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ABSTRACT: Ana:ysis of the covariance matrix of object point coordinates forms an integral part of photogrammetric
network optlmlZatIOn, especially at the zero- and fIrst-order deSign stages. Yet, computation of full covariance matrices
can Impose a consIderable tIme burden in interactive network design systems which are implemented on microcom­
puters. In this paper an examInatIOn IS made of the applicability of the so-called limiting error propagation to see just
how representatIve of the true covanance structure the covanance matrix from limiting error propagation really is. The
method, If found to yIeld satIsfactory vanance estimates, offers the potential of immediately solving the zero-order
deSIgn problem whIle proVIdIng a SImpler approach to covariance matrix computation in network design.

INTRODUCTION

T HROUGH TliE PROCESS of network design the photogram­
metnst seeks to reach a certain overall quality of the pho­

togrammetnc network., This quality can be expressed in terms
of a number of objective functions. Perhaps the one most often
heard in practice is"along the lines of "I seek maximum accuracy
at mIl1ImUm cost. From such a broadly stated requirement,
speCiftc objectIves related usually to precision, reliability, and
economy can be formulated, either explicitly or implicitly. The
deSign process then proceeds until such time that the user­
specified objectives are met, ideally in an optimum fashion.

In the case of precision, the covariance matrix of the unknown
parameters, specifically the object point XYZ coordinates, pro­
Vides the measure of network quality. Precision is influenced
by both the geometric configuration of the network and the
distribution of observational work, i.e., the variances of the
image coordinate observations. The selection of a datum also
impacts on network precision. In designing a minimally con­
trolled network to yield a covariance matrix that is optimal in
some sense, two design problems need to be addre?sed, namely,
Zero-Order deSign (ZOD) and First-Order design (FOD). ZOD
mvolves the search for an optimum reference coordinate system
or datum for the network, and FOD comprises the configuration
problem which baSically entails the selection of an optimal im­
agmg geometry for a given set of object target points. For a
more comprehensive account of the role of ZOD and FOD in
photogrammetric network design, the reader is referred to Fraser
(1984).
. There are both ?irect and indirect solution approaches pos­

Sible for these deSIgn problems. With the direct approach, FOD
IS solved. for mathematically. That is, given an object point field,
the preCISIOn of the image coordinate measurements, and an
ideal covariance matrix for the object point coordinates, a so­
lution is obtained for the optimum geometry and number of
camera stations. The direct approach is, however, not without
its problems, and to date no practical analytical FOD solution
scheme for close~ran~~ photogrammetry has been developed.
The general applicability of such an approach also remains in
question.

Under the indirect approach, the FOD is solved in an iterative
or trial-and-error manner through the process of network sim­
ulation. The designer formulates an initial network geometry
and then evaluates the resulting precision. If the precision meets
user-specified requirements and the relia.bility and economy are
deemed to be satisfactory, the network is adopted. If, on the
other hand, the design is found to be deficient, the camera
station configuration is updated and the precision is again ana­
lyzed. This process is continued until a satisfactory, though not
necessanly mathematical~"optimal," design is achieved.
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Although the indirect or simulation method of photogram­
metric network design has been successfully employed for some
time, the development of powerful personal computers with
graphics capabilities has recently given a considerable boost to
this approach. Networks can now be designed and analyzed in
a short session at the computer with the aid of interactive com­
puter graphics techniques. Simulation software packages based
on interactive design principles are presently commercially
available (e.g., Gustafson and Brown, 1985) and these offer a
powerful tool to the user of non-topograhic photogrammetry.

Following the formulation or updating of a camera configu­
ration scheme, the designer seeks to analyze the precision of
the network. This entails the computation of the covariance
matrix of the network parameters. For a self-calibrating bundle
adjustment these parameters include the exterior orientation
elements for each camera station, the additional parameters (AI'S),
and the parameters of primary concern, the XYZ coordinates
of triangulated object points. Unfortunately, this computation
is no trivial matter. For a network of a hundred or so points
and half a dozen camera stations, the required covariance ma­
trix is obtained through the formation and inversion of a matrix
of rank 350 or so. On a personal computer the computation
time for such a process extends to minutes and can reach 10
minutes and more for large networks. Moreover, ZOD may war­
rant the computation of more than one covariance matrix.

