
A Vector-Based Slope and Aspect Generation
Algorithm
Paul Ritter
Remote Sensing Research Program, Space Sciences Laboratory, University of California, Berkeley, CA 94720

ABSTRACT: Slope and aspect information, alone or in combination with other data, can be of considerable value in a
geographic information system (GIS). Some examples include mapping for forest fuels management, determining suit­
ability for development, estimating potential availability of solar energy, and determining erosion potential. This paper
describes an algorithm for use in a raster-based GIS that generates slope and aspect values from digital elevation data.

,..,.

FIG. 1. The relationship between the pixel of inter­
est, Po and the four neighboring pixels, shown in
an oblique view. The boxes labeled Po through Ps
are the "sea-level" equivalent of the pixels. The
lines labeled e, through e4 give the magnitude of
the pixel elevations, rising from the pixel centers.
Also shown are the vectors "e and "s·

CALCULATION OF THE SLOPE

The slope of any pixel is the angle of the pixel's plane with
respect to the horizontal plane. This algorithm produces slope

happens to be on the edge of the database, its elevation is used
in place of the missing pixel.

The cross product of any two vectors is a third vector that is
orthogonal (at right angles) to both of the original vectors. Be­
cause vectors ns and n,. are orthogonal to each other and parallel
to the plane of Po, the cross product n s x nO' will produce a
vector that is orthogonal to the plane of Po. This is the normal
vector n.

Using the definition of the cross product (actually there are
two definitions; this discussion uses the one that will produce
vector n pointing out toward space rather than into the earth),
the formula is

n = n e x n s = (2d,0,e3 -e,) x (0,2d,e2 -e,)

= (- 2d(e3 - eI)' - 2d(e2 - e4),4d2
)

This result can be simplified by dividing each term by 2d and
moving the minus inside the parentheses, producing

n = (e,-e3 ,e4 -e2 ,2d) (1)

Note that this algorithm is applicable even if the database has
rectangular pixels such that the distance between pixel centers
is different in the east-west direction than in the north-south
direction. In this situation the vectors are described with ne

having a 2dy term and n, a 2dy term, and the cross product
cannot be reduced by dividing through by the 2d term.

CALCULATING THE PIXEL NORMAL VECTOR

INTRODUCTION

SLOPE A D ASPECT DATA can be combined with other infor­
mation in a geographic information system (GIS) to assist in

providing answers to a wide variety of questions. A forest man­
ager may need to know what fuels management techniques can
be used in a particular area; a planner may wish to check po­
tential sites for solar housing development, or to check for pos­
sible erosion problems; or a researcher may require information
on solar energy in order to model water loss through evapo­
transpiration. Unfortunately, slope and aspect data are not gen­
erally available in digital form.

Personnel at the Remote Sensing Research Program (RSRP) at
the Space Sciences Laboratory, University of California at
Berkeley, use a raster-based GIS, and have developed an algo­
rithm for generating slope and aspect from available digital el­
evation data. Examples of these data include Digital Elevation
Models (DEMS) available from the U.S. Geological Survey and
the older Digital Terrain Tapes (DTTS) from the Defense Map­
ping Agency. Given the elevation for all cells (or pixels) in the
raster data base, the algorithm produces a slope and aspect
value for each pixel.

The algorithm uses certain aspects of vector mathematics. For
those unfamiliar with vectors, they can perhaps best be visu­
alized as an arrow, or as a line segment with a tail at one end
and a point at the other end. In three-dimensional space vectors
are described by a triplet of numbers, usually denoted v = (Lh,
I'::..y, I'::..z), where the values of I'::..x, I'::..y, and I'::..z are the distances
along the three-dimensional axes one has to travel to get from
the vector's tail to its head.

This algorithm generates slope and aspect values for a pixel
from its "normal vector," denoted n. Considering the pixel as
a small rectangular plane, the normal vector is an arrow with
its tail in the center of the pixel pointing at right angles to the
pixel's plane. From the amount and direction of tilt of this vec­
tor, one can derive the slope and aspect of the pixel.

In describing the algorithm, a few assumptions have been
made. It is assumed that the elevation data are entered into the
database with true north-south aligned with the database's Y
axis and east-west oriented with the X axis. It is also assumed
that the pixels are square rather than rectangular, so that the
distance between pixels is the same in the X and Y directions.

The normal vector, n, is calculated using the elevation values
of the four immediately adjacent pixels. Consider the pixel Po
in Figure 1. A vector with its tail at the center of pixel P, and
its point at the center of P3 is shown. This vector, denoted ne ,

gives an "east-west tilt" for pixel Po. Vector n e is the triplet
(2d,0,e3 - e,), where d is the distance between pixel centers and
e3 and e, are the elevations of pixels P3 and PI' respectively.

Similarly, we can define a vector ns = (0,2d,e2 - e4) from pixel
P4 to pixel P2 giving the "north-south tilt" of pixel Po· If Po

PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING,
Vol. 53, No.8, August 1987, pp. 1109-1111.

