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ABSTRACT: Digital elevation data banks are today used for an increasing number of applications. For the estimation of
the standard error of the elevations and functions thereof, the covariance function of the elevation errors has to be
known. In this paper, four methods for the estimation of this covariance function are described and compared.

It is concluded that biased estimates of variances will in general be achieved if the correlations among the errors are
neglected. Properly applied experience-based correlation functions are shown to be useful, but the approach is so far
limited to photogrammetrically sampled elevation data. The MINQUE method was in general very successful. But, due
to its lack of robustness, it should not be used alone. In combination with for instance direct computation of the
autocovariance function, it seems to be justified.

THE STANDARD ERROR OF FUNCTIONS OF THE
ELEVATION
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(2)en(x,y) = w(x,y) * ez(x,y)

terrain surface.

where ea(x,y) is the error in the application and

ejx,y) are the errors in the interpolated

cation will be discussed. Although the maximum error and the
distribution of the errors are of great interest in many applica­
tions, this paper is restricted to the estimation of the standard
error of functions of the elevations.

where a(x,y) is the final result (application),

w(x,y) is a weight function, independent

of the elevations, and

z(x,y) are the true elevations of the terrain.

Due to the errors in the stored elevations and the inadequacy
of the interpolator used, the interpolated terrain surface is bur­
dened with errors ez(x, y). Its influence on the final result can
then be expressed as

A digital elevation data bank consists usually of a limited set
of discrete points. To obtain a continuous surface similar to the
real terrain, surface elements are constructed by interpolation.
These surface elements are used in the further processing of
the elevation data.

Let us first consider some very simple applications, for in­
stance, slope determination and volume computation. They can
be expressed as the convolution

a(x,y) = w(x,y) * z(x,y) = f'x JXx w(u, v) z(x - II ,y - v) dudv (1)

In other, more complicated, applications such as the geo­
metric rectification of satellite imagery, a limited set of discrete
elevations is generally used in the process. The application can
here be expressed as a multidimensional function of the ele­
vations

a(x,y) = f(x,y,Z"Z2,Z3" ... ,Z,,)

For the estimation of the error in the application (en)' the
function f can be expanded into a Taylor series. When neglect­
ing terms of second and higher order, a linear expression such
as Equation 2 is obtained. This Taylor expansion is very similar
to the linearization of non-linear observation equations in a least-

INTRODUCTION

The purpose of this paper is mainly to study different meth­
ods for accuracy estimation of digital elevation data. A basic
idea of this work is that experience, or a priori information, can
be used to improve the estimates of the accuracy. On the basis
of the result of the evaluation, the problem of quality specifi-

A DIGITAL ELEVATION DATA BANK is a resource which can be
used for many different purposes. The change of data stor­

age technology from graphical contour maps to digital elevation
data banks has provided an efficient use of elevation data for a
large number of applications. The exchange of geographical in­
formation between different organizations is steadily increas­
ing, and public geographical data banks are today delivering
data for many different purposes.

During the latter decades several digital elevation data banks
have been established at national as well as local mapping or­
ganizations. They are usually established with respect to a lim­
ited set of predefined applications, such as the production of
orthophoto maps, contour maps of a certain scale and contour
interval, volume calculation for highway design, etc. The method
for data acquisition and the density of the stored data are cho­
sen with respect to these predefined applications.

One common problem arises when elevation data are to be
used for purposes other than the predefined applications. A
digital elevation data bank, intended for orthophoto produc­
tion, might be needed for geometric correction of satellite im­
agery or for physical planning purposes. An important question
here is, whether or not a particular data set of elevations is
accurate enough for a certain application. In order to answer
this question, the accuracy of the data set and its influence on
the final result have to be estimated.

Many countries have today a specified map accuracy standard
for contour lines and spot elevations (see, for example, Slama
(1980) and Leatherdale (1980)). Although the specifications dif­
fer somewhat among the countries, they are in general for­
mulated from a producer's point of view and designed for contour
maps and not for digital elevation data. The map can be checked
and found to be within tolerance, but a specific user still does
not know whether or not the product fits his needs.

Instead of specifying tolerances as map accuracy standards,
it should be possible to specify the accuracy of a certain data
set in such a way that a user can estimate whether the data set
is accurate enough for a specific application (Moellering, 1985).
This approach leads to other questions to be answered, namely,

• Which quantities have to be known in order to estimate the geo­
metric accuracy of an arbitrary application of elevation data?