Generally speaking, the necessity to compute the full covar­
iance matrix of XYZ object point coordinates during the inter­
active network design phase can impose a· considerable time
burden, especially on personal computers. The standard prac­
tice of computing this covariance matrix through the formation
and inversion of the normal equation system for the bundle
adjustment will be referred to here as Total Error Propagation
(TEp). An alternative to TEl', designated in Brown (1980) as Lim­
iting Error Propagation (LEP), can be applied to drastically re­
duce computation time. This non-rigorous method, however,
takes no account of ZOD and also does not consider either the
propagation of errors in projective parameters into the object
space coordinates or the correlations between object points. The
aim of this paper is to investigate the applicability of LEI' for
interactive network design. If LEI' can produce a covariance ma­
trix of object point coordinates which is sufficiently represent­
ative of the true covariance structure, it offers the possibility of
a simpler and faster computational scheme for the determina­
tion of object point precision in interactive network design.

COVARIANCE MATRIX OPTIONS

The starting point for the discussion of covariance matrix de­
termination is given by the general system of normal equations
for the self-calibrating bundle adjustment:
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The computation time for the covariance matrix Q~2) formed by
the individual 3 by 3 matrices Q~j) is considerably less than that
required by Equation 4. Recall, however, that no point-to-point
correlation information is being produced in this approach. For
the present it is assumed that a full Q~2) matrix is being computed
by Equation 4.

where G is a Helmert transformation matrix. Each "." represents
a submatrix of Q,. which is not pertinent to the present discussion.
After a rearrangement of rows and columns of the bordered
matrix shown in Equation 7, an expression corresponding to
Equation 4 can be derived for the inner constraint solution

As written, Equation 4 provides the means to compute the full
covariance matrix Q~O) of object point coordinates from the set
of reduced normal equations which are formed through the
elimination of the parameters XO' The equation is, however, not
commonly applied in this form. Rather, the 3 by 3 covariance
matrices Q~~' for each object point j are computed sequentially
from the expression (Brown, 1958)

INNER CONSTRAINTS

The second ZOO option in photogrammetric network design
involves the implicit assignment of a datum through the free­
network approach of inner constraints (e.g., Blaha, 1971; Fraser,
1982; Papo and Perelmuter, 1982). Here, the required covariance
matrix QF' is obtained from the Cayley inverse

(1)

(2):J [:J [:]
In Equation 1, XI is the vector of corrections to the exterior
orientation and additional parameters, x2 is the vector of cor­
rections to object space XYZ coordinates, A I and A 2 are the
corresponding configuration matrices, eis the discrepancy vec­
tor, and P is the weight matrix of the image coordinate obser­
vations.

In the model indicated by Equation 1, XI and x2 are treated
as free unknowns since no prior information regarding the means
and variances of parameters has been incorporated into the nor­
mal equations. In network design the inclusion of prior infor­
mation on the parameters is certainly not precluded, though a
few straightforward restrictions on the structure of the appro­
priate weight matrices do apply when considering ZOO (Fraser,
1982). For simplicity, the parameters will be treated only as free
unknowns in the present discussion. In addition, only mini­
mally constrained networks are considered. For networks with
redundant object space coordinate control, there is no datum
problem. As an example, consider periodic inspection surveys
of assembly tooling in industry where the photogrammetric net­
work often includes a number of truly stable points against
which movements are referenced. At the design stage the in­
fluence of this object space control on network precision must
be taken into account through a TEP which incorporates the zero
variances in the coordinates of the reference points. In such
situations both LEP and TEP by means of inner or minimal con­
straints are inappropriate.

or

where

where n is the number of points and tr is the trace operator. In
the sense that it yields maximum precision, the inner constraint
approach provides the optimum solution to the ZOO problem.
Chances are that, if the inner constraint solution does not yield
the required level of precision, the FaD will need to be
readdressed.

LIMITING ERROR PROPAGATION

Under the assumption that projective parameters are error
free (i.e., Q~I) = 0), and that variances in the object point
coordinates arise solely from the propagation of random error
in the image coordinate measurements, it is readily apparent
from Equations 4 and 8 that the covariance matrix equation for
QF' reduces to

K; = Nil (NT G) Q~I) (~T) Ni'. (9)

Here, Q~I) includes seven extra columns corresponding to the
Lagrangian multipliers of the inner constraint solution. In much
the same way that covariance matrices QW can be computed
sequentially by means of Equation 6, so can they be computed
from Equation 8.

