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ABSTRACT: Although the problem of resampling digital imagery to a rotated grid can be solved using only one-dimen
sional interpolation, this solution is limited to the case where the output grid is sufficiently dense within the original
image. The present paper extends the one-dimensional method to sparse output grids. Because of the less rapid increase
in the number of samples that must be convolved to produce equivalent results, it is in sparse resampling that the
computational advantages of one-dimensional over two-dimensional interpolation are most significant.

INTRODUCTION

I N TWO-DIMENSIONAL RESAMPUNC of digital imagery, output
lines are constructed successively by two-dimensional inter

polation of input pixel values. Where large-angle rotation is
involved, many adjacent input lines are needed for the con
struction of a single output line, an effect that can lead to in
ordinate disk access in the minicomputer processing of large
images.

Friedmann (1981a,b) has shown how this problem may be
overcome, at the expense of two 900 rotations of the entire im
age. He gives an algorithm in which single-pass, two-dimen
sional interpolation is replaced by a three-pass operation involving
only one-dimensional interpolations. In the (theoretical) case of
imagery acquired through Nyquist-rate sampling in two or
thogonal directions, the resampling avoids both truncation and
aliasing of input frequencies. However, it is assumed that the
output grid is sufficiently dense within the input image for such
retention of frequencies to be possible.

The present paper aims to extend the algorithm to the alter
native case of sparse output grids. Whatever method one fol
lows, a large convolving kernel must then be used to ensure
radiometric accuracy of the resampled image. However, for a
sequence of output grids of increasing sparseness, the kernel
size increases much more rapidly for a two-dimensional kernel
than for the equivalent one-dimensional kernel (i.e., quadratic
versus linear variation). Efficiency in resampling to a sparse
output grid is, thus, one of the greatest inherent advantages of
the one-dimensional method.

THE FREQUENCY DOMAIN

As in Friedmann's work (Friedmann, 1981a,b), the analysis
depends on considerations in Fourier space. The resampling
process attempts to avoid aliasing, while retaining input scene
detail as well as possible. We perpetuate Friedmann's assump
tion that the spatial frequencies present in the data are those
that would result from Nyquist-rate sampling on a square grid.

Sparse resampling can be effected by combining the Fried
mann process (dense resampling involving rotation) with a
process for sparse resampling of an image parallel to itself.
However, two combinations are possible:

(a) First, resample (with smoothing of input frequencies) to a sparse
grid which is parallel to the input grid, and within which the
output grid is dense; then apply Friedmann's algorithm.

(b) Alternatively, resample (with rotation) to a dense grid parallel
to the final output grid; then effect size reduction and smoothing
in a subsequent parallel resampling operation.

Although geometrically equivalent, the alternative procedures
of rescaling before or after rotation differ in the spatial frequen
cies that can be retained, as considered in greater detail below.
Thus, in the case of a 45° rotation where the total number of
pixels is halved, excessive smoothing must be performed in the
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first step of method (a) if aliasing is to be avoided. Because of
the consequent loss of scene detail, method (b) is superior in
this instance.

We treat exclusively the case of resampling between two square
grids, and begin by establishing notation. Our convention re
garding Fourier transforms is that, if (s" S2) and (t" t2) denote
Cartesian coordinates in frequency space, and in image space,
respectively, then

(1)(5,,52) = If <WI' t2 ) exp {- 2TIi (5, t, + 52 t2 )} dt, dt2

is the direct Fourier transform of the function <p(t" t2 ). The
spectrum for an image sampled on a given lattice is then a sum
of spectra obtained by translating the original spectrum to all
points of the reciprocn/lattice.

Further, let r denote the pixel spacing for the output grid,
measured in units of input pixel spacing, and write e (00

.:; e .:;
450

) for the absolute angle of rotation between the input and
output grids. The output grid is considered to be dell5e when
r < cos e, and sparse when r > cos e. Either class can be wid
ened to incorporate r = cos e.

Finally, we write ;g (L" L2) for the lattice ZL, + ZL2 gener
ated by linearly independent vectors L" L2 (Z = integers), and
rg> (L"L2 ,c) for the parallelogram

{5,L, + 52L2; 15,1,1521 < C},

where c > O. The frequencies (5,,52 ) within this parallelogram
are selected through multiplication by its characteristic (indi
cator) function, i.e., the function with value unity at interior
points and zero at exterior points, represented by a "pill-box"
surface.

