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ABST~CT: The purpose of this study was to evaluate image classification error as affected by the performance char­
actenstics of the Landsat multispectral scanner (MSS). The MSS modulation transfer function (MTF) was chosen as a
means of defining the ability of the MSS sensor to transfer spectral variations in the intensity of reflected radiation
(modulation), receIved at the satellite sensor, to the image data. The MSS MTF was used to predict the degradation of
Image guahty (blur) at field boundaries. A study area of large, homogeneous, agricultural fields of various crop types
was selected from a Landsat-2 image and classified. Classification error at field boundaries was compared to the
boundary blur predIcted by the MSS MTF analysis. A postclassification algorithm employing field boundary information
was used to mInImIZe boundary blur impacts on classification accuracy.
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FIG. 1. Relationships between IFOV and object
size that inhibit modulation transfer by sensor
from object scene to image data.

tial frequency (cycles/m) at which the MTF is reduced to 0.5.
This value corresponds to the LSF or ESF width at half maximum.

Both IFOV and EIFOV are descriptive of the minimum scene
area that contributes to a single digital measurement by the MSS.
Unlike the IFOV, which is determined by the fiber optics of the
sensor, EIFOV can reflect whatever components are considered
in the MTF analysis. The performance characteristics of the op­
tical, detector, and electronic subsystems of the sensor as well
as such factors as atmospheric effects, data resampling algo­
rithms, and data sampling within the sensor affect the transfer
of modulation from the object scene to the image data.

Markham (1985) calculated a presampled nadir EIFOV for the
MSS as 79 to 82 m along-scan and 70 to 75 m along-track. These
calculations considered the capabilities of the optical, detector,
and electronic components of the sensor in modulation transfer.
Park et al. (1984) presented a stochastic approach to MSS MTF
analysis that considered sensor sampling interval and bilinear
resampling contributions to MTF as well as the performance of
the sensor components. This evaluation of the MSS sensor com­
ponents determined a 77 m scan by 65 m track EIFOV based on
63 m by 63 m EIFOV for the scanning aperture. The effect of
sampling was estimated to increase the EIFOV 9 m in the along­
scan direction and 57 m in the along-track direction. Bilinear
resampling of the data produced an additional increase of 18 m
in the along-scan and 26 m in the along-track directions. An
overall EIFOV of 104 m scan by 148 m track was thus determined.

The impacts of modulation loss at a boundary are illustrated
in the following example. Figure 2 represents a hypothetical
ESF. The values indicated by this curve correspond to the per­
cent contrast between adjacent objects detected by the sensor

EIFOV = I/Uc

BACKGROUND

where Uc is the effective system cutoff frequency, i.e., the spa-

T HE SUCCESS ~f image classification studies is generally eval­
uated accordmg to the percentage error of the final results.

Such evaluations are specific to the method of analysis used to
ext~act information from a particular image for a specific appli­
catIon problem. Another way to evaluate image classification is
to define the smallest object of interest and to use spatial fre­
quency analysis to determine how that object is r:ecorded by
the sen~or (Brock: 1970). Slater (1973) suggests just this ap­
proach m evaluatmg the Landsat system. By computation of
the multispectral scanner (MSS) modulation transfer function
(MTF), he suggested that reseachers could define relationships
between the quantity and quality of Earth resource data that
could be extracted from the imagery.

The MTF is a measure of sensor performance that describes
the ability of a sensor to transfer modulation from viewed ob­
jects to image data. The MTF can be used to determine the image
that would be produced by a given sensor. The use of the MTF
requires the transformation of a scene into its frequency spec­
trum; that is, the radiance profile of a scene must be described
as a function of spatial frequency rather than as a function of
distance.

A sensor's ability to transfer modulation can also be analyzed
in terms of the distance or space domain by using the system
point spread function (PSF). The PSF is the inverse Fourier trans­
form of the MTF. It describes the spreading within the recorded
image of an infinitely small object point source. Similarly, a line
spread function (LSF) considers sensor performance relative to
an isolated source of radiance infinitely small in one dimension
and infinitely long in another. By convolving this LSF with an
edge, we obtain the edge spread function (ESF). The ESF defines
the extent to which a discrete object boundary or edge is spread
or blurred by an imaging system. The ESF indicates both the
distance and magnitude of boundary blur.

Figure 1 illustrates the significance of instantaneous field-of­
view (IFOV) in determining the quality of image data. If two
small objects are separated by a distance less than the IFOV of
the sensor, the radiance value recorded for these objects will be
an average of the radiance from all materials within the IFOV of
the sensor. Similarly, when the IFOV overlaps discrete object
boundaries, radiance contributions from both objects will de­
termine the recorded radiance value.