The inner constraint approach provides the datum which
yields the minimum mean variance for the object point
coordinates, i.e.,

(10)u;' = tr Q~2) 13n ~ minimum

EXPLICIT MINIMAL CONSTRAINTS

Through the process of ZOO a datum is selected which yields
a covariance matrix which is "best" in some sense. The datum
or zero-variance computational base is defined through the
imposition of constraints which establish the fixed origin,
orientation, and scale of the XYZ reference coordinate system.
There are essentially two practical options for ZOO. Both represent
rigorous treatments of TEP. The first involves the explicit removal
of the datum defect of the normal equations by "fixing" seven
appropriate coordinate values (e.g., two points fixed in XYZ
and a further non-collinear point fixed in the coordinate axis
which is most nearly normal to the plane containing the three
points). The covariance matrix of the parameters is then obtained
as follows:

Q., = [Q(» Q\1.2)] [:1 N]-' (3)

Q~2. I) Q\2) N'" N
2

In selecting which minimal control configuration of seven
coordinates to assign zero variance, it is normal practice to seek
a "best" form for only Qi2) because the object point coordinates
are typically the paramters of interest, the exterior orientation
and additional parameters being essentially nuisance parameters.
As has been shown, for example by Fraser (1984), the magnitude
of Qi2l varies significantly with changes in the minimal control.

From the partitioned normal equations in Equation 1, the
following expression for Q F) is obtained:

Q(2) N- ' + Kc (4)
'" 2

Q\2' I= No (11)
where

and, because N2 is block-diagonal,

K, N,-' NT Q.\.I) N N2
1. (5) Q(2) = N:2,"

"
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constraint in a TEP. Yet measures of the accuracy of form ele­
ments of shape do not seem to readily lend themselves to sim­
ple and easily understood one-number indicators of precision
such as the mean standard error of object point coordinates.
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EXAMPLE 1

One of the imaging geometries considered in the first network
design example is shown in Figure 1. Although the object
depicted is an antenna of 10-m diameter having 60 target points,
it could well be any shallow object of similar dimensions, e.g.,
an aircraft wing panel or a large industrial mold. In the figure,
three camera stations are symmetrically disposed about the
antenna at a radial distance of 13 m, and the convergence angle
is 80°. For the design simulations conducted, a camera of 23 by
23-cm format and 240-mm focal length has been assumed, thus
giving rise to an image scale of about 1:54. A standard error
value of 2 micrometres has been adopted for the image
coordinates.

For this first design example, five exposure station
configurations are examined. Four of these are obtained by simply
adopting differing numbers of equally spaced camera positions
around the circle shown in Figure 1. The numbers considered
will be eight, four, three, and two. In addition, a "normal"
stereo geometry of two camera stations at a base/distance ratio
of 0.5 has been included. Thus, the range of network geometries
is from a strong eight-station network, to the relatively poor
reliability case of a two-station stereopair. In normal practice
the two- and three-station configurations would not be
recommended because they do not exhibit sufficient internal
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FIG. 1. Network geometry for three-station configuration of Example 1, an
antenna.

PRACTICAL EXAMPLES

To demonstrate the practical equivalence of LEP and TEP by
inner constraints, some examples are now presented. Three cat­
egories of network have been chosen to represent a broad cov­
erage of typically encountered imaging geometries. With each
of the cases considered both the variances, as represented by
U,-, and the covarance elements of Q~2) are examined. Recall that
LEP yields a covariance matrix with zero correlation between
object points. If a similar structure is produced by the inner
constraint method, the implications may be of practical signif­
icance because it means that analysis of functions of X2 could
be greatly simplied, especially in fields such as deformation
analysis, and propagation of errors into functions of the trian­
gulated object points (e.g., volumes, distances, etc.).

The complete covariance matrix Qi2 ) from LEP is therefore block
diagonal, being constructed of all the uncorrelated sub-matrices
Q~j). In relation to the time required for a full inversion of the
normal equation matrix (even in its reduced form, as will be
later detailed), the time needed to compute all Q~2) matrices is
miniscule, being seconds instead of minutes for n\ost small to
moderate sized networks. Thus, the approach is attractive for
interactive network design. But, the real question, which will
now be addressed, is whether the Q~2) matrix from LEP produces
a sufficiently accurate representation of the true covariance matrix
structure obtained from TEP for the object points.

THE RELATIONSHIP BETWEEN LEP AND TEP

As a firm which is routinely involved in high-precision non­
topographic photogrammetry, Geodetic Services, Inc. (GSl) is
called upon to carry out numerous and varied photogrammetric
measuring tasks. Standard practice dictates that all potential
measurements are first subjected to a comprehensive network
design process. Both LEP and TEP form an integral part of this
phase. Typically, as part of the interactive network design, the
planner seeks to optimize Q\2) utilizing LEP. Once this is done
the network is subjected to a TEP to yield the more rigorous
estimate for the precision.