• Which methods can be used for the estimation of these quantities?
• How can they be specified in a quality specification?
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K(d) = k,(d) + k2 (d) + k3 (d) (4)

where
k,(d) = 0.20 . {~ if d = °

otherwise;

k2 (d) = 0.55 . {~
d

if abs(d) < 50 m; and-
50 otherwise

k3 (d) = 0.25 . {~
d

if abs(d) < 450 m--
45O otherwise

where U z is the standard error of the elevation data.
The standard error (u z ) can be estimated using rules of thumb

or from check measurements.

is used when estimating the accuracy of functions of the
elevations, the covariances among the errors are neglected.
Although the method yields biased estimates, it is often used
because of its simplicity and because the covariance of the errors
is unknown. When neglecting the covariance of the errors, the
standard error, u,,, of an arbitrary application is estimated by

0.5

1.0

u; = u; . g(O,O)

u; = u; . J: f" g(x,y) . K(d) dxdy

FIG. 1. Sample of correlation functions of interpolated
errors, area A, C, and E. The thick solid line shows the
average correlation function K(d), Equation 4.

where u= is the standard error of the elevations and

When using a priori known correlation functions, the standard
error of an arbitrary application U a is estimated by

A Priori KNOWN CORRELATION FUNCTIONS

Instead of neglecting the covariance function, a priori known
correlation functions can be used to improve the estimates. Figure
1 shows a sample of correlation functions of interpolated errors.
A correlation function is a covariance function normalized with
the variance. The functions in Figure 1 are derived from the
result of an international test of OEMs, conducted by the
International Society for Photogrammetry and Remote Sensing
(ISPRS). The material is described in detail by Torlegard et al.
(1984).

The total data set of the ISPRS OEM test consists of 66 OEMs,
covering six different areas. When constructing the a priori
correlation function, 11 OEMs were used, covering three of the
six test areas (Figure 1). The three test areas were chosen
randomly.

The function was constructed graphically from Figure 1. The
average correlation then obtained is

As in the previous case, the standard error, U z ' can be estimated
either by using rules of thumb or from check measurements.

squares adjustment. Necessary conditions for this are that a
limited set of discrete elevations is used for the application and
that the approximate values are fairly correct, providing the
opportunity to neglect second and higher order terms in the
Taylor expansion.

From Equation 2, the covariance function of the errors in the
result can be computed as

Cov(ea) = ea(x,y) * ea( - x, - y)

and the corresponding variance is obtained as

Var(e,,) = fx fx g(x,y) . Cov(eJ dxdy (3)

where g(x,y) = w(x,y) * w( - x,y)

It follows from Equation 3 that the information needed to
estimate the standard error of a function of the elevations is the
weight function w(x,y), given by the application and the covar­
iance function of the errors in interpolated elevations (Cov(eJ).
Apparently, the latter function needs to be estimated and spec­
ified.

Two problems when specifying the covariance function of the
errors are the questions of stationarity and isotropy. For sta­
tionary random functions, the covariance function depends only
on the difference between the coordinates. According to Tor­
legard et al. (1984) and Frederiksen et al. (1984), the geometric
accuracy of photogrammetrically sampled digital elevation models
is mainly dependent on the terrain type and the sampling pro­
cedure. For a certain map sheet, which is a very common unit
for data bank organization, the point density is usually homo­
geneous while the terrain type can be very heterogeneous. This
means that one cannot assume the errors in interpolated ele­
vations to be a stationary random function over the entire map
sheet (data storage unit). To solve this problem, the area can
be divided into smaller homogeneous parts, but this puts strong
requirements on the organization of the data banks. An alter­
native is instead to specify an average covariance function, a
solution which might be preferred from a data storage point of
view. The drawback is that the "resolution" of the accuracy
specification is reduced and that only average estimates of the
variance can be made. In the remaining part of this paper, only
average covariance functions will be considered.

The terrain surface is here supposed to be a non-isotropic
two-dimensional surface in a three-dimensional space. It can,
therefore, also be assumed that the errors in interpolated ele­
vations are non-isotropic. As a consequence, two-dimensional
covariance functions should be used for proper quality speci­
fication.

