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ABSTRACT: The dynamic characteristics of displaced object points are integrated with the photogrammetric observation
modeL The developed formulae, recursively updated for the current state information, are based on the principles of
the sequential weighted least-squares adjustment with time consideration. They constitute a formulation of the iterated
extended Bayes filter. Test results showed that this approach can improve the final position and accuracy information.

INTRODUCTION

M OST DEFORMATION MODELS are of a static type aiming for
a statistical statement showing the existence or non-exis­

tence of movements in the space domain. Recent developments
focus on dynamic models (Gerstenecker et aI., 1978; Papo, 1985)
where displacements are studied with respect to time and fre­
quency of occurrence and also as functions of causative param­
eters (Welsch, 1981).

Photogrammetry has been successfully utilized for monitor­
ing purposes. Subcentimetre accuracies with aerial photogram­
metry (Fraser and Gruendig, 1985) and submillimetre accuracies
with close-range photogrammetry (Fraser and Brown, 1986) are
achievable. However, monitoring photogrammetry has rarely
used the time factor extensively as a fourth dimension. Thus,
monitoring of displacements is carried out in a static mode (Fig­
ure 1). The position vectors r(t) and r(t +1) are determined solely
from the individual photogrammetric campaigns without any
interrelation between the two observation epochs (t) and (t +1).

In a time varying situation, however, the object points change
their position progressively as a reaction to a cause. In order to
take into account the dynamic characteristics of the displace­
ments, we must therefore consider that the parameter vector
changes not only as new observations become available, but
also as a function of time.

This dynamic information can be directly incorporated into
the photogrammetric evaluation model, where monitoring is
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FIG. 2. Determination of displacements in a sequential mode.
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INTEGRATION OF PHOTOGRAMMETRIC AND DYNAMIC
MODELS

The sequential mode for monitoring displacements is devel­
oped according to the following scenario, which describes a
physical situation at an instant of time. This instant of time is
characterized by two models:

(a) The prediction model, which is defined by two equations.

now performed in a sequential mode (Figure 2). If the functional
relationship between the points at successive epochs is ade­
quately known, it is possible to compute a preliminary estimate
of the position vector r(t) based on its previous spatial position
r(t -1). Also, the variance-covariance matrix of r(t) can be esti­
mated due to the uncertainties of r(t -1) and of the functional
parameters expressing the transition from state r(t -1) to state
r(t).
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FIG. 1. Determination of displacements in a static mode.
x
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The first equation determines the propagation of the parameter
vector through time, that is,

where

x(I) is the predicted parameter vector at time t (current
state);

X(I-I) is the estimated parameter vector at time t -1 (pre­
vious state);

T(t, t-l) is the transition matrix, which maps X(I-I) onto X(I)
in the time interval ot = (t) - (t -1); and

z(t, t -1) is the vector describing the uncertainty (residual
or noise) of the system.

The second equation determines the propagation of errors of
the parameter vector through time, i.e.,

Omitting the time subscript t and using the subscript 1 de­
noting the first (or dynamic) model, Equation 6 becomes

(6)

(7c)

(7a)

(7b)

I)

o

where

OXI + XI - XI

or, in a general linearized form,

Aloxl + WI = 0, (AI

or

ea is the vector of the initially given object coordinates and
Pais the weight matrix of the observations.

At a particular instant of time t we have an a priori knowledge
of the parameters whose a priori weight matrix is non-zero (see
Equations 1 and 2). Thus, we can write

(2)

(1)

CX(I) = T(ot) Cx(t-I) T(ot)T + QI

X(I) = T(t, t-l) x(t-I) + z(t, t-l)

where

is the predicted covariance matrix of Xw
is the covariance matrix of the previous state pa­
rameter x(I-W and
is the covariance matrix of z(t, t -1) and generally
expresses the uncertainty of the prediction model.

(b) The photogrammetric model, which in our case consists of three
types of observation equations together with the relevant weight
matrices.

(i) The photo-coordinate measurements are related to the un­
known parameters through the extended collinearity equations,
in a photo-variant mode. The general form of these equations
is

AI = at is the first design matrix,ax
oXI is the solution (correction) vector, and

WI is the misclosure vector.