One consequence of the use of both LEP and TEP is the net­
work designs carried out is that there is often a reasonably
predictable discrepancy between the corresponding values of
the mean standard error u,- obtained from the two error prop­
agations. For "strong" photogrammetric networks, i.e., those
exhibiting high internal reliability, it is common for the mag­
nitude of ue obtained from Equation 4 with a favorable minimal
control configuration to be some 20 to 40 percent higher than
the corresponding value from LEP. For weaker networks, e.g.,
normal stereo geometry with relatively few object points or net­
works with unfavorable minimal control geometry, the discrep­
ancy may readily exceed 50 percent. Moreover, situations can
arise where overparameterization in self-calibration or network
configuration defects (insufficient information to perform a rel­
ative orientation) lead to an LEP which gives a grossly optimistic
and therefore misleading indication of both the structure of
Q~2) and the magnitude of ue . By referring back to Equation 4,
it can be seen that LEP will only yield a representative estimate
of TEP for a minimally controlled network when K e =0. In the
author's experience, this condition is never sufficiently realized.

Turning now to the inner constraint case, a remarkable fea­
ture is noticed in network design, that being that K; is very often
near zero in magnitude. This implies that the optimum solution
to ZOO, the datum that yields a minimum mean standard error
for the object point coordinates, is closely approximated by the
simple computation of LEP. Recent experience at GSI is that the
assumption of K, = 0 holds for the majority of networks which
are designed for industrial photogrammetric measurement tasks.

With the considerable numerical evidence of the essential
equivalence between the Q~2) obtained from a TEP by means of
inner constraint adjustment and that obtained in an LEP, one is
tempted to seek a mathematical explanation for K, = O. To date,
the author has not had any success in this regard. Rather, it is
instructive to turn to relative orientation for some measure of
explanation. For networks exhibiting reasonable internal reli­
ability, the inherent strength of the relative orientation is in­
variably quite high. This suggests that, for all practical purposes,
the projective parameters can be treated as "fixed" and that the
only significant error to be considered is in the spatial direction
of the imaging rays, this error being indicated by the variance
of the image coordinate measurements. This also implies that,
in the relatively oriented network, point-to-point correlation
should be at a very low level. In many ways it would be ben­
eficial to specify network quality in terms of relative orientation.
For example, measures of precision of parameters of shape be­
cause these are invariant with changes in the applied minimum
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section, is that the correlation coefficient values are very small.
Note also in the table that the U, values produced in a TEP with
minimal control range in magnitude from 1.2 to 1.4 times the
corresponding values obtained with inner constraints (see also
Fraser (1982; 1984)).

EXAMPLE 2

A second example, one in which the network geometry is not
expected to yield a high level of homogeneity for the object
point precision, is now considered. From the point of view of
both geometric strength and internal reliability, this second
network is certainly not optimal, but is included here so as to
further examine the level of correspondence between LEP and
TEP for a network with a less than optimal FOD. It is not unusual
in practice to experience physical constraints which necessitate
the adoption of a less than desirable camera station configuration.

The network is illustrated in Figure 2. The object in this case
is rectangular in shape and has dimensions of 4 m by 1.5 m by
2 m (high). Such a shape is not unrepresentative of large assembly
fixtures which are periodically inspected by photogrammetry in
the aerospace industry (e.g., Fraser and Brown, 1986). The
imaging geometry comprises eight camera stations. At four

relia bili ty for high-accuracy work (e. g., Forstner, 1985).
Nevertheless, they are included here so that the relationship
between LEP and TEP can be examined for such network
geometries.

With the exception of the two two-station geometries, the
networks include self-calibration parameters, namely the principal
distance c, and the coordinates x", Y" of the principal point.
More APs could have been considered, but it was decided to
include only these three interior orientation elements because
the precision of their recovery, and indeed the degree of their
projective coupling with other exterior orientation and object
point parameters, is significantly influenced by network
geometry.

One of the features of a network with a geometry similar to
that shown in Figure 1 is that it generally displays a very
homogeneous object point precision. Because all target points
are imaged in all photographs, and the geometry of ray
intersections is similar from point to point, little variability should
be expected in the XYZ coordinate standard errors. Naturally,
this homogeneity of triangulation accuracy does not necessarily
extend to the individual precision for the X, Y, and Z coordinates.
With the different camera station configurations considered in
this first example, however, similar values for the standard errors
in X and Y can be anticipated, and so precision in "planimetry"
(XY) and "height" (Z) will be distinguished.

