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ABSTRACT: Digital land-cover data are used frequently in resource analysis in geographic information systems (GIS).
One common technique involves summing of weighted areas of various land-cover categories to derive a score for the
resource bing analyzed. Erroneous or misleading results are obtained when the modeling procedure ignores errors in
the land-cover data. When information on classification errors is available, adjustments to the weights are appropriate.
The distribution of misclassified pixels reported in the error matrix can be used to modify weights to compensate for
such errors. In many instances, conclusions reached from using adjusted weights may be different than conclusions
based on unadjusted weights. This finding suggests that current procedures could be modified to improve the results
of GIS land-cover modeling analyses.

INTRODUCTION TABLE 1. EXAMPLE CLASSIFICATION ERROR MATRIX.
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classification. A crucial assumption in this use of error matrices
is that the distribution of errors in the contingency table is rep­
resentative of the types of misclassification made in the entire
area classified. Without this assumption, no inferences can be
made about probabilities of correct or incorrect assignments of
pixels to land-cover categories.

Xi' = total for row i;
X'j = total for column j;
x .• = total number of pixels in error matrix;
x y = number of pixels classified as category i which are found to be-

long to category j on the ground;
k = number of categories;
i = row index (classification); and
j = column index (reference data).
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LAND-COVER WEIGHTING PROCEDURES

The purpose and use of land-cover maps has undergone a
transition from that of physical cartographic products to key
components of digital spatial databases used in geographic in­
formation systems (GIS). With this transition has come an op­
portunity to better use the details of classification accuracy
reported in error matrices.

The quantitative analysis of land cover in a GIS may be per­
formed for many reasons. One example is the analysis of wild­
life habitat. In this situation, vegetation categories may be ranked
and weighted to indicate their ability to provide important com­
ponents of habitat such as food and cover (Gysel and Lyon,
1980). Generally, the goal is either to compare the habitat score
for two areas to determine which has more potential for sup­
porting wildlife populations, or to measure the habitat score
before and after some treatment of a single area to assess the
treatment's impact upon wildlife (Heinen and Mead, 1984).

Wildlife habitat is not the only application of such weighting
and ranking schemes. Others may be land-use planning, rec­
reation suitability evaluation, or watershed modeling. In appli­
cations such as watershed modeling for erosion potential, land
cover may be used as a surrogate for land attributes which are
used as variables in predictive models (Robinove, 1981). In con-
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ACCURACY ASSESSMENT PROCEDURES

The most common means of reporting the reliability of a land­
cover map derived from satellite data is the error or confusion
matrix, also called a contingency table (Congalton et al., 1983).
These tables are typically the result of a sampling effort in which
the land cover depicted on a map is compared with the land
cover found at corresponding locations on the ground. The er­
ror matrix represents a tabulation of errors made in a classifi­
cation, and usually takes the form of Table 1, where the columns
represent categories as noted on the ground during the accuracy
assessment, and the rows represent the categories assigned in
the mapping project.

The error matrix can yield several values which summarize
the classification accuracy. First, the overall accuracy is the sum
of the diagonal elements divided by the total number of pixels
in the table. This number represents an average accuracy for
the classification over all categories, but provides no informa­
tion about accuracies of individual categories. Story and Con­
galton (1986) discuss "producer's" and "user's" accuracies, which
reflect the perspective from which the accuracy is interpreted,
and which provide accuracy information for each land-cover
category. The producer's accuracy relates to the probability that
a ground sample will be correctly classified, and is calculated by
dividing the number of pixels correctly classified in a given
category by the total number of pixels of that category that were
sampled on the ground. The user's accuracy will reflect the
proportion of pixels in a category on the map which are correctly
classified. This value is obtained by dividing the number of
pixels in a category that were classified correctly by the total
number of pixels that were assigned to that category in the

D IGITAL SATELLITE DATA are now a common source of land­
use/land-cover information. This information, usually pre­

sented in the form of a map, is critical to natural resources
management and planning. However, in recent years, these
land-uselland-cover maps have been increasingly used as in­
termediate data sources for quantitative models in digital geo­
graphic information systems (Mead et al., 1982; Lauer, 1986).
These models typically result in a number which represents the
quality or suitability of a given region for a particular use or
management practice. The accuracy of this quantitative assess­
ment, of course, depends primarily upon the accuracy of the
map(s) from which it is derived. The purpose of this report is
to propose a method which uses the results of a standard ac­
curacy assessment procedure for a land-cover map to improve
the accuracy of quantitative models which use the map. The
proposed method is contrasted with what is perceived as the
current standard practice in these situations.
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trast to the habitat evaluation example, these applications may
produce a number which has meaning in itself, and is not used
merely as a score for comparison of two areas.