We first briefly recapitulate the theory underlying resampling
to a dense output grid. Thus, Figure 1 shows bases (i",), (j",)
for the input and output grids (1'/1 = 1,2), and (k,,,) for the "in
termediate" grid, formed by the intersections of output lines
with input columns. The input basis is orthonormal, while the
output system (obtained by a rotation ± e and expansion r) is
merely orthogonal.

Figure 2 exhibits reciprocal bases (I",), a,,,), (K",) in frequency
space. Here I", = i"" orthonormal systems being self-reciprocal.
Also IL,I = li",I-' = r-' so L, = r- 2 j",. Moreover, as indicated
in the diagram, we have K, = L, K 2 = 12 ,

The input spectrum is assumed to occupy the central square
!J' (I" 12 , 1/2) in Figure 2, together with its translates by all
vectors of the lattice ;;P (I" 12 ), Within-column resampling from
the input grid:J' (i" i2 ) to the intermediate grid;g (k" k2 ) cor
responds to replicating values within '!f' (1,,12' 1/2) about all
points of the reciprocal intermediate grid ;g (K" K 2 ). The rep
licated spectra do not overlap. For, as r < cos e by assumption,
the distance d = '/2 sec e in Figure 2 is less than '/2IK,1 = '12 r "
or half the separation between centers of vertically neighboring
squares; and no square has been moved in relation to its hori
zontal neighbors.
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FIG. 3. Friedmann's modified horizontal resampling filter.
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FIG. 1. Basis vectors for input, intermediate,
and output sampling lattices-dense case.
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FIG. 2. Reciprocal bases in the frequency domain.

Similar considerations apply to the subsequent horizontal re
sampling. In this case we are selecting frequencies within g>
(K" K2 , 1/2) (and translating by :£ (L, Jz)). This region is the
inner parallelogram in Figure 3. As drawn here (for the case of
counter-clockwise rotation), it excludes input frequencies in the
upper right and lower left of the input specturm. The paralle
logram may be laterally enlarged to recapture these frequencies
(outer parallelogram in Figure 3), but will then intrude still far
ther into horizontally neighboring squares, resulting in aliasing.

As Friedmann (1981a, b) observed, this problem disappears
if we first increase the horizontal separation between the squares
by a factor equal to the ratio, W = 1 + tan 8, of parallelogram
widths. The lattice reciprocal to:£ (I" w12 ) being;;E (i" W ' i2 ),

this increase entails reduction by the factor w in the horizontal
spacing for input pixels, i.e., a preliminary oversampling of the
image in this direction.

We proceed now to the case of sparse output grids. Here,
some assumed input frequencies need elimination, to preclude
aliasing. One-dimensional processing admits only limited forms
of "tailoring," but there is still some freedom in choosing the
shape of the region of retained frequencies. Frequency selection

FIG. 4. Filter for parallel resampling before ro
tation.

In/ rectllllgies pllmllel to tile illpllt or Olltput grids correspollds to the
respectil'e /IIethods ((II) IIlld (Ii) IIbove) of pllmllel reslI/IIplilig before or
lifter rotlltioll. It seems less natural to rely on frequency-domain
filters that align with the reciprocal intermediate lattice, 5£ (K"
K 2 )·

Whichever method is chosen, we may suppose the central
region of retained frequencies to be both convex and symmetric.
To avoid aliasing, this region must not overlap its translates by
vectors of the lattice ;;E (J" J2)' The condition is that it contain
in its interior only a single point of the lattice :£ (1/2 J" 1/2 J2)
(l'iz., the origin - see Appendix). The largest admissible reten
tion region of a given type will be termed a critiClll region for 5£
(J" J2)'

The next two sections analyze the resampling process for crit-
ical square regions parallel to the input or output grids, re
spectively. We then compare the two methods for "superior"
retention of input frequencies. It will be noted that the rotation
and parallel resampling stages are combined in a single oper
ation, not separate, as described in (a) and (b) above.

As a useful abbreviation for a frequently occurring quantity,
write

p = r-' (cos 8 + sin 8).