Shown in Table 1 is the precision obtained for the five imaging
geometries by means of both TEP (the inner constraint approach)
and LEP. The table lists the mean standard error U.. of the 60
object points, the corresponding standard errors UXy and uz for
the XY plane and Z direction, the proportional accuracies in
relation to the size of the object, a summary of the correlation
coefficient values in Q;2) as obtained in the TEP, and the value
of the design factor q which is derived from the expression
(Fraser, 1984)

4m x
----+

where 5 is the scale number and u is the standard error of image
coordinate observations.

The most striking feature of Table 1 is that LEP yields essentially
the same standard error values as the inner constraint approach
of TEP. Even for the weaker geometries the difference in the
corresponding values does not exceed a few percentage points.
This level of agreement is certainly encouraging for the
proposition of utilizing LEP in interactive network design. A
further feature of Table 1, which will be discussed in a later

a.. "" q 5 u (13)

Sta t ions

FIG. 2. Network geometry for the four- and eight-station configurations of
Example 2.

TABLE 1. OBJECT POINT PRECISION OBTAINED FOR THE FIVE NETWORKS OF EXAMPLE 1 BY MEANS OF BOTH LEP AND TEP (INNER CONSTRAINTS). D IS
THE DIAMETER OF THE OBJECT. THE ac VALUES SHOWN IN PARENTHESES ARE THOSE OBTAINED FOR A FAVORABLE MINIMAL CONTROL CONFIGURATION IN

ATEP BY MEANS OF THE MINIMAL CONTROL APPROACH (Eo. 4).

No. of LEP 0 0 I)
Correlation

Camera or a, (J.,"., a~ Coefficients
Stations TEP q (mm) (mm) (mm) a .. (J.\'Y a~ from TEP

8 TEP 0.42 0.045 0.040 0.052 222,000 250,000 192,000 99.1% < 0.15
3 APs LEP 0.41 0.044 0.039 0.053 227,000 256,000 189,000 0.9% < 0.3

(0.056)

4 TEP 059 0.064 0.058 0.074 156,000 172,000 135,000 96.1% < 0.15
3 APs LEP 0.59 0.063 0.056 0.074 159,000 179,000 135,000 3.9% < 0.3

(0.086)

3 TEP 0.69 0.074 0.067 0.085 135,000 149,000 118,000 97.2% < 0.15
3 APS LEP 0.68 0.073 0.065 0.087 137,000 154,000 115,000 2.8% < 0.3

(0.100)

2 TEP 0.88 0.094 0.084 0.110 106,000 119,000 91,000 98.8% < 0.15
Converg. LEP 086 0.093 0.082 0.111 108,000 122,000 90,000 1.1% < 0.3
No APs (0.127) 0.1% < 0.45

2 TEP 1.6 0.174 0.090 0.273 57,000 111,000 37,000 99.0% < 0.15
'Normal' LEP 1.6 0.175 0.091 0.274 57,000 110,000 36,000 0.5% < 0.45
No APs (0.239) 0.5% < 0.99
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1

calibration. The resulting overparameterization could lead to
instability in the final bundle adjustment.

EXAMPLE 3

As a final network design example, an examination is made
of a second, less obvious, situation in which the addition of
self-calibration parameters can lead to a near singular normal
equation matrix, thus yielding again an LEP which conceals the
adverse influences of overparameterization. The object in this
case is a cylinder of 10-m diameter and 9-m length. Around this
cylinder are three rings of targets at 15° intervals, one ring at
each end and one in the middle. This cylinder may well be a
section of a pressure vessel or submarine, and photogrammetry
is to be applied to determine the degree of circularity. Such
surveys are carried out frequently by CSI, albeit with a very
different network geometry to the one considered here.

The imaging geometry for this example is shown in Figure 3.
Six camera stations are positioned at 60° intervals around the
cylinder at a radial distance at 16.5 m out from the center. All
points are imaged in either two or three photographs, the three-

3

Camera Station

4
FIG. 3. Camera station configuration for Example 3, a cylinder.

6

5

positions an exposure is to be taken at heights of both a metre
and 3 m above the floor. A camera of 23 by 23-cm format and
240-mm lens is again to be used, the imaging distance being
approximately 4.7 m. On the object are 65 target points, 15
distributed on each of the sides and 35 evenly spread points in
the front surface area. With the adopted geometry, points on
one end of the object are not imaged from camera stations on
the other side of the centerline. Thus, it is apparent that these
points will display lower precision than points on the front
because they are imaged with poorer geometry by fewer camera
stations. Furthermore, with the fairly acute intersection angles
for the 30 points on the two sides, moderately high correlations
should be expected between the X and Y coordinates of these
triangulated targets.