The typical weighting procedure, then, may be seen as first
identifying the region for which a score is desired, such as a
watershed, a management unit, or a parcel of a given owner­
ship. The number of pixels classified into each land-cover class
in the specified region is counted (Ai)' and multiplied by a weight
assigned to that class (wJ Such weights are typically, but not
necessarily, between zero and one. These weighted counts are
summed to form a total score (Q) for the study area (Equation
1). In order to compare scores for regions of different size, this
number may be expressed on a per-unit basis (Q') by dividing
the score by the total number of pixels in the study area (Equa­
tion 2).

k

Q = L wiA i
i= 1

(1)

TABLE 2. EXAMPLE USER PROBABILITY MATRIX; CELLS CONTAIN
PROPORTIONS OF THE ROW TOTALS OF THE ERROR MATRIX

(FROM TABLE 1).

Category
as Reference ("Ground Truth") Data

Classified j=l . .... j=k Total

;=1 Pll Plk 1.00

Pij 1.00

;=k Pkl Pkk 1.00

Pij = Xij / X" = proportion of all pixels classified as ; which were
found to belong to category j;

k = number of categories;
; = row index (classification); and
j = column index (reference data).

where Q = score for study area,
Ai = number of pixels (or area) within study area

classified as type i,
Wi = weight for category i, and

k = number of land-cover categories.

THE PROPOSED PROCEDURE
Assuming the category weights have been derived in a reli­

able manner, the major weakness in the above procedure lies
in the fact that not all pixels classified into a given land-cover
type truly belong to that type. Therefore, misclassified pixels
are weighted incorrectly, and the final score will be incorrect to
the extent that the classification is inaccurate. A solution to this
problem may be to use the information that is provided in the
classification error matrix which describes the observed distri­
bution of misclassifications in the map.

For example, consider a habitat model in which weights are
assigned to land-cover categories according to their ability to
produce forage. Suppose that agricultural land-cover types are
extremely important in terms of forage production; pixels mapped
as agriculture will be assigned a high weight relative to other
types. However, simple weighting of the categories as classified
ignores the distribution of observed errors as reported in the
contingency table. If a significant proportion of the mapped
agriculture class contains something other than (and less im­
portant than) agriculture, the agriculture class weight should
be adjusted downwards accordingly. Conversely, if the accu­
racy assessment indicates that a lower-weighted class as mapped
contains considerable confusion with higher-weighted agricul­
turalland, its weight should be adjusted upward.

The first step in the proposed procedure is to divide every
cell in an error matrix by its row total. This produces what we
will call the User Probability Matrix (Table 2), in which the cell
entries represent the proportion of a mapped category (the row)
that has been found to belong to the various reference cate­
gories (the columns). The diagonal elements of this table can
be viewed as the probability that a pixel in a given mapped
class is classified correctly. Similarly, the off-diagonal elements
of Table 2 can be viewed as the probability that a given pixel
on the map has been misclassified as another particular cate­
gory. This step is similar to part of a procedure proposed by
Card (1983) to improve estimates of thematic map accuracy.

Two possibilities exist for modifying a weighting procedure
to incorporate information on misclassifications. First, the count
of pixels in a category on the map (Ai) can be modified by

k

Q' = --fL = ~~ wiA
i

L Ai LAi

(Eq.4)

(Eq.3)
k

A,* = L Ajpji
j=l

k

w,* = L wj Pij
j= 1

A NUMERICAL EXAMPLE

where A j = original pixel count for category j;
Pji = value in row j, column i of User's Probability

Matrix; and
A,* = adjusted pixel count for category i.

A second way of achieving the same final score is to adjust
the weights (w.) instead of the pixel counts. This is the preferred
technique because, once the weights have been adjusted, they
can be used for any area on the map. The adjustment of weights
is performed as shown in Equation 4: a new weight for category
i (w,*) as calculated by multiplying the proportions in row i,
Table 2 (Pi)' by the original weights corresponding to each col­
umn (wj ), Le.,

To demonstrate this procedure, an example error matrix and
modeling situation has been adapted from Ormsby and Lunetta
(1987). In their study, Landsat data were used to classify land
cover for use in a wildlife habitat evaluation model. The error
matrix from their land-cover classification is shown in Table 3.
From this table, producer's user's, and overall accuracy can be
calculated (Table 4). In the habitat modeling example reported
by Ormsby and Lunetta, a portion of a wildlife refuge was eval­
uated for deer habitat suitability. For their model, land-cover
types were weighted according to their ability to produce winter

multiplying by the proportions in the appropriate column of
the User Probability Matrix (Equation 3). This adjusts the pixel
counts using an estimate of the number of misclassified pixels
in a category, and apportions those pixels to other categories
which were shown to be confused in the error matrix. These
adjusted pixel counts (An would then be multiplied by the
appropriate weights (w,) and summed to arrive at a score. A
significant drawback to this procedure is that, whenever a new
area is selected for study, new pixel counts are made and must
again be adjusted.

where wj = original weight for category j;
Pij = value in cell i, j from User's Probability Matrix;

and
wi* = adjusted weight for category i.