PARALLEL RESAMPLING BEFORE ROTATION

The critical square parallel to:£ (I" 12) is rzp (1,,12, 1/2 y-' cos
8), its sides bisecting J, and J2 (see Figure 4). Vertical resampling
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FIG. 5. Filter for parallel 'resampling after rotation, p > 1
case.

This quantity is chosen to prevent intrusion of horizontally
neighboring input squares by the parallelogram filter used in
horizontal resampling.

The oversampling and vertical resampling stages entail no
smoothing of input frequencies. But in horizontal resampling
there is a scale reduction given by the ratio of lengths of iz and
kz, namely, r divided by the projection parallel to iz of the input
column spacing after oversampling. We thus require a filter
breadth factor equal to 1/2 (1 + prZ).

A final, fourth, pass must be implemented to reduce the
number of output lines by the factor c. This vertical resampling
of the image is one between strictly parallel grids, and can be
effected economically without the need of further 90° rotations.
Of course, to diminish the range of vertical frequencies, we
must broaden the convolving kernel by the factor c.

(lJ) p < 1.
If the input square contains the critical region (Figure 6) we

choose instead cr 'cos lJ = !J, i.e., c = 1 + tan lJ. The filter in
vertical resampling will be expanded by the factor p '. Hori
zontal resampling is used in the first pass to alter the input
column spacing. The proper separation, which may be either
greater or less than unity, is the reciprocal of

1 1 1 1
- P tan 8 + - r-' sec 8 + - P = - (1 + pZrZ)r-' sec 8.
2 2 2 2

AREAS OF FREQUENCY RETENTION REGIONS

(a) p > 1.
When the critical square (dashed square in Figure 5) is not

interior to the central input square, the minimal choice of c is
given by cr 'cos lJ =1, i.e., c = r sec 8. The oversampling factor
in the first pass (obviously greater than unity, from geometrical
considerations; see Figure 5) equals

111
AB + BD + DE =- tan 8 + - r ' sec 8 +

2 2 2

(note DE =AC)

1
=- (1 + prZ)r ' sec 8.

2

The filter breadth factor in this first pass is again p-'. Horizontal
resampling in the third pass requires expansion of the convolv
ing kernel, this time by the factor '/2 (1 + pZrZ). Finally, there
is a fourth pass for parallel vertical resampling. The filter breadth
factor is c, equal to the ratio of input to output lines for this
operation.

It will be noted that, in both (a) and (b), vertical resampling
is to an intermediate grid whose rows are parallel to the final
output rows, only more numerous in the ratio c. In case (b) we
make effective use of the oversampling pass to minimize the
number of columns in the image prior to the main horizontal
resampling. Likewise, vertical resampling effects some reduc
tion in the number of rows. But there is always a fourth pass
to ensure the correct number of final output lines. (The reader,
hoping to eliminate this pass, is referred to the italicized sen
tence on page 502.)

The critical square for parallel resampling before rotation (Fig
ure 4) has area (r ' cos 8)2.

In parallel resampling after rotation, the area of the critical
square is IJ ,I IJzl = r- Z

• This is also the area of the region of
retained frequencies (Figure 6) when p < 1. But when p > 1 we
must subtract the area of the four triangular regions within the
critical square, but external to the input square (Figure 5).

To determine this area, recall that

5 [ cos <l> + 'z sin <b = R

is the equation of the straight line, in the Fourier plane, having
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FIG. 6. Filter for parallel resampling after rotation, p
< 1 case.
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proceeds as before, except that the space-domain convolving
kernel must be broader than the one used in dense resampling.
The breadth factor will equal the ratio of numbers of input to
output lines, or the ratio, r sec 8, of the lengths of k

"
i,. It is

also equal to the ratio of vertical projections of input and output
frequency regions (Figure 4). The construction of a suitable space
domain filter is treated later.

As regards horizontal resampling (third pass), we note that
the smallest parallelogram encompassing the critical square, and
aligned with the reciprocal intermediate grid 5f (J, ,1z), has width

(1 + tan 8) r [ cos 8 = p.

If greater than unity, this quantity becomes (by analogy with
the case of dense resampling) the "oversampling factor" for the
first pass of the processing. But it may also, on occasion, be less
than unity; in all cases the first pass should result in a horizontal
pixel spacing equal to p '. This pass has the additional task of
horizontal low-pass filtering. The kernel breadth factor is r sec
8, as in vertical resampling.