In 1973 a NASA working group and Slater (1973) suggested a
measure of system performance that could relate the MTF to
spatial terms. The effective instantaneous field-of-view (EIFOV)
was proposed: i.e.,

PHOTOGAAMMETRtC ENGINEERING AND REMOTE SENSING
Vol. 53, No.6, June 1987, pp. 639---643 '

0099-1112/87/5301-189$02.25/0
©1987 American Society for Photogrammetry

and Remote Sensing



640 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1987

A:~EA I

Ccntras t

lQO~ ,.------;-'''--::--=~-­

"'" Obje':.t Pro f11 e

Homogeneous

L
·Classes

] r

Sand 2

Nonhomogeneous
Classes

~
ith confusion

Q vector

liZ

Z

Sand 2

Nonhomogeneous
classes with
confusion class
and confusion
vector

Sand

-146 -73

0; 5 tance (meters)

73 146

FIG. 3. Hypothetical ellipse plots of spectral signatures,
illustrating classification confusion produced by boundary
blur.

from standard remote sensing products, the postprocessing
method offered in this analysis provides a simple correction for
areas of large homogeneous objects.

FIG. 4. Landsat-2 RBV image of the Orchard Quandrangle Study Area.
The large center pivot irrigation systems are generally 395 hectares (160
acres) in size.

METHODS

The classification analysis was conducted through the coop­
eration of the Colorado State University (csu) Extension Ser­
vice, csu Experiment Station, and the Colorado State Forest
Service under NASA contract NAS5-25081. A complete descrip­
tion of the classification methods can be found in Maxwell et aI.
(1980).

An area within the Orchard topographic quadrangle, Morgan
County, near Greely, Colorado, was chosen as the classification
study area. Figure 4 shows a portion of the Landsat return beam

FIG. 2. ESF with sampling interval at ± 29 m, illustrating
boundary blur.

as the sensor scans across the boundary between two objects.
The ESF is the analog data stream of an edge as would be mon­
itored by the sensor. In this example the distance from the
boundary where the ESF is the correct object radiance level oc­
curs at a distance of 58 m from the boundary. A sampling in­
terval at ± 29 m is illustrated in this example. Assuming a pixel
size of 58 m in this sampling phase, boundary blur will have a
major impact on the detected radiance level as 20 percent of the
boundary contrast is added to the AREA I pixel value and 20
percent of the contrast is subtracted from the AREA II value.
However, the location of the boundary is accurately portrayed.
If the sampling interval should occur at other than the ± 29 m
interval, then, in addition to the reduction in radiance level of
the boundary pixel, the boundary will also be spatially misrep­
resented in the image data.

The significance of modulation loss at a boundary relative to
image classification can be most easily understood by examining
an ellipse plot that represents a two-dimensional hypothetical
data set (Figure 3). A two-class example can be defined by means
Q and Z and their associated variances. The distance between
means is represented by vector QZ.

The impact of the boundary blur is to create an artificial class
of boundary pixels whose radiance values are distributed be­
tween the radiance values of the adjacent classes. Therefore,
these boundary pixels can occur anywhere along vector QZ.
Generally, the probability of class occurrence in maximum like­
lihood classifiers is inversely proportional to the statistical dis­
tance between a point and a class category, assuming a prior
probabilities are equal. Therefore, these boundary pixels will be
classified as either Q or Z, depending on the extent of the
boundary blur on these pixels as determined by the sampling
interval.

Figure 3 also illustrates a three-class example where a third
class, Y, lies between Q and Z. Most boundary errors will now
be contained by class Y, and therefore, at an edge between Q
and Z, one would expect to find pixels erroneously classified
as class Y.

A variety of methods have been used to reconstruct boundary
pixels to enhance classification accuracy (Metzler, 1983; Nalepka
et aI., 1971). A postprocessing algorithm incorporating object
boundary information was examined in this analysis to reduce
classification error due to modulation loss at object boundaries.
As the boundary information used in this analysis was derived
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vidicon (RBV) image for the Orchard Study Area. This region is
dominated by center pivot irrigation systems, largely quarter
section (395 hectares or 160 acres) in size. It is, therefore, a good
approximation of the desired model of large homogeneous fields
with discrete boundaries. Crop identities within a continuous
region in this area were determined by field crews. This study
site contained 2257 pixels of corn, 419 pixels of sugar beets, 357
pixels of hay, 531 pixels of beans, and 164 pixels of rangeland/
uncultivated. On the basis of a seasonal signature analysis, the
16 August 1978 image date was selected as an optimal date for
discrimination of the crop types in this area.