These adjusted weights are then substituted for the original
weights in Equation 1. The new score calculated for the region
(Qa) should express the fact that the mapped categories are not
100 percent correct by adjusting the final score according to the
distribution of errors indicated by the error matrix.

(2)

;=1i= I

score per unit area.where Q'
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TABLE 3. CLASSIFICATION ERROR MATRIX ADAPTED FROM ORMSBY AND LUNETTA (1987).

Reference Data

Classificahon Corn Beans Pasture Grass Wheat Other Total

Corn 65410 18323 2749 24482 299 25568 136831
Beans 15357 279107 6005 17647 1316 15907 335339
Pasture 3454 7136 9049 4542 1543 12196 37920
Grasses 192 560 634 4826 12 7392 13616
Wheat 180 1297 612 51 13298 1173 16611
Other 7951 19707 7387 23598 1601 301723 361967
Total 92544 326130 26436 75146 18069 36~959 902284

TABLE 4. PRODUCER'S AND USER'S ACCURACY FIGURES, DERIVED FROM TABLE 3.

No. pixels Total Total Producer's User's
Correctly pixels pixels Accuracy Accuracy

Category Classified in column in row (percent) (Percent)

Corn 65410 92544 136831 70.68 47.80
Beans 279107 326130 335339 85.58 83.23
Pasture 9049 26436 37920 34.23 23.86
Grasses 4826 75146 13616 6.42 35.44
Wheat 13298 18069 16611 73.60 80.06
Other 301723 363959 361967 82.90 83.36

Total 673413 902284 902284 74.63 74.63

TABLE 5. LAND-COVER CATEGORY WEIGHTS FOR WINTER FORAGE
PRODUCTION FOR WHITE-TAILED DEER (FROM ORMSBY AND LUNETTA,

1987).

165749.80
Q' = (165749.80/902284) = 0.1837 per unit area
Now, in order to incorporate information from the error ma­

trix in an adjustment of the weights, the cell values from the
error matrix in Table 3 have each been divided by their row
totals to produce the User Probability Matrix shown in Table 6.
Note that the diagonal elements of this table are identical to the
user's accuracy values given in Table 4. Next, each weight is

adjusted in turn using the values from the appropriate row in
Table 6 multiplied by the respective original weights as in Equa­
tion 4 (see Table 7). Finally, these adjusted weights are multi­
plied by the pixel counts as before, and summed:

Qa = (0.4225 x 136831) = 57814.50
+ (0.1687 x 335339) = 56582.65
+ (0.1390 x 37920 ) = 5269.85
+ (0.0576 x 13616 ) = 784.20
+ (0.0643 x 16611 ) = 1069.75
+ (0.0345 x 361967) = 12494.40

134016.35
Q'" = 134016.35/902284 = 0.1485 per unit

area

DISCUSSION

At this point, three questions are pertinent. First, does the
adjustment procedure result in a meaningful difference in scores?
Second, would a different in scores result in different decisions
regarding the resource? Third, if adjusted scores are truly dif­
ferent from unadjusted scores, which is "better"?

The answer to the first question is yes; a dramatically different
score can be obtained if weights are adjusted. In fact, the only
way that adjustment would not result in different scores is if
there were no error in the classification, or if the misclassifica­
tions occur uniformly across all categories. In the example, the
adjustments of the weights has resulted in a 19 percent decrease
in the calculated score for forage production potential. This would
be expected if, in general, higher-weighted cover categories has
been confused with lower-weighted categories, thus diluting
the weight for the higher-weighted categories. This is indeed
the case in the above example. The highest weight is assigned
to the corn category, which has an accuracy of only 47.8 percent
(from the user's perspective). This category is confused consid­
erably with the "Other" category, which has a weight of zero,
and the wetland grass category, which has a weight of 0.10.
This confusion has caused the weight of the corn category to
be reduced almost in half (from 0.80 to 0.4225). Conversely, the
weight for the pasture category has increased from 0.10 to 0.139,
primarily because of a high degree of confusion with the higher­
weighted categories of Beans and Corn.

