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ABSTRACT: A digital image with more than three measurements per picture element is not readily displayed on a
conventional color monitor. Understanding of the image is hampered by the lack of a single image product. A method
is proposed to solve these problems. A transformation from the multispectral image to a displayable three band image
is developed which preserves the measurement-space structure of the data. Color selections arestable and reproducible:
modest changes in the sensor or scene cause inperceptible changes in the displayed colors. Image processing operations
such as clustering and classification can be performed on the three-band image instead of the original higher dimensional
data with essentially identical results. The entire process is unsupervised.

INTRODUCTION

L ET us BEGIN with a large multi-dimensional digital image
such as one produced by a remotely positioned multispectral

sensor. Our ultimate concern is tt> understand the scene re­
motely sensed from the digital image. Human intervention is
certain to be required. The only avenue available for presenting
the picture as a whole to a human analyst is visual. Suppose
the display device is a color (REG) monitor with 512 by 512
picture elements (pixels). Each displayable pixel is represented
by three eight-bit bytes correspond the three colors red, green,
and blue. The display device is connected to a general purpose
image analysis system. Although the methods proposed here
apply to display systems with different capabilities, it serves
our ends to examine the problem in this setting. With this in
mind, consider the problem of presenting the human visual
system with an image which conveys enough of the relation­
ships in the scene to support understanding.

Several formidable problems arise. The multispectral sensor
produces more bands than can be displayed at one time. Thus,
one must select or otherwise combine in some way the original
bands to produce a displayable image. Even the simplest alter­
native (the selection of three) is complex: there are 210 ways of
selecting three bands from seven and assigning the three dis­
play channels to the bands selected (Sheffeld, 1985). In the ex­
ample presented later, there are 11 bands, giving 990 potential
assignments. The temptation to produce exotic displays is ir­
restible; the number of ways of sampling, rotating, selecting,
transforming, and clustering is overwhelming. A general image
analysis system must furnish these options, but it is wasteful
to apply them exhaustively.

In addition, many of the analysis tools are not available if the
image is spatially larger than the 512 by 512 display area. For
example, an automatic scaling operation applied to subsets of
an image will lead to different "colors" for the same object
indifferent segments. The transformation that sales is "trained"
on the particular subset instead of on the whole image. Differ­
ent subsets of large images are certain to contain different dis­
tributions of measurements. It may be possible to use the same
scaling procedure on the entire image, but this feature is not
usually built in and, therefore, it is unlikely to be used by an
application-oriented analyst.

Another problem is the quality of data: while the precision
of each display channel is eight bits, true eight-bit multispectral
measurements are rare. Scaling or histogram equalization may
enhance the appearance of the display, but one wonders what
such operations do to the data. Here again, there is a "mis­
match" between the display device and the data. The display
needs higher precision data in fewer bands than real data.

To one who must interpret the multispectral measurements,
an almost utopian display product would take the raw data and
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transform it into a single image which aids understanding, rather
than a large set of possibly helpful products. It would be a
definite advantage if the"data structure" were preserved in the
displayable image. (Unfortunately, there is no clear under­
standing extant of the meaning of the term "structure." I shall
propose one later in this paper, but until then I use the term
informally.) To be useful, the colors assigned in the display
should convey some of the meaning of the original, and should
be "reproducible" - that is, they should not change much, given
modest changes in the sensor or scene.

The problem we undertake thus has three related aspects. We
are given a digital multi-image containing N>3 bands. We seek

• to reduce the original dimensionality from N to three while
preserving the structure in N dimensions;

• to make a displayable color product with reproducible colors;
and,

• to effect these ends with an essentially automatic (i.e., un­
supervised) computer program.

FEATURE SELECTION

Feature selection is a technique for reducing the dimensional­
ity of essentially arbitrary multi-dimensional data. A widely­
used method is the principal components transformation (Tay­
lor, 1974; Merembeck et aI., 1977; Lillesand and Kiefer, 1979, for
example). The reduced dimensionality data presumably pre­