All Landsat data were geometrically corrected using nearest
neighbor resampling (76-m by 58-m pixels). The image data
selected for analysis had no evidence of striping.

Field boundaries for the study area were determined from
RBV imagery of approximately 1:125,000 scale and from 1:24,000
United States Geological Survey orthophoto quadrangle maps.
The Landsat RBV was used to update the orthophoto informa­
tion. Aerial photographs of 1:8000 scale were used to verify the
field boundaries.

Signatures used in classification were developed according to
a "modified unsupervised" method. The area of Interest was
input to an iterative clustering routine to determine the general
spectral composition of the area. These unsupervised clusters
were compared with data sets acquired from other agrIcultural
areas to determine groupings of spectral interest. From areas of
spatial regularity, rectangles and circles, supervised samples
were extracted. Mean, standard deviation, skewness, and kur­
tosis values were evaluated to ensure field center pixels were
used in the analysis. Probable crop identities were chosen for
data sets based on signatures developed in the analysis of other
similar agricultural districts. These training sets were used in a
maximum likelihood algorithm for the classification of the Or­
chard Study Area.

Field classification accuracy within the Orchard Study Area
was then evaluated as a function of distance from the field
boundary. This was accomplished by placing concentric ri~gs

inside the field boundaries at a distance of one- and two-pixel
widths (Figure 5). The classified identity of each pixel. within
these concentric rings was recorded as was the actual Identity
of the pixel. .

Field boundary information was used in a postprocessing re­
classification of the data once boundary error had been estab­
lished. Pixel identity was reassigned according to the majority
class occurance within the field.
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FIG. 5. Fields with concentric rings
placed at one- and two-pixel widths
from the field boundary.
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CLASSIFICATION RESULTS AND DISCUSSION

Classification results were evaluated for the entire field, after
excluding ring one and after excluding rings one and two. The
errors in classification associated with ring one, rIng two, and
the interior portion of the field were determined. These results
are summarized in Table 1 and Figure 6.

Overall recognition of the corn and beets is 70 to 80 percent.
Approximately 40 percent error is associated with the first pixel
ring position in these fields. Error rapidly dr~ps to 15 to 20
percent for the second pixel and high recogmtlOn, 0 to 5 per­
cent, is noted for the interior pixels·.

The poor recognition of hay was expected on this image date
because the fall cutting of hay was occurnng. Therefore, hay
existed in conditions ranging from uncut, to freshly cut, to par­
tially regrown. High errors for this class were expected and are
indicated in Table 1. Two fields exhibited almost complete mls­
classification. Removal of these fields from the data set pro­
duced curve Hay2 in Figure 6.

Bean fields at the date of the image were being prepared for
an early September harvest (Knott, personal communication,
1980). This required the cessation of irrigation around the ml~­

die of August to allow the fields to dry. The onset of chloroSIS
resulted in a highly varied spectral signature for beans at thiS

Total Classification

Corn Beets Hay Beans Range % Correct
Corn 1754 73 183 179 68 77.7
Beets 27 345 4 41 2 82.3
Hay 27 103 119 71 37 33.3
Beans 47 13 238 238 41 44.8
Range 3 2 41 23 95 57.9

Classification Excluding Ring 1
Corn Beets Hay Beans Range % Correct

Corn 1286 28 58 53 9 89.7
Beets 2 249 0 8 0 96.1
Hay 5 63 88 22 9 47.1
Beans 32 10 142 163 17 44.8
Range 0 0 18 6 75 75.8

Classification Excluding Rings 1 & 2
Corn Beets Hay Beans Range $ Correct

Corn 807 12 19 3 1 95.8
Beets 0 147 0 1 0 99.3
Hay 3 22 52 8 2 59.8
Beans 22 9 98 92 7 40.9
Range 0 0 5 1 32 89.2
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FIG. 6. Percentage classification error as a func-
tion of distance from field border.
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image date. High error is noted for both boundary as well as
field center pixels (Figure 6).

The range category used in this analysis represents a wide
variety of uncultivated land-cover types. Overall accuracy of 58
percent is noted. By excluding ring 1 pixels from the analysis,
an accuracy of 76 percent was achieved. Removal of the ring 1
and 2 pixels resulted in an accuracy of 89 percent.

Figure 7 contains a plot of the percent classification error nor­
malized for residual interior error. From this we see that the
first pixel errors ranged from 40 to 60 percent and second pixel
error ranged from 8 to 25 percent.