ESTIMATION OF THE COVARIANCE FUNCTIONS OF
INTERPOLATED ELEVATION ERRORS

The estimation of the errors in digital terrain data can be
based on experience and/or on check measurements. Experi­
ence-based error estimation is less time consuming but the es­
timates may, on the other hand, be less accurate. Check
measurements should of course be of considerably higher qual­
ity than the data being checked, in this case interpolated terrain
elevations. The check measurements and the interpolated ele­
vations should also be as independent as possible. One should,
for example, avoid using the same photographs and orienta­
tions for the check measurements as for the original digital el­
evation matrix (OEM) measurements. If the two data sets are
highly correlated, the systematic part of the errors in the data
bank is difficult to estimate.

In this paper, four different methods for the estimation of the
covariance of errors in interpolated elevations will be described
and compared.

UNCORRELATED ERRORS ASSUMED

Usually, the accuracy of digital elevation data banks is specified
by the standard error of stored elevations. If only this information
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According to Sjoberg (1983), the Best Quadratic Unbiased
Estimator (BQUE) or '1, if '1 estimable, is

AUTOCOVARIANCE COMPUTATION

The term autocovariance is used for expressing the covariance
within one single set of data. In the one-dimensional case, the
k'h lag autocovariance, ck ' is estimated as

1 N_k

Ck = N-k ,? Z, Z'+k' k « N .

where Qi 'YiKi is the it!, covariance matrix and
'1 i is the corresponding covariance
coefficient

.y = S-lu (7)

The method requires in this case that check measurements
be performed along profiles in the one-dimensional case or in
patches in the two-dimensional case. The check measurements
are then compared with elevations interpolated from the data
bank.

According to Frederiksen et al. (1984), the estimation of the
covariance of the terrain is difficult in practice, mainly due to
the fact that

• the elevations are not normally dishibuted and individual extremes
have undue influence on the estimates, and

• long trends or semi-systematic fluctuations seriously distort the
estimates.

To obtain good estimates, Frederiksen et al. (1984) suggest
that the correlation be estimated by rank correlation methods.
They also suggest that large regional terrain forms be described
by a separate stochastic process, a proposal also made by Schagen
(1980).

There is no reason to believe that the estimation of the
covariance of the errors will be relieved of these problems. Because
the errors in interpolated elevations are assumed not to be a
stationary stochastic process, several profiles have to be selected
to achieve a good estimate of the average covariance function.

where Ui WTQ-1QiQ-1W

Sij= trace {Q-IQiQ-IQ)

The matix S is assumed to be nonsingular.
The procedure is iterative. From initial values of the V-C

components 'Yi' the matrices Qi are formed and used in the
computations of new '1 values. The procedure is iterated until
convergency. It should be noted that the estimated '1 may come
out negative, which appears to be in conflict with common
restrictions on variance components. Reasons for this may be
an inadequate stochastic model and/or too few degrees of freedom
in the adjustment.

Consider Equation 4 when designing a V-C model for MINQUE
estimation of errors in digital elevation data. The average
correlation function K(d) is here expressed as the sum of a
regional, a local, and an uncorrelated function. It can be shown
that some systematic errors, such as improper orientation of the
stereomodel or image deformation, give regional covariance
functions of the errors, while errors in the height settings usually
give local covariance functions. A V-C model based on the three
subfunctions in Equation 4 therefore seems justified.

In accordance with Equation 4, the V-C model being used for
the estimation of the covariance function is

THE MINQUE METHOD
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If check measurements are carried out along a profile with a
point spacing of 25 metres, the K, matrices are

K,

K2

COMPARATIVE TEST OF METHODS FOR ACCURACY
ESTIMATION

DESCRIPTION OF THE TEST DATA

The methods for error estimation are evaluated by using the
data sets from the ISPRS OEM test. The material is described by
Torlegard et al. (1984) and a brief review only will be given here.