In response to the second question, the different scores ob­
tained by adjusting weights will often result in a different con­
clusion. For example, the relative importance of certain categories

0.80
0.15
0.10
0.10
0.05

Winter
Forage
Weight

109464.80
50300.85
3792.00
1361.60
830.55

0.00

(0.80 x 136831) =
+ (0.15 x 335339) =
+ (0.10 x 37920 ) =
+ (0.10 x 13616 ) =
+ (0.05 x 16611 ) =
+ (0.00 x 361967) =

Q=

Land­
Cover

Category

Corn
Beans & beets
Pasture
Wetland grasses
Wheat

food for white-tailed deer (Table 5). (Categories classified by
Ormsby and Lunetta that did not have any weight for winter
food potential were grouped into the category "Other" for our
illustration.) Pixel counts for each land-cover category within
their study area were then multiplied by these weights to pro­
duce a score for food potential. For the purposes of our exam­
ple, the "study area" will be represented by the data from the
accuracy assessment. Therefore, the pixel counts for each cat­
egory in the area of interest are equivalent to the row totals of
the error matrix. (Our use of the reference data as a study area
is merely a convenience; normally, an area would be delineated
and pixels within it counted.) Using the traditional method,
category scores are obtained by multiplying the weights by the
pixel counts. The individual category scores are then summed
to arrive at a food potential score for the study area: i.e.,
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TABLE 6. USER PROBABILITY MATRIX DERIVED FROM TABLE 3.

Reference Data

Classifica tion Corn Beans Pasture Grass Wheat Other Total

Corn 0.4780 0.1339 0.0201 0.1789 0.0022 0.1869 1.0000
Beans 0.0458 0.8323 0.0179 0.0526 0.0039 0.0474 1.0000
Pasture 0.0911 0.1882 0.2386 0.1198 0.0407 0.3216 1.0000
Grasses 0.0141 0.0411 0.0466 0.3544 0.0009 0.5429 1.0000
Wheat 0.Q108 0.0781 0.0368 0.0031 0.8006 0.0706 1.0000
Other 0.0220 0.0544 0.0204 0.0652 0.0044 0.8336 1.0000

TABLE 7. CALCULATION OF ADJUSTED LAND-COVER CATEGORY WEIGHTS.

Adjusted weight = w;* = WI X Pi' X W 2 X Pi2

+ W 3 X Pi3 + W 4 X Pi4
+W s X PiS + W6 X Pi6

So, for the adjusted corn weight,
WI * = 0.80(0.4780) + 0.15(0.1339) + 0.10(0.0201)

+0.10(0.1789) + 0.05(0.0022)
= 0.3824 + 0.0201 + 0.0020 + 0.0179 + 0.0001
= 0.4225

Similarly, the other weights are
Beans (w,*):

= 0.80(0.0458) +0.15(0.8323) + 0.10(0.0179) +0.10(0.0526) +0.05(0.0039)
= 0.0366 + 0.1248 + 0.0018 + 0.0053 + 0.0002 = 0.1687

Pasture (w3*):
= 0.80(0.0911) +0.15(0.1882) +0.10(0.2386) +0.10(0.1198) +0.05(0.0407)
= 0.0729 + 0.0282 + 0.0239 + 0.0120 + 0.0020 = 0.1390

Wetland grasses (w4 *):
= 0.80(0.0141) +0.15(0.0411) +0.10(0.0466) + 0.10(0.3544) +0.05(0.0009)
= 0.0113 + 0.0062 + 0.0047 + 0.0354 + 0.0000 = 0.0576

Wheat (ws*):
= 0.80(0.0108) +0.15(0. 781) + 0.10(0.0368) +0.10(0.0031) +0.05(0.8006)
= 0.0086 + 0.0117 + 0.0037 + 0.0003 + 0.0400 = 0.0643

Other (w6 *):
= 0.80(0.0220) +0.15(0.0544) + 0.10(0.0204) +0.10(0.0652) +0.05(0.0044)
= 0.0176 + 0.0082 + 0.0020 + 0.0065 + 0.0002 = 0.0345

may change after adjustment of weights. Notice that the weight
for the wetland grass category was initially higher than the
weight for the wheat category. Consequently, a reasonable
interpretation might have been: "Another area of the same size
with more pixels classified as wetland grass and fewer classified
as wheat will have a higher score and, thus, more potential
winter food value." However, if adjusted weights are used, the
situation is reversed. Because the adjusted weight for wheat is
higher than the adjusted weight for wetland grass, the correct
conclusion would be: "Another area of the same size with more
wetland grass pixels and fewer wheat pixels will have a lower
score and less potential winter food value." In many cases,
however, the adjustment of weights may not reverse the rela­
tive ranking of categories, as it did with wetland grass and
wheat. In such instances, the rankings of different areas in the
same map will not be affected by the adjusting of weights.
Areas with higher scores using unadjusted weights will still
have higher scores using adjusted weights; the conclusions would
not be altered.

