-numerical tasks.

The line-matching problem is more amenable to
methods of discrete geometry than to those of Eu
clidean geometry, because the representation of lines
as a string of raster elements strongly resembles the
draftsman's perception of a line, namely, as an en
tirety. Therefore, fairly straightforward algorithms
are sufficient for an elegant and rigorous solution
of the line-matching problem. The author has de
veloped a prototype solution in Pascal on the Mc
Intosh personal computer, which also gives
satisfactory results as far as throughput and com
puter resources are concerned. The prototype has
been implemented into the Kern MAPS200/300 dig
itizing and editing system.

The solution presented in this paper is suitable
for comparing lines consisting of many vectors with
each other, leaving the computer to answer ques
tions such as which line offers the best fit to another
line. The training of operators offers an interesting
application: a line, for example a contour line digi
tized and stored by an instructor, can be compared
with the trainee's line; the numerical result obtained
is a useful criterion of how closely the two lines
match.
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