B· e = W

I (unit matrix),
a vector of discrepancies ii - z"
a vector of normally distributed errors,
0,
Q, and

= a positive definite covariance matrix.

where B
W
e
E(e)
E{eeT

}

Q

"
Q = L Qi

The problems in the estimation of the autocovariance functions,
as mentioned in the previous section, can be reduced by applying
some kind of restriction on the behavior of the functions. There
are several filters for smoothing a function. Some of the filters,
which preserve the characteristics of a correlation function, are
described in Groten et at. (1979). Those methods are, in general,
more or less numerical methods for obtaining good looking
curves. Another approach is to try to model the underlying
processes for the errors in interpolated terrain elevations. The
MINQUE method is an attempt to incorporate some additional
information in the procedure.

The MINQUE (Minimum Norm Quadratic Unbiased Estimator)
method is a method for the estimation of variance-covariance
(V-C) components within a least-squares adjustment. Its
theoretical background can be found in, for example, Persson
(1981) and Sjoberg (1983). In this paper, the method will be
used with respect to the determination of V-C components for
a set of elevation data, checked by accurate check measurements.

Let ii be a set of interpolated elevations and let Zi be the
corresponding check measurements (true values). These two
sets of data form a general condition equation system

Assume that the covariance matrix Q is a sum of a limited
set of V-C components, "Ii' multiplied by the corresponding
correlation matrices, K" such that
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TABLE 2. PERCENTAGE OF BIASED ESTIMATES ACCORDING TO A

STUDENT TEST. AREA B, D, AND F. ex = 0.05.

TABLE 3. RMS OF ERROS IN THE VOLUME ESTIMATES (GLOBAL AREA) BY

USING ONLY ONE PROFILE OF 50 CHECK MEASUREMENTS (M3/HA).

TABLE 1. ERRORS IN ACCURACY ESTIMATION BY NEGLECTING THE

COVARIANCES. PARTICIPANT 3, AREA F.

Point Coord. diff. Volume-1 Volume-2

Mean error 0.03 0.17 -1065 -1002
Std. deviation 0.08 0.11 158 53
RMS error 0.08 0.20 1076 1004

t-value 0.38 1.51 6.73 19.02

91
7
o
3

1050
1310
1280
760

Spitze

Volume
(%)

5
5
o
5

16070
11520
10520
8330

Elev. diff.
(%)

Drivdalen
Test Area

Estimation of errors in

o
o
o
5

Elevation
(%)

5840
3580
3680
9560

Bohuslan

Error estim. method

carried out under a risk of 5 percent. This means that 5 percent
of the unbiased estimates will here be classified as biased. One
should also consider that the different profiles are not fully
independent. Although the correlations among the profiles are
very limited, one should be careful when drawing conclusions
from Table 2. It is, however, obvious that neglecting the cor­
relation will give biased estimates, especially for applications
such as volume calculations where a fairly large part of the
covariance function should be used. It should also be noticed
that the method of using a priori known correlation functions
gives nearly unbiased estimates. This means that the covariance
function in Equation 4 worked very well also for the three areas
B, D, and F.

The RMS of the errors in the volume estimates are shown in
Table 3. Here one can notice that, in general, the worst results
were obtained when neglecting the correlation. The method
also has the disadvantage that it gives biased estimates (see
Table 2). The benefit of using more check measurements is,
therefore, very limited. This is of great importance because it
clearly shows that this computational method should be avoided
unless one has strong reasons to assume that the errors are
uncorrelated.

The average length of the profiles is 50 check measurements,
while the length of the correlation function is covered by 16
check measurements. Due to limited computer resources, the
profile length for the MINQUE method was decreased to 20 check
measurements.

One problem of the MINQUE method is that some estimated
V-C components may come out negative. Because the number
of degrees of freedom is large (20 conditions and three un­
known V-C components), the presence of negative estimates is
assumed to be dependent on an insufficient V-C model. As a
consequence, these estimates have been neglected. This hap­
pened for almost 64 percent of the profiles. The problem might
have been reduced by using longer profiles for the MINQUE
estimation. The result shown in Table 3 is normalized in such
a way that all results correspond to one measured profile with
50 check measurements.

Neglecting correlation
A priori correlation
Autocovariance computation
MINQUE

Neglecting correlation
A priori correlation
Autocovariance compo
M! QUE

RESULTS

In the evaluation of the methods for covariance estimation,
four different estimates have been used, namely,

• the errors in the estimation of point accuracy,
• the errors in the estimation of height difference (slope) accuracy,
• the errors in the estimation of volume accuracy (local area, 0.04

to 1.4 hectare), and
• the errors in the estimation of volume accuracy (regional area, 0.5

to 16 hectare).