In addition to considering the eight-station geometry, the
network formed by just the lower four stations will also be
examined. This geometry displays extremely poor internal
reliability for points on the sides of the object and would be
avoided in practice.

The precision obtained for each of these two networks is listed
in Table 2, which has a similar format to the previous table, but
differs in that ax and a), are listed instead ofaxy' On examining
the table, it is again seen that for the stronger network geometry
LEP yields standard error estimates which are closely
representative of those obtained in a TEP by means of inner
constraints. Note here also that the bulk of the correlation
coefficients are again very small in magnitude. Those that are
not express the high correlation between X and Y for the 30
points on the sides of the object; on a point-to-point basis Qx (2)

still has a near-orthogonal structure.
For the four-station network a different picture is seen. Here

there is a relatively large discrepancy between the precision
obtained by means of the two approaches. The ac value obtained
in the TEP is some 30 pecent higher than that in the LEP and the
difference for ax is 65 pecent. In addition, the correlation
coefficients are markedly higher than previously encountered.
If the photogrammetrist were to base his estimates of precision
for the network on LEP in this case, the results would be too
optimistic. In searching for the answer as to why LEP produces
an unrepresentative mean standard error, one need only look
at the precision of the recovered APs in the TEP. Although the
object is three-dimensional, those points not on the front surface
exhibit very poor two-ray geometry. Thus, the planar front of
the object has to provide the geometry which will afford a
recovery of the elements of interior orientation, especially the
principal distance, c. For this network the recovery of c is weak,
the standard error being about 40 micrometres. Hence the
projective coupling between c and the object point coordinates
is exhibited by both inflated variances and covariances. (If the
APs are suppressed, TEP and LEP regain their equivalence.) This
case represents one shortcoming of utilizing only LEP in a network
design: the planner will gain no indication from his FOD that
the network may be deficient from the point of view of self-

TABLE 2. OBJECT POINT PRECISION OBTAINED FOR THE TWO NETWORKS OF EXAMPLE 2 BY MEANS OF BOTH LEP AND TEP (INNER CONSTRAINTS). D IS
THE DIAGONAL DISTANCE ACROSS THE OBJECT.

No. of LEP
0 0 0

Correlation
Camera 0 Coefficientsor (T, u, U l , IT

Stations TEP q (mm) (mm) (mm) (mm) IT, IT, (TIl (f- from TEP

8 TEP 071 0.027 0.023 0.034 0.019 174,000 ]88,000 138,000 247,000 98'7< <0.]5
].6'7< <0.3

3 APS LEP 0.71 0.027 0.024 0.035 0.018 174,000 ]96,000 134,000 261,000 O.4'7r <0.75

49'7r <0.]5
4 TEP 1.8 0.070 0.079 0.085 0.032 67,000 59,000 33,000 147,000 24'7r <0.3

14';" <0.45
3 APS LEP 1.4 0.054 0.048 0.076 0.028 87,000 98,000 62,000 168,000 10'7< <0.60

3'7< <0.99
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TABLE 3. OBJECT POINT PRECISION OBTAINED FOR THE CYLINDER NETWORK, EXAMPLE 3, VIA BOTH LEP AND TEP (INNER CONSTRAINTS). 0 IS THE

CYLINDER DIAMETER.

No. of
Camera
Stations

6

LEP
0 0 0

Correlation
or ac U xy a, Coefficients

TEP q (mm) (mm) (mm) ac <Txy ii, from TEP

TEP 1.2 0.119 0.128 0.099 84,000 78,000 101,000 77% <0.15
21% <0.3

LEP 0.94 0.093 0.100 0.077 108,000 100,000 130,000 2% <0.45
3 APS

ray points lying at 60° intervals. The camera to be employed is
again of 23 by 23-cm format with a 240-mm lens, and the image
coordinate measuring standard error is assumed to be two
micrometres.