The weight matrix corresponding to Equation 7c is

PI = (CX(I»)-I or PI = CI-I. (7d)

At the same instant of time t the photogrammetric measurement
model has the following general linearized form

(8a)

where

where

(9a)

(8b)

Aox - V + W = 0

where

The combined linearized mathematical model based on Equa­
tions 7c and 8a is

in which

V z = [V p
T VaT V/]T

in which V p, VI' Va are the residual vectors corresponding to
observation equations Fu Fz, F3, respectively; and

W z = [WpT w a
T W/]T

in which W p , WI' W a are the misclosure vectors corresponding
to the observation equations Fu Fz, F3, respectively.

The weight matrix corresponding to Equation 8a is

(5)

(3)

e/ is the vector of the initially given elements of interior ori­
entation and

PI is the weight matrix of the observations.
(iii) The coordinates of the object are also treated as weighted

parameter constraints. Although this is necessary for the re­
quired control points to avoid datum indeterrninandes, all points
can be utilized as such. The observation equations have the
general form

where

XI is the vector of the unknown parameters of interior ori­
entation,

x£ is the vector of the unknown parameters of exterior ori­
entation,

Xo is the vector of the unknown parameters of object coordi­
nates,

ep is the vector of the observed photo-coordinates, and
Pp is the weight matrix of the observations.

The Kilpela-Salmenpera "physical model" of additional parame­
ters with ro = 0 is being used [Kilpela, 1980].

(ii) The ten elements defining the interior orientation for each
photo-frame, namely xo, Yo, c, au ..., a7 , are introduced as
weighted parameter constraints to avoid ill conditioning. The
general form of these equations is

Fz(x/) = el , with e/ == x, (0) and ~ (4)

where Assuming logically that there is no correlation between the two
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where

sets of measurements, the combined weight matrix for the model
of Equation 9a is

vations is added for the determination of the parameter vector,
the resulting new parameter vector is equal to the parameter
vector estimated from all previous observation equations plus
a correction term. Applying the law of error propagation to
Equation 16, a sequential form of the variance-covariance matrix
Cx of the estimated parameter x is derived. Thus,

Cx = [I - c, AI (Cz + AzC,AD-l Az]C, (17)

The dynamic model provides a recursive estimation process
through time for the unknown vector of parameters. Therefore,
in the above sequential expressions, the time is considered when
the parameter vector XZ,i changes not only as new observations
become available (term L1x) but also as function of cause in time
(term x,), In terms of modern optimal estimation theory, this
represents a filtering process. An examination of Equations 16
and 17 derived from the sequential weighted least-squares ad­
justment with time consideration reveals, that they have the
same appearance and, therefore, are mathematically equivalent
to the expressions given for the iterated extended Kalman filter
for non-linear dynamic systems (Gelb, 1974).

Examining also the structure of these equations with respect
to existing familiar forms and computational aspects involved,
we observe the following for the term (Cz + AzC,AD-': First,
the sequence of matrices involved does not resemble the well
known form of the coefficient matrix AI Ci1AZ of the unknown
parameters of the least-squares adjustment. Second, the order
n of the matrix to be inverted is much larger than the order u
used in a regular photogramrnetric bundle block adjustment (n,
u are the numbers of observations and unknown, respectively).

At this point we invoke a matrix inversion identity given in
Henderson and Searle (1981) which has been found also in Mik­
hail and Helmering (1973) and Kratky (1980), namely:

(Cz + AzC,AD-'
= Ci' [I - AZ(Cj' + AICi'Az)-' AI Ci'] (18)

Also, a new notation is adopted to conform with Gelb's (1974)
notation that provides a better understanding of the time factor
(Schwarz, 1983) and a more explicit distinction between pre­
dicted and updated estimates (Figure 3). The subscript t implies
the final estimation at time t, which is obtained after applying
the contribution of the measurements of the second model. The
symbol (-) indicates predicted values based on the dynamic
model immediately prior to time t. The symbol (+) indicates
updated values due to the contribution of the observations im­
mediately following the time t.