PARALLEL RESAMPLING AFTER ROTATION

The critical square parallel to 5.F (L,Jz is ;'/'O"Jz' 1/"). We can
no longer select K, equal to J, because points of .'f'(J, ,Iz) differ
ing by ~ J, have a vertical separation, r 'cos lJ, less than p, the
vertical projection of the critical square. Thus, K, = cJ [ where
the constant, c, must be chosen greater than unity. Note that
cr ' cos 8 is the vertical projection of K,. There are, then, two
cases to consider (p = 1 can be included in either case).
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(R, <1» as polar coordinates of the foot of the perpendicular from
the origin. Thus,

5·0 10-0 15·0 20·0 25·0 30·0 35·0 40·0

Absolute angle of rotation ()

FIG. 8. Variation of ratio of output to input spacing with absolute
angle of rotation. The lower curve divides the regions of dense
(below) and sparse resampling. Parallel resampling after rota
tion is superior in the unbounded region above the top curve.

. 1
S I cos e + S2 Sin e = 2" I'

1
- S I si n (J + S2 cos e = - r

2

are the equations of the two perpendicular sides of the critical
square that meet in the first (i.e., bottom right) quadrant. By
fInding the coordinates of intersection of these lines with each
other, and with the line S2 = '/2, we obtain (p - 1f/sin 2e for
the combined area of the four excluded regions.

When p < 1, parallel resampling is clearly preferable after
rotation (I' 2 versus (I' I cos en. Figure 7 illustrates the case I'

= v'2, e = 45°. Of the input frequencies (outer square), we can
save half (diamond-shaped region) through parallel resampling
after rotation, the translates by 'J' (J" J2) of the retained fre
quencies completely covering the plane. With parallel resam
piing before rotation (inner square in Figure 7), only one quarter
of the input frequencies is retained.

In the case p > 1 we find that there is a transition of prefer
ence between the two methods, given by the solution of the
equation

'"c:
u

&.
VI
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0..

0·950~

::J
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c:

2 0900
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2- 0850::J
0-0
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r =cos9+(1-{sin 29)sin9

r =cos 9

1-9=13·7"

is

sampling given above do not come into coincidence in the tran
sition case, I' = cos e.

Ixl ~ 11

Ixl > 11

F(x) = {~inc (2xll1)

g, (x) = n, + b,~, + c,x2 + dk x 3 , 0 ~ X ~ 1.

The value interpolated at a pixel position with fractional part x,
wlthm a scene of uniform brightness 1, will be

::S[gA (x) + gk (1 - x)]

L[2ak + b, + cA + dA + (x2
- x) (2ck + 3dk )].

Now, the cubic function g(x) for which

g (0) = A, g(I) = 8, g'(O) = C, g'(I) 0

and is proportional to it for integral values of x.
The main design problem is to ensure correct interpolation

of ul1lform scenes. Nearest-neighbor and linear interpolation
methods obviously perform this function. So too does cubic
convolution, though it is less obvious why. We show that a
cubic spline collocated with F(x) at integer points has the re
quired property provided that the derivative at x = ± 11 is zero.

To this end, let the spine (which we assume to be an even
function like F) be given by

fA (x) = gA (x - k + 1), k - 1 ~ x ~ k,

where 1 ~ k ~ 11 and

FILTERS FOR SPARSE OUTPUT

We consider the construction of suitable convolving kernels
for sparse resampling. These filters resemble the one used for
cubic convolution, but are used for averaging 211 neighboring
Input pixels when 11 > 2. In particular, the 211-point interpolator
has the same support as the function

(1'- I cos 8)2 = I' 2 - (p - 1)2/sin 28.

This equation reduces to

I' = cos 8 + sin 8 - sin 8 Ysin 28

where the ambiguous sign must be minus, because p < 1 im
plies r < cos 8 + sin 8. We shall not add a further illustration
for this case.

In summary, for

cos 8 < r < cos fl + (1 - Ysin 28) sin e,

parallel resampling before rotation is superior, while parallel
resampling after rotation is to be preferred for all larger values
of r.