DESIGN OF THE TEST FOR THE COMPARISON OF THE METHODS

FOR COVARIANCE ESTIMATION

One purpose of this paper is to compare methods for the
estimation of the covariance function of errors in interpolated
elevations, as described earlier. Profiles from the areas A, C.
and E have been used when deriving the n priori correlation
function. Therefore, error surfaces from the other three areas
B, D, and F of the ISPRS test have been used in the comparative
test. The data are located in regular grids, providing a sample
of profiles in two perpendicular directions. In a real situation,
these profiles correspond to precise check measurements which
can be carried out by field surveys or by photogrammetric
surveys. For each error surface, a sample of profiles has been
examined and the covariance functions have been estimated by
using the four methods described earlier. Due to limited computer
resources, only one-dimensional covariance functions have been
estimated. By assuming isotropy, the standard errors in functions
of the elevations have been estimated. In the evaluation, the
error estimates have been compared with the true errors as
computed directly from the two-dimensional non-isotropic error
surfaces. This means that also the assumption of isotropy to
some extent has been tested.

For each profile, the standard errors in elevation, elevation
difference, and volume have been estimated. By comparing these
estimates with the corresponding "true" standard errors, as
computed directly from the entire error surface, the root mean
square (RMS) of the estimates has been computed. For the de­
tection of any possible bias in the estimates, the mean value
and standard deviations of the errors in the estimates have also
been computed. Table 1 shows an example of the results ob­
tained for participant 3, area F, when uncorrelated errors were
assumed.

The result shown in Table 1 is fairly representative of the
results obtained when neglecting the covariance. A high t-value,
which is the absolute value of the ratio between the mean value
and its standard deviation, indicates a biased estimate. The dif­
ferent profiles, from which the estimates are derived, are lo­
cated at such distances that the correlations between them in
most cases are close to zero. This means that the bias of the
estimates (its difference from zero) can be tested by a Student
test. Table 2 shows the result of such a test.

When reading Table 2, one should consider that the t-test is

Fourteen different organizations participated in the ISPRS test.
They were asked to derive digital elevation models covering six
different areas, using photogrammetric methods. The six test
areas are located in the central and northern parts of Europe.
The aerial photographs varied in scale between 1:4,000 and
1:30,000. After returning the photographs to the organizers of
the test, coordinates of check points were delivered to the par­
ticipants. The check points are ordered on a regular grid, ran­
domly translated and rotated with respect to the map coordinate
system. Elevations of the check points were interpolated by the
participants and compared with the corresponding true values
by the organizers of the test. The "true" elevations were ob­
tained by direct measurements on aerial photographs with con­
siderably larger scales (1:1,500 to 1:10,000). The data sets consist
of 66 error surfaces, representing the differences between in­
terpolated elevations and the corresponding "true" elevations.
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The a priori known correlation function seems to give nearly
the same results as the method of computing the autocovariance
function. This means that, if only the standard error of the
elevations is known, one could use the correlation function de­
scribed in Equation 4. However, it should be pointed out that
this correlation function is only tested on photogrammetrically
measured digital elevation models of terrain in northern Eu­
rope. If other data acquisition methods are used or if other
terrain types are measured, its usefulness may be limited.

The MINQUE method gives, in general, the best result, with
two important exceptions. For two of the data sets of the Bo­
huslan area, the MINQUE estimation gave very poor estimates.
The data sets differ somewhat from the other data sets used,
in that one of the sets was obtained from digitized contour lines
and the other data set was derived from a OEM with an ex­
tremely low density of measurements.

These exceptions indicate, however, that the MINQUE method
has to be used carefully and preferably as a complement to some
other more robust method. The selection of a proper set of
correlation functions is obviously essential for a successful MIN­
QUE estimation.

The lack of robustness of the MINQUE method also shows the
needs of methods for accuracy estimation of the error estimates.
By using several profiles, average estimates and standard de­
viations can be computed. For all data sets studied, a large
standard deviation indicated poor estimates. The opposite re­
lation, a small standard deviation and accurate estimates, holds
only in cases when the estimates are unbiased. For a specific
case, this relation has, as a consequence, to be used with care.