A second instance in which the adjustment of weights will
change the results is if the evaluation or assessment is meant
to yield an interpretation in terms of an absolute quantity, such
as a carrying capacity or erosion potential. In this case, the
magnitude of the number is important, and itself will carry
meaning. Because the adjustment will likely change the mag­
nitude of the number, the procedure may be warranted.

The third case in which the adjustment procedure will prob­
ably result in a different interpretation is when comparing areas
for which separate classifications of land cover were performed.
In this case, there is a different classification error matrix and a
different adjustment of weights for each area. Therefore, the
use of adjusted weights may result in different relative scores
for the areas than if unadjusted weights were used. Note that

this case could include comparing areas across time. It is not
always possible to foresee whether future studies will use to­
day's results as a comparison; therefore, using the adjustment
procedure even in current "single-map" analyses will provide
a more consistent basis for future comparison and change eval­
uations.

It is evident that the adjustments of weights will result in
different scores, and possibly different interpretations; but to
what extent are they better or worse than results obtained using
the conventional techniques? In the example above, the error
matrix contains information on the "true" identity of the pixels
in our study area (the accuracy assessment data set), so the
"true" total forage score for the area (Q,) can be calculated. This
number represents the score that would be obtained if the land­
cover areas (pixel counts) were calculated from ground data,
rather than from the classified land-cover map. The "true" for­
age quantity is obtained by using the column totals instead of
the row totals, and the original weights: i.e.,

Q, = (0.80 x 92544 )
+ (0.15 x 326130)
+ (0.10 x 26436 )
+(0.10 x 75146 )
+ (0.05 x 18069 )
+ (0.00 x 363959) = 134016

Q't = 134016/902284 = 0.1485
Now, we find the adjusted score (134016) to be identical to

the "true" score (134016). It can be shown algebraically that the
adjusted score Qn will always equal the score Q, obtained by
using the original weights and the "true" reference data pixel
counts. Obviously, in general practice, the accuracy assessment
data will not be used as the study area; the "true" land-cover
composition of the study area will not be known, and a Q, could
not be calculated. The important point, though, is that, if the
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error matrix reflects the expected distribution of misclassifica­
tions, the adjusted scores can be considered a more accurate
representation of the site conditions than the traditional, un­
adjusted scores.

The drastic difference between scores obtained with and
without the adjustment procedure supports two recommen­
dations. First, these results emphasize the point made by Story
and Congalton (1986) and others that error matrices should be
made available to the users of land-cover classification products.
Second, when a classification is performed with a specific pur­
pose such a habitat mapping, and a specific model or weighting
scheme has been previously selected, it may be desirable to
orient the classification procedure to get higher accuracies in
the higher-weighted categories. This can be done by varying
sampling intensities or by using classification algorithms which
allow for variable misclassification costs.

SUMMARY
Digital land-cover maps classified from remotely sensed data

are being used frequently in quantitative GIS models. In such
cases, the use of the accuracy assessment information presented
in the error matrix can be used to enhance the accuracy of sub­
sequent analyses.

A technique has been proposed to incorporate information
on misclassification errors in the adjustment of typical weight­
ing and ranking schemes. This procedure uses simple manip­
ulations of the error matrix from a classification to alter land­
cover category weights to reflect the types of confusion found
in the classification. The method proposed has been shown to
produce the same results that would be obtained if "ground­
truth" data were used in place of classified data.

In an example of the proposed procedure, the adjustment of
weights resulted in a 19 percent decrease in the computed score.
This difference mayor may not lead to different decisions re­
garding the resource being analysed. The cases in which ad­
justments may be crucial are:

• If the adjustment results in a different relative ranking of land­
cover categories;

• If the result is a quantity that is interpretable in terms of its mag­
nitude, and not only in a comparison; and

• If scores are to be compared between maps with different error
matrices (from either different areas or dates).

These results suggest that, if a classification is performed spe­
cifically for a quantitative analysis such as the example de­
scribed, efforts to enhance the classification accuracy of highly
weighted classes may be worthwhile. Even if classifications are
performed with no such specific purpose in mind, then the
error matrices can be a valuable tool for improving any subse­
quent analyses using the classified data.
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