Graphs of the extreme members in the inequality above are
shown in Figure 8. The range of values of I' within which par
allel resampling before rotation gives better results is seen to be
very narrow. In fact, the maximum vertical separation between
the curves, occurring near 8 = 13.7°, is less than 0.0762.

As this case will probably seldom occur, it is perhaps not
worth the trouble to make special provision for it. Sparse re
sampling would then always be carried out by parallel resam
pIing after rotation. The analysis will at least make clear why,
in that case, the oversampling factors for dense and sparse re-

!1
FIG. 7. Comparison of retained frequencies in a
case of sparse resampling involving 45° rotation.

g(x) = A + Cx + (- 3A + 38 - 2C - 0)x2 + (2A - 28 + C
+ 0)x3

.

Writing nA = Au VA = C, and so on, we obtain, for the inter
polated value, the expression



FIG. 9. Adelaide. South Australia, resampled with reduction. (a) Subscene from MSS band 5 image 1150-000-5. (b) One-dimensional resampling. (c)
Two-dimensional resampling (standard 16-point cubic convolution. no smoothing).
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L(A, + B.) + x(l - x) L(C - 0,), 1 ~ k ~ n.

The coefficient of the non-constant terms is

C, + L(Ck_, - Ok) - On' 1 ~ k ~ 11 - 1.

But C, = 0 by symmetry and C,., = 0, as the gk constitute a
spline. Thus, On = 0 is the sale requirement for a value inde
pendent of x. The interpolated value will be the same as for x
= 0, when it is the sum of values of F at integer points. If we
divide the convolving function by this value, the resulting ker
nel will interpolate uniform scenes correctly. For the cubic spline
subroutine employed, see Akima (1970).

ILLUSTRATIONS

Figure 9 illustrates resampling of a Landsat scene (1150-000-
5) including Adelaide, South Australia. The original scene (Fig
ure 9(a), 512 by 512 pixels) is of MSS data corrected for Earth
rotation and aspect ratio distortions. Upon resampling, it is ro
tated clockwise by r and undergoes reduction by a factor of
about 4.6. Figures 9(b) and 9(c) show respective outputs from
new and old (16-point kernel cubic convolution) resampling
procedures. Quite fine details, such as the railway linking the
city with Port Adelaide, to the northwest, are visible in Figure
9(b) but obliterated in Figure 9(c).

CONCLUSIONS

The increasing trend for remote sensing data sets to be re
sampled to fit geocoded data bases means that there is a need
for efficient, high-quality resampling procedures. Furthermore,
in order for the volume of stored data to remain as small as
possible, it is essential that the final output grid be as sparse as
possible within the constraints determined by the data-base users.

When these sparse output grids are required for data that
must be rotated through quite large angles, the considerations
discussed above will become important. Many data sets ac
quired from platforms in equatorial orbits, and even from some
in polar orbits (such as AVHRR data), can come into this cate
gory.

One-dimensional resampling techniques must play an im
portant part when resampling to sparse grids because two-di
mensional resampling, if it is not to introduce aliasing, must
use very large kernel sizes, with attendant increases in com
putation overheads.

In this paper we have compared the two major alternative
methods available for one-dimensional resampling to sparse grids.
For values of r such that

r < cos lJ + (1 - Ysin 28) sin 8,

generalization of Friedmann's procedure, with a preliminary
size reduction and smoothing, is preferable. For larger values
of r, it is better to retain most spatial frequencies until a dense
grid has been established parallel to the final output grid.

The procedures above usually involve one more resampling
step than the procedure for resampling to a dense grid. These
steps have been outlined, along with suitable broad, one-di
mensional filters for resampling. We feel that the implementa
tion of these ideas will ensure optimum quality for imagery that
must be rotated and resampled to a sparse grid.
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APPENDIX

Let ;'1' be a point-lattice and R a convex region symmetric
about the origin. Then R is disjoint from its translates by vectors
ofcP if and only if R contains no point, except the origin, of the
lattice '/2'1'.

The proof in both directions is by contradiction. First, if R con
tains a non-zero vector V2 i (i in !,E) then, by centro-symmetry, it
also contains - V2 L. Thus R, R + i both contain V2 L.

Conversely, if the translate R + i contains a vector, v, then
R contains v - i, hence also t - v, again by symmetry. If R
itself also contains v then, by convexity, it must contain the
midpoint
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