It is well known that to enhance, and in some cases make
possible, the recovery of the coordinates x" and y" of the camera's
principal point, a diversity of camera roll angles is necessary.
With this in mind, one practical approach would be to simulate
the network in Figure 3 with alternating roll angles of 0° and
90°. This, however, leads to a singular system of normal equations
for the self-calibrating bundle adjustment, a fact not reflected
at all in an LEP. To overcome this singularity, one need only
change the camera roll angle sequence to 0°, 180°, 90°, 270°, 0°,
90°, for example. But to arrive at this conclusion TEP is needed.

As shown in Table 3, even when there is an appropriate FOD
to enable the recovery of interior orientation elements to an
acceptable level of precision, there is still a 20 percent discrepancy
between the results of LEP and TEP, and this difference persists
when APs are suppressed. From the point of view of reliability,
the geometry is very weak (too many two-ray points) and it is
unlikely that an experienced photogrammetrist would settle for
such a poor design in practice. If he did, he could ill afford to
rely on LEP to yield a satisfactory measure of object point
precision.

COVARIANCE STRUCTURE

Generally speaking, in network design most of the attention
is focused on optimizing the variances of object point coordi­
nates. For example, the inner constraint approach is preferred
because it yields minimum mean variance. But what of the co­
variances? If point-to-point or coordinate-to-coordinate corre­
lations are high, simply emphasizing variances can lead to a
misleading interpretation of the structure of Q~2). One area in
which covariances playa role is in determining the precision of
functions of the XYZ object point coordinates, for example, vol­
umes, distances, or the determination of changes of object shape.
What needs to be examined then is the correlation structure of
Q~2) and the degree to which LEP with its zero point-to-point
covariances represents this structure.

Based on the examples covered in this paper, it seems that
in this regard also we may be able to substitute LEP for TEP with
little loss of covariance information, at least for strong networks.
In Example 1 (see Table 1), networks comprising three or more
camera stations did not exhibit any correlation coefficient values
exceeding 0.3, and 96 to 99 percent were under 0.15. The Q;2)

matrices were homogeneous and near isotropic, a very desirable
covariance structure! In the eight-station network of Example
2, no point-to-point correlation coefficients exceeded 0.3, and
the high coordinate-to-coordinate values for points on the sides
of the object were reflected in the LEP. Even in the weaker
network of Example 3 the covariances were small in magnitude.
These results support the contention that the Q;2) matrix from
LEP, with its block-diagonal structure, will usually be a suffi­
ciently accurate representation of the corresponding matrix ob­
tained in a TEP by means of inner constraints.

Unfortunately, the same cannot be said of LEP and the co­
variance matrix obtained in a TEP by means of the minimal con-

trol approach. Here, point-to-point correlations are typically more
significant. In the eight-station minimally controlled network in
Example 1, for instance, 58 percent of correlation coefficient
values were less than 0.15, 35 percent were between 0.15 and
0.45, and the remaining 7 percent exceeded 0.45. By some mea­
sures these correlations are still modestly low, but they do not
match the free-network results. The near-orthogonal covariance
structure produced in photogrammetric networks offers the po­
tential of Simplifying some procedures which utilize Q;2). One
prominent example is in the analysis of deformation measure­
ment networks of relative type, which requires datum trans­
formations of the covariance matrix of object points.

In a photogrammetric network the magnitude of the corre­
lation coefficients in Q;2) is influenced by the number of object
points. As the target density increases, the degree of point-to­
point correlation can be expected to decrease. Conversely, ac­
companying a reduction in the number of object points is an
increase in the level of correlation. Experience suggests, how­
ever, that this inflation of correlation coefficient values is of no
practical significance provided there are some 25 or more object
points in the network, with around 20 or more points being
imaged on each photograph.

CONCLUDING REMARKS

The network design examples covered in this paper have
ranged from the geometrically strong to the weak, but still only
represent a sample of the many and varied design configura­
tions encountered in practice. evertheless, the results pre­
sented strongly support the use of LEP in network design as a
substitute for TEP by means of inner constraints, at least for
networks displaying a high level of both internal reliability and
recoverability for APs. TEP should, however, be applied in cases
were uncertainties remain.

In interactive network design, LEP solves the datum problem
(ZOO) and provides a means to very rapidly evaluate the pre­
cision of a network configuration (FOD). As an example of the
computation times involved, consider the eight-station network
of Example 1. Here, there are 231 unknowns in the bundle
adjustment. For the LEP a time of 21 seconds is required on an
IBM Pc/AT to compute and list on the screen the individual
coordinate standard errors for each point. Utilizing the inner
constraint approach on a point-by-point basis (Equation 9) in
which correlations are not computed, the corresponding time
required is around 190 seconds. For a full TEP in which all ele­
ments of Q~2) are computed, some 12 minutes of computer time
is required to form and invert the normal equation system,
Equation 7.