DISCUSSION

In the introduction, three fundamental questions concerning
the specification of the accuracy in digital elevation data were
raised, namely,

• Which quantities have to be known in order to estimate the ac­
curacy in functions of the terrain elevations?

• How can they be estimated? and
• How can they be specified?

If we restrict ourselves to considering the standard errors in
functions of the elevations, it has been shown that the covari­
ance function of the interpolated errors has to be known and
specified (Equation 3). The estimation of this covariance func­
tion can by performed either from check measurements or by
using rules of thumb. If the data are sampled by photogram­
metric methods in stereo instruments, the correlation function
described in Equation 4 seems to be suitable as a rule of thumb.
Otherwise, the covariance function could be estimated by per­
forming check measurements and using the MINQUE method in
combination with autocovariance computations. If the results
obtained by the two methods are nearly in agreement, the MIN­
QUE estimate will probably be more accurate.

The specification of the accuracy of a digital elevation data
bank can be expressed in several ways. One way is to specify
the source of the data, for example, data aquisition method,
sampling point density, image scale of aerial photographs, etc.
For data banks where the covariance function of the errors is
unknown, this might be a solution. Even if the standard error of
the stored elevations is known and specified, the source of the
data has to be specified for a proper selection of correlation
function.

If several variance-covariance components are estimated by,
for example, the MINQUE technique, the quality of the specifi­
cation will be improved. One central problem here is to decide
on which correlation functions the MINQUE estimate and the
quality specification should be based. In this paper, Equation 4
has been used. A more rigorous approach might be to estimate
the correlation functions by using the ISPRS test material in a
Karhunen-Loeve expansion. In this approach, principal corre-

lation functions are derived numerically. The benefits of such
an approach are left for further studies.

There are, of course, several other topics which are of interest
for further studies, for example,

• This study is restricted mainly to digital elevation data sampled
in photogrammetric stereo instruments. There are many other types
of measurements which are of interest, for example, digitized con­
tour maps, field surveys, and automatic correlated digital images.
It is of great interest to derive suitable covariance functions for
different data acquisition methods, which can be used either in
the quality specification or by the user when performing error
estimation.

• This study is also limited to the standard errors in functions of
the elevations. Another urgent research task is to study other
accuracy estimates, for example, maximum errors. In this case,
the size and distribution of the gross errors will play an important
role.

• The mathematical models used in this study can, of course, be
extended. Using two-dimensional covariance functions will prob­
ably increase the accuracy of the estimates. It would also be of
interest to study methods of incorporating additional information
into the estimation procedure.

• It can be assumed that different data sets and different terrain
types cause different kinds of covariance functions. For data banks
being updated, the data also have to be specified in the fourth
dimension (time). This puts strong demands on the organization
of the data banks, which yet is unsolved. Nevertheless, the in­
creasing distribution and reuse of terrain information requires a
proper specification of its quality.

Today, data banks containing terrain information are already
used for various applications on a commercial basis. It can be
assumed, that a proper quality specification of the information
will increase the interest for its use. A good quality specification
can probably be a tool for broadening the market for the pro­
ducers of terrain information. The user definitely wishes to be
able to estimate the accuracy of his product. If he can evaluate
the effects of using a certain data set, he will probably choose
that solution instead of using a, perhaps, cheaper data set but
with unknown quality. But before the quality of the data sets
can be specified, guidelines for such a specification have to be
worked out. It is hoped that this paper has contribued to some
extent to this very important task.
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UCLA Extension
P. O. Box 24901
Los Angeles, CA 90024
Tele. (213) 825-3344

Optical Science & Engineering Short Course
Doubletree Hotel, Tucson, Arizona

4-15 May 1987

The purpose of this course is to acquaint both the specialist and the non-specialist engineer or scientist with the latest techniques
in the design and the engineering of optical systems. The course comprises 18 three-hour lectures; detailed notes will be supplied.
The wide range of topics that will be covered includes geometrical optics, optical-system layout and design, Fourier methods,
diffraction, polarized light, radiometry, image quality, interferometry and optical testing, image recording, thin films, laser systems
and applications, photodetectors, microcomputers in the laboratory, and visible and infrared systems.

For further information please contact
Philip N. Slater
Optical Systems & Engineering Short Courses Inc.
P. O. Box 18667
Tucson, AZ 85731
Tele. (602) 885-3798