0099-1112/87/5308-1109$02.25/0
©1987 American Society for Photogrammetry

and Remote Sensing

1110 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1987

However, the arctangent function produces values relative to
the X axis, while what is wanted is the angle relative to due
north, the Y axis. Figure 4 makes this more clear. Most com­
puter implementations of the trigonometric functions return
values in radians, so in order to convert the value returned by
the arctangent function to the desired degrees azimuth it must
be converted to degrees, then adjusted relative to 90 degrees if
n, is positive, or 270 degrees if I1 x is negative. For example, if
the angle CI. in Figure 3 is 30 degrees, the arctangent function
will return the value 7[/6 radians. The appropriate correction
must be applied to convert the value 7[/6 to 60 degrees, the angle
relative to North.

Using 57.296 as the radian-to-degree conversion factor, the
formula for aspect in degrees azimuth is

as a percent of rise over run. A slope of 100 percent, for ex­
ample, represents a 45 degree slope because rise and run are
equal. Consider a pixel's normal vector n = (l1 x ,I1",I1=), as shown
in Figure 2. The slope of this vector is the ratio of its rise over
run. The rise of the vector is the z component 11=, while the run
is shown as the dotted line in Figure 2. By the Pythagorian
Theorem, the length of this line is Vn/ + 11/, so the slope of
the vector is .

11=slope(n) = ~::::::;::==::;:;
Vn/+I1/'

Because the vector is at right angles to the pixel's plane, the rise
over run of the vector is the same as the run over rise of the
pixel. By inverting the normal vector's slope formula, one can
get the rise over run of the pixel's plane: i.e.,

aspect 90-57.296(arctan(I1,,)) if I1 x > 0
I1 x

To avoid dividing by zero, vectors with I1 x = 0 must be treated
as a special case. If the x-component of the vector is zero, its
projection must fall along the Y axis; the aspect is either 360
(due north) or 180 (due south), depending on the sign of l1 y '

(The value 0 is reserved for flat pixels, which have no defined
aspect.) Substituting the values from Equation 1 for n, and n"
produces the formulas for aspect when I1x is non-zero: i.e.,

270-57.296(arctan(:.:)) if I1 x < 0
Substituting the values from Equation 1 for I1 x , II", and 11=, and
multiplying by 100 to convert to percent, results In the formula

V (e, - e3)' + (e4 - e2)2

Slope of Po in percent = 100 2d

ASPECT COMPUTATION

The pixel's aspect is determined from the projection of its
normal vector into the horizontal plane. This projection is shown
by the dotted line in Figure 2. Figure 3 shows the same line as
viewed from directly above the horizontal plane. The angle CI.

between the projection and the X axis can be obtained from the
trigonometric function arctangent:

CI. = arctan (II,,)
I1 x

aspect

aspect

aspect

(e4-e2)90-57.296(arctan --)
e, -e3

(e4 -e?)270-57.296(arctan ---)
e, -e3

z

Horizontal Plane

y

x
FIG. 2. An example of a pixel's normal vector n shown with respect to the
horizontal plane. The vector is pointing up, to the right, and away from
the viewer. This is indicated by the tracing of its three components, nx ,

nY, and nz. The dotted line shows the vector's projection onto the hori­
zontal plane.

COMPARING OTHER SLOPE AND ASPECT ALGORITHMS

The Earth Laboratory Applications Software (ELAS) is a pub­
lic-domain image processing software package that is in use at
a number of locations in the U.S. (Earth Resources Laboratory,
1986). The ELAS module TOP6 produces slope, aspect, and slope
length using a 3-by-3-window neighborhood approach. Using
the difference in elevations and the distance between pixel cen­
ters, the slope between the object pixel and each of its eight
neighbors is computed. These eight slope values are examined
and the largest is selected as the slope of the object pixel. To

90

-89 89

360

359 1

North -45 45 315 45

135225

270~f_--___1f_--___1- 90

-4545

0----,+----+----1-

_x .. _--+""'------;;--.L---_-'--_~Eas t
n x

y

89 -~9

90 180

A B

FIG. 3. A view of the normal vector n projected into
the horizontal plane.

FIG. 4. This figure illustrates the difference between degrees azimuth and
the values returned by the arctangent function. Figure 4A gives the values
returned by the arctangent function (in degrees), while their equivalent in
degrees azimuth are shown in Figure 48.

A VECTOR-BASED SLOPE AND ASPECT GENERATION ALGORITHM 1111

end

REFERENCES

end;

{rad iaos-to-degrees con version}const r2d = 57.296;

ACKNOWLEDGMENT

This algorithm, in a slightly different form, was first described
to the author in the mid-1970s by Francis Harvey, then with the
RSRP.

FIG. 5. The Pascal code for the algorithm.