REFERENCES

Blaha, G., 1971. Inner Adjustment Constraints with Emphasis on Range Ob­
servations. Dept. of Geodetic Science Report No. 148, Ohio State
University, Columbus, 85 p.

Brown, D. C, 1958. A Solution to the General Problem of Multiple Station
Analytical Stereotriangulation. RCA-MTP Data Reduction Technical
Report No. 43, Patrick Air Force Base, Florida, 53 p.

--, 1980. Application of Close-Range Photogrammetry to Measure-



L1MITI G ERROR PROPAGATION IN NETWORK DESIGN 493

ments of Structures in Orbit. GSI Technical Report No. 80-012, Geo­
detic Services, Inc., Melbourne, Florida, Vol. 1, 131 p.

Forstner, W., 1985. The Reliability of Block Triangulation, Photogram­
metric Engineering and Remote Sensing, Vol. 51, pp. 1137-1149.

Fraser, C. S., 1982. Optimization of Precision in Close-Range Photo­
grammetry. Photogrammetric Engineering and Remote Sensing, Vol. 48,
pp. 561-570.

--, 1984. Network Design Considerations for Non-Topographic
Photogrammetry. Photogrammetric Engineering and Rellwte Sensing,
Vol. 50, No.8, pp. 1115-1126.

Fraser, C. S., and D. C. Brown, 1986. Industrial Photogrammetry: ew
Developments and Recent Applications. The Plwlograll/lllelric Re­
cord, Vol. 12, o. 68, pp. 197-217.

Gustafson, P. c., and J. D. Brown, 1985. Interactive Photogrammetric
Design on a Microcomputer. Presel/led paper, ACSM-ASP AII/Illal
COl/uel/lion, Washington, D.C., 9p.

Papo, H., and A. Perelmuter, 1982. Free Net Analysis in Close-Range
Photogrammetry. Photograrl/melric EI/gineering and Remote Sel/sing,
Vol. 48, pp. 571-576.

(Received 18 December 1986; accepted 6 January 1987)

Engineering Summer Conferences
The University of Michigan

Ann Arbor, Michigan

15-19 JUlie 1987 - Illfrared TechlloloSI/ FUlldamentals alld System Applicatiolls
Presentations cover radiation theory, radiative properties of matter, atmospheric propagation, optics, and detectors. System

design and the interpretation of target and background signals are emphasized.

22-26 JUlie 1987 - Advallced Illfrared Techllology
Presentations cover atmospheric propagation, detectors and focal plane array technology, discrimination characteristics of

targets and backgrounds, and system designs. The prerequisite is familiarity with the fundamentals of infrared/electro-optics.

20-24 lilly 1987 - Syllthetic Apertllre Radar Tecllllology alld Applicatiolls
The design, operation, and application of synthetic aperture radar (SAR) are presented. Topics covered include range-doppler

imaging of rotating objects, spotlight radar concepts, bistatic radar, and the technology used in optical and digital processing of
SAR data for terrain mapping.

20-24 Jllly 1987 - Computer Visioll
A computer vision system recovers some useful information from images of a scene. This course introduces basic techniques

in computer vision with emphasis on solving problems having a variety of industry, government, and scientific applications.
For further information please contact

Engineering Summer Conferences
300 Chrysler Center, orth Campus
The University of Michigan
Ann Arbor, MI 48109
Tele. (313) 764-8490

The Second Industrial and Engineering Survey Conference

University College London
2-4 September 1987

The 2nd Industrial and Engineering Survey Conference has been arranged under the joint auspices of the International Society
for Photogrammetry and Remote Sensing (lSPRS) Commission V and the International Federation of Surveyors (FIG) Commission
6. The time is now appropriate to bring together interests in large-scale metrology, industrial and engineering surveying, and
close-range photogrammetry in order to assess recent advances in this area. All authors of papers at the Conference have been
specially invited. A wide range of industrial, commercial, and academic backgrounds will be represented.

Organization of many aspects of the conference has been shared with colleagues at The City University, University of Surrey,
Imperial College of Science and Technology, and South Bank, North East London, and Portsmouth Polytechnics.

For further information please contact

Dr. J. C. lliffe
University College London
Gower Street
London WC1E 6BT
United Kingdom
Tele. 01-387 7050, ext. 2733