Applying Equation 18 and this notation on Equations 16 and
17, the final updated expressions are derived (Armenakis, 1987).
The final updated estimated parameter vector is determined as

x,) +) = x,( -) - C,( -) Ai C,-' G [A, (X"i-l( +)

- x,( -)) + w,] (19)

(9c)

(14)

(lIa)

(l3a)

(12)

(lIb)

(lIc)

(lId)

k

X == x, = X(D) + LOx"
;=1

In tn

X == Xz = X(D) + L OXZi = X(D) + L (OX li + L1xi )

;=1 ;=1

kz = (Pi' + AzNj' AD-' (-AzNj' q, + w z)

Nj' (Ai P,A,)-l = Pj'

where

q, Ai P,w, = P1w,

It is known that

where ox, is the solution for the parameter vector when the first
component model only (dynamic model) is used. If we set oXz
== ox which means that the unknown parameters are estimated
after considering the second component model (observation
model) and using Equations (lIb) through (12), then Equation
(1Ia) becomes

The solution vector ox is not partitioned because both subsets
of observations are related to the same unknown parameters.
It can be estimated by applying the least-squares criterion.

v TPV = oxi P,OX, + vI PzVz = min. (10)

In reality, measurements become available sequentially, and!
or a priori estimates of the solution vector may be available (e.g.,
Equation 1). Therefore, it is preferable and practical to deter­
mine new estimates based on the new measurements (e.g.,
Equations 3, 4, and 5) in terms of previous solutions. This is
possible by deriving sequential expressions of the least-squares
solutions (Wells and Krakiwsky, 1971; Junkins, 1978). Hence,

Lh= -C, AI (Cz + Az C, AD-I (Azox, + w z) (l3b)

Because we assumed non-linear models for the sake of gener­
ality, the final solution x is determined from both the first and
the combined model. When the first model is used, then

where k is the required number of iterations.
When the combined model is used, then

m

or x == Xz = XI + L L1xi
;=1

(15)

with m being the required number of iterations.
If we substitute the expression L1x from Equation l3b into Equa­
tion 15 and linearize each time about the most recent estimate,
we obtain an important recursive formula for the ith iteration

Xv = x, - c, AI [ez + Az C, AIJ-l [Az (XZ,i-l - x,) + w z]
(16)

where XZ.D = x, and XI = X(D) (value at which linearization oc­
curs)

This expression states clearly that, when a new set of obser-

~
'".5

FIG. 3. Predicted and updated values at time t.
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and the final updated covariance matrix of the parameter vector
is

C,( +) = [I - C,( - ) Ai C,-J GAil C,( - ) (20)

where

G = I - A, (C,(-)-! + AiCI-! AI )-! ATC,-J. (21)

These equations represent a formulation of the iterated ex­
tended Bayes filter. The use of a different matrix identity (Equa­
tion 18) results in a different expression for the so-called Bayes
filter (Morrison, 1969; Vanicek and Krakiwsky, 1986).

SEQUENTIAL ESTIMATION OF THE STATE INFORMATION

Practical considerations and computational efficiency led to
the use of a reduced measurement model. That is, the object
coordinates have been selected to serve as state parameters for
the filtering algorithm (Equations 19 and 20). More details about
the different situations and approaches examined can be found
in Armenakis (1987) and Armenakis and Faig (1987). This so­
lution originates from the fact that we are mainly interested in
determining the trajectories of the object points. It involves the
following general steps:

Step 1. Solve for the parameters XE, XI of the exterior and interior
orientation of the extended space resection.

Step 2. Consider XE and X, as known and form the reduced photo­
grammetric model where only the coordinates Xo of the ob­
ject points are unknown parameters.

Step 3. Determine the optimal position and accuracy estimates of
the current object coordinates using the prediction and re­
duced observation models in the final updated Equations
19 and 20.

It is understood that the above steps are executed in an iterative
manner.

PRACTICAL TEST

The test was conducted in a laboratory environment. The test
model (Figure 4) consists of five parts and has the following
dimensions 1.40 m by 0.90 m by 0.25 m. In respect to a stable
steel frame, the other four parts can accommodate the following
deformations:

Part C: stable area, and
Part D: subsidence area (aluminum plate equipped with a loading
hook in the center for weights).

In addition, several targetted points can be moved individ­
ually.

Two photogrammetric observation epochs were used. In the
second epoch single point displacement and subsidence defor­
mation had been introduced in parts of the model. The maxi­
mum magnitude of displacements was 1 cm.