The EIFOV determined by Park et al. (1984) suggests that sig­
nificant modulation degradation of second position pixels would
occur. The second pixels error noted in this classification analy­
sis appears consistent with those conclusions.

Several contributors to boundary classification error relevent
to this analysis, in addition to those present in Park et al. (1984),
should also be considered. The MTF analysis presented earlier
assumes an ideal edge. Transition at such a boundary occurs
instantaneously from one area to another. In actuality, field
boundaries are far from ideal. Natural edges vary in extent from
narrow fence rows to boundaries that include fences, hedge­
rows, roads, irrigation ditches, etc. A natural boundary fre­
quently corresponds to an area of unique reflectance
characteristics and is not just a transition between two areas of
different reflectance. In addition, nonorthogonal orientation of
field boundaries relative to the scan direction and rectangular
IFOV can also vary the radiance detected at a boundary. Finally,
the modulation loss due to nearest neighbor resampling can be
expected to be greater than that resulting from bilinear resam­
piing (Schowengerdt, 1984).

In this analysis a postprocessing step was employed where
field identity was reassigned according to the majority class
occurrence within the field. Substantial improvement was noted
in class recognition after post processing (Table 2). Field sizes
less than 5 by 5 pixels cannot be expected to be accurately class­
ified because such areas would be completely effected by
boundary blur. Transition pixels determined by adjacent con­
trast and the sensor sampling interval would dominate for such
areas.

CONCLUSIONS

Investigation of the Landsat MSS EIFOV suggests significant
modulation loss at a boundary. The magnitude of modulation
loss observed at the boundary varies according to the contrast
at the boundary; however, the proportion of that contribution
relative to the total contrast at the boundary is consistent.

Modulation loss at a boundary-boundary blur-causes the
formation of transition pixels. These transition pixels are not

TABLE 2. CLASSIFICATION RESULTS FOR ORCHARD QUADRANGLE STUDY

AREA FOR RAW AND POSTPROCESSED CLASSIFICATION DATA

Cultivated Fields and Range Without Post Processing
Corn Beets Alfalfa Beans Range % Correct

Corn 1754 73 183 179 68 77.7
Beets 27 345 4 41 2 82.3
Alfalfa 27 103 119 71 37 33.3
Beans 47 13 238 238 41 44.8
Range 3 2 41 23 95 57.9

Cultivated Fields and Range With Post Processing
Corn Beets Alfalfa Beans Range % Correct

Corn 2226 0 24 0 0 99
Beets 0 419 0 0 0 100
Alfalfa 0 48 220 78 0 62
Beans 0 0 225 308 0 57
Range 0 0 42 0 122 74

indicative of a particular cover type but rather are descriptive
of a mixture of adjacent cover types. The effect of these tran­
sition pixels on digital classification accuracy is a function of the
magnitude of the boundary blur, the relative positions of class
signatures in the spectral decision space, and average field size.

Investigation of boundary blur in an agricultural classification
example indicated a 40 to 60 percent classification error in the
pixels nearest the boundary and an 8 to 25 percent misclassifi­
cation in the secondary pixel positions. The extension of clas­
sification error to secondary position pixels would be expected
given an EIFOV of approximately twice the IFOV of the MSS, as
indicated by Park et al. (1984). Such classification error under­
lines the impact of the data sampling within the MSS and of
resampling algorithms used to manipulate MSS data on the qual­
ity of image data.

Additional sources of classification error could also include
the presence of continuous transition areas that are more char­
acteristic of natural boundaries than the discrete, instantaneous
boundary assumed in the MTF analysis. Nonperpendicular
boundaries relative to the direction of scan could also contribute
to the secondary pixel error.

Modulation loss increases classification error at object bound­
aries due to boundary blur. Classification error within large
areas, however, might be expected to decrease due to a reduc­
tion in detected object heterogeneity. Given adequate definition
.of spectral classes, the majority of pixels in a homogenous 5­
by 5-pixel field should be correctly identified in MSS data. Pro­
vided adequate field boundary information exists, reassignment
of field identity according to the majority class occurrence should
substantially increase classification accuracy.

Position From Border

FIG. 7. Normalized percent classification error as
a function of distance frOm field border.
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The Australian Key Center in Land Information Studies will be offering the following short courses in remote sensing:
• Introductory Courses

- Introduction to Remote Sensing
- Basic Digital Image Processing

• Sensor System Courses
- SPOT
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- Shallow Water Mapping
- Geology
- Arid Lands
- Agriculture
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