SUMMARY

{Compute aspect.}
if sIp = 0.0 then asp := 0.0 {If slope is zero aspect is zero.}
else if nx = 0 then begin {don't divide by O. If nx = 0... }

if ny < 0 then asp := 180.0 {then aspect is either due S.. }
else asp := 360.0 {or due North, depending on ny.
end

else begin
if nx > 0 then {check if east or west iacmg . }

asp:= 90 - r2d 'arctan{nY/nx) {and adjust accordmgly}
else asp := 270 - r2d ' arctan{nyInx)

procedure slpasp(el,e2,e3,e4,d : integer; var sIp,asp : real);

{produce the slope in percent}
sIp := 100'sqrt(nx'nx + ny'ny) I (2'd);

begin
nx := el-e3; ny := e4-e2;

var nX,ny : in teger; {tern porary variables}

{ input values el thru e4 are the elevation values, d is the}
{ distance between two pixels. The procedure returns percent}
{ slope in 'sip', aspect in degrees azimuth in 'asp', with }
{ 0.0 for flat, 360.0 = due north. slpasp is called once for}
{ each pixel in the database.}

Earth Resources Laboratory, 1986. Earth Resources Laboratory Applications
Software, Vol. II. User Reference, Jan. 1986, pp. A48-A49. NASA
National Space Technology Laboratories Earth Resources Labora­
tory Report No. 183, NSTL City, Mississippi.

Papa, H.B., and E. Gelman, 1984. Digital Terrain Models for Slopes and
Curvatures, PllOtogralllllletric Engineering and Remote Sensing, Vol. 50,
pp. 695-70l.

U.S. Geological Survey, 1984. Land Analysis System User's Guide, USGS
EROS Data Center, Sioux Falls, South Dakota.

(Received 15 February 1986; revised and accepted 24 April 1987)

The vector-based algorithm described here is a good compro­
mise between accuracy and computational complexity. A small
amount of precision is lost by ignoring the contributions from
the diagonally adjacent pixels when calculating the slope and
aspect, but it is more accurate than algorithms that produce
slope and aspect from only two pixels. Slope and aspect values
that are produced by this algorithm are more precise than re­
quired for most uses. In actual practice, the slope variable is
usually "sliced" into five percent increments, while the 360 de­
grees of aspect are converted into 48 categories at best. Under
these conditions, the advantages of a relatively simple and eas­
ily implemented algorithm outweigh the loss of accuracy.

get the aspect of the object pixel, its elevation and the elevation
of the pixel producing the largest slope are compared. The as­
pect is defined as the direction from the higher elevation to the
lower elevation.

The TOP6 module examines all eight neighboring pixels, but
only two pixels are actually used to determine slope and aspect,
namely the object pixel and one other. The elevations of other
neighboring pixels are ignored. For aspect, only flat or one of
the eight multiples of 45 degrees can be obtained.

A method for determining slope, aspect, and surface curva­
ture using a two-dimensional Fourier transform is described by
Papo and Gelman (1984). Briefly, their approach represents the
elevation surface as a polynomial function; the slope magnitude
and slope direction (aspect) can be derived from the first deriv­
ative of this function while the second derivative can give sur­
face curvature. In the application, this technique is achieved by
converting the elevation grid from the space domain to the spa­
tial-frequency domain by use of a two-dimensional fast Fourier
transform (FFT). Slope, aspect, and curvature can then be de­
rived by applying appropriate factors to the spatial-frequency
data, then using an inverse FFT to return to the space domain.

This method offers considerable information, but at a cost.
The use of the FFT not only provides slope and aspect infor­
mation that considers contributions from all the surrounding
pixels, but can also provide, by examination of the spectral den­
sity matrix, insights into the inherent characteristics of the to­
pography. It is, however, considerably more compute-intensive
than either ELAS's method or the vector-based algorithm.

The Land Analysis System software (U.s. Geological Survey,
1984), a public domain software package in use at NASA's God­
dard Space Flight Center, includes a module called SLAP that
has four methods of computing slope and aspect from elevation
data. All four methods utilize a 3 by 3 matrix of elevation pixels
with the object pixel in the center. Three of these methods,
called "maximum drop," "maximum," and "minimum," are
variations of the ELAS procedure described above. Each method
computes slope using the object pixel and one of its eight neigh­
bors, and produces aspect as one of eight possible directions.
The three methods differ only in the way the neighbor pixel is
chosen.

The fourth, called the "mean" method, uses a more sophis­
ticated approach similar to the vector-based method. Two dif­
ferent slopes are calculated; the "vertical" slope takes the average
elevation of the top three pixels of the 3 by 3 window, subtracts
the average elevation of the bottom three pixels, then divides
by the distance between the two rows. In a similar way, a "hor­
izontal" slope is computed using the right three pixels' average
minus the left three pixels' avera e. The percent slope of the
object pixel is then 100 vslope2 +hslope2

•

The aspect computation in SLAP takes the arc tangent function
of the vertical slope over the horizontal slope. This value is
converted from radians to degrees, then adjusted to the correct
quadrant depending on the signs of the slopes.

COMPUTER IMPLEMENTATION
The Pascal code for the core of the algorithm is given in Figure

5. A calling program would be written to read the elevation
data, pass the values to this procedure, then scale the returned
slope and aspect values appropriately and output them. Fortran
77 code would be similar, although in Fortran the use of the
atan2 function instead of atan could save one conditional test
in the calculation of aspect.