Convergent photography with 100 percent overlap was taken
from above the four corners of the test field with a Canon AE­
1 non-metric camera with standard lens if= 50 mm) and an ap­
proximate photo-scale of 1:45. The locations of the object and
of the camera stations are illustrated in Figure 5.

The photo-coordinates of the image points on all eight pho­
tographs were measured on the precision analog stereo-plotter
Wild A-10. Two sets of measurements were performed, result­
ing in an average accuracy for both x and y photo-coordinates
of ± 12 ~m. The accuracy of the surveyed object points was ± 1
to ±2 mm.

The bundle adjustment program PTBV (Photogrammetric
Triangulation by Bundles-Photo-Variant; Armenakis, 1987) was
utilized to estimate the position and accuracy of the object points
in epoch 1. For the second epoch, the predicted object coordi­
nates were estimated through approximate photogrammetric
means (without the use of additional parameters) due to lack
of a systematic and controlled mechanism causing the displace­
ments. Their uncertainty was introduced by means of the di­
agonal uncertainty matrix Q (qii = 0.015 m2

).

The sequential estimation of the state information (position
and accuracy) was carried out using the integrated photogram­
metric and dynamic mathematical model. The computations were
performed with the program SPDM (Sequential Photogramme­
tric Displacement Monitoring; Armenakis, 1987). Besides SPDM,
the program PTBV was run as well. The statistical information
obtained from both the combined and single epoch bundle block
adjustment approaches is given in Table 1.

Finally, the differences in displacements between geodetic
results and photogrammetric ones (from SPDM) were compared
at 16 points, resulting in average differences of

oX = -0.4 mm, oY = 0.1 mm, (jZ = -0.9 mm.

FIG. 4. Layout of the test model.

.. control object points

• • •
•

•
•

• other object points

FIG. 5. Plan diagram (not to scale) of the object-camera configuration.

The comparison and evaluation of the results between the
single-epoch bundle adjustment and the combined sequential

CONCLUSIONS
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a-posteriori variance factor
(SPDM): 0.181E-09 (PTBv): 0.191E-09

mean value of the standard deviations of the non-control points

(SPDM): Ux = ±0.3 mm Uy = ±0.3 mm Uz = ±0.4 mm
(PTBV): UX = ±0.8 mm uy = ±0.8 mm Uz = ±1.2 mm

REFERENCES

Armenakis, c., 1987. Displacement Monitoring by Integrating On-Line
Photogrammetric Observations with Dynamic Information. Ph.D.
Dissertation, Dept. of Surveying Engineering, Univ. of New
Brunswick, Fredericton, N.B., Canada, 284 p.

Armenakis, c., and W. Faig, 1987. Sequential Photogrammetry for
Monitoring Displacements. Proc. of the 1987 ASPRS-ACSM An­
nual Convention, Vol. 7, pp. 62-70.

Fraser, C. S., and L. Gruendig, 1985. The Analysis of Photogram­
metric Deformation Measurements on Turtle Mountain. Photo­
grammetric Engineering and Remote Sensing, Vol. 51, No.2, pp.
207-216.

Fraser, C. S., and D. C. Brown, 1986. Industrial Photogrammetry:
New Developments and Recent Application Photogrammetric Re­
cord, Vol. 12, No. 68, pp. 197-217.

Gelb, A., 1974. Applied Optimal Estimation. The MIT Press, Massa­
chusetts Institute of Technology, Cambridge, Massachusetts. 374
p.

Gerstenecker, c., E. Groten, and G. Hein, 1978. The Application of
Modem Geodetic Techniques in Monitoring Translocations. Proc.
of the 11 Inter. Symposium of Deformation Measurements by Geodetic
Methods, Bonn, Germany, Konrad Wittwer 1981, Stuttgart, W.
Germany, pp. 113-127.

Henderson, H. V., and S. R. Searle, 1981. On Deriving the Inverse
of a Sum of Matrices. SIAM Review, Vol 23, No.1, pp. 53-60.

Junkins,]. L., 1978. An Introduction to Optimal Estimation of Dynamic
Systems. Sijthoff & Noordhoff International Publishers, B. V.,
Alphen van den Rijn, The Netherlands, 339 p.

Kilpela, E., 1980. Compensation of Systematic Errors of Image and
Model Coordinates. Inter. Archives of Photogrammetry, Vol. XXIII,
B9, Com. III, Hamburg, W. Germany, pp. 407-427.

Kratky, V., 1980. Present Status of On-Line Analytical Triangulation.
Inter. Archives of Photogrammetry, Vol. XXIII, B3, Com. III, Ham­
burg, W. Germany, pp. 379-388.

Mikhail, E. M., and R. J. Helmering, 1973. Recursive Methods in
Photogrammetric Data Reduction. Photogrammetric Engineering,
Vol. 39, No.9, pp. 983-989.

Morrison, N., 1969. Introduction to Sequential Smoothing and Prediction.
McGraw-Hili Inc., 645 p.

Papo, H. B., 1985. Deformation Analysis by Close-Range Photo­
grammetry. Photogrammetric Engineering and Remote Sensing, Vol.
51, No. 10, pp. 1561-1567.

Schwarz, K.-P., 1983. Kalman Filtering and Optimal Smoothing. Pa­
per for CIS Adjustment and Analysis Seminars, (edited by E. ].
Krakiwsky) C1SM, pp. 230-264.

Vanicek, P., and E. Krakiwsky, 1986. Geodesy: The Concepts. 2nd edi­
tion, Elsevier Science Publishing Company, Inc., New York. 697
p.

Wells, D. E., and E. J. Krakiwsky, 1971. The Methods of Least Squares.
Lecture Notes 18, Dept. of Surveying Engineering, Univ. of New
Brunswick, Fredericton, N.B., Canada, 180 p.

Welsch, W., (1981). Gegenwartiger Stand der geodatischen Analyse
und Interpretation geometrischer Deformationen. Allgemeine
Vermessungs - Nachrichten 88, Heft 2, pp. 45-51.

(Received 17 December 1987; accepted 12 February 1988; revised 23
March 1988)

(PTBV)

±0.007
±0.01O
±0.002
±0.002
±0.009
±0.001
±0.001
±0.004

Standard
Deviation

±0.010
±0.012
±0.002
±0.002
±0.009
±0.001
±0.001
±0.003

(SPDM)

0.000
0.000
0.000
0.001
0.002
0.000
0.000
0.000

(PTBV)

Mean Value

-0.001
-0.002

0.000
0.001
0.002
0.000
0.000
0.000

(SPDM)

photogrammetric approach, based on this experiment and a
number of others described in detail in Armenakis (1987), led
to the following conclusions:

• When a strong and well-controlled bundle geometry exists, the
estimated positional parameters (orientation elements of the ex­
posure stations as well as object coordinates) tend to be quite
similar. This is illustrated in Table 1 where the mean values and
the standard deviations of the examined residuals and the a-pos­
teriori variance factors do not significantly differ. The imposition
of additional object constraints is reflected in the slightly larger
standard deviations of the photo-residuals as well as in slight
differences in the estimated elements of interior orientation.

• The estimated positional parameters show differences for the two
approaches in cases of weak bundle geometry and/or poor datum
definition. The combined sequential photogrammetric approach
always provides better absolute results when the predicted infor­
mation (object coordinates and their accuracies) is reliable.

• The use of the combined sequential photogrammetric approach
provides a significant improvement to the absolute accuracy of
the object coordinates. This is shown in Table 1 where the mean
values of the standard deviations of the non-control points are
smaller than their corresponding values from the single-epoch
bundle adjustment approach.
Generally, it can be stated that the integration of photogrammetric

and dynamic information contributes to a better estimation of po­
sition and accuracy, because each model plays the role of a safeguard
and complements the other. The recursive nature of the approach
has great potential in real-time photogrammetric applications.

Residuals

photo x (mm)
photo y (mm)
check-points X (m)
check-points Y (m)
check-points Z (m)
control-points X (m)
control-points Y (m)
control-points Z (m)

FOR SALE

64 U-206 - 750 hours - smoh. Heavy duty crank. February annual. T.!. Loran, Encoder, DME. This
is a photo survey ship w/vertical camera hole & large hinged oblique window. $27,500 firm.
Weekdays 304-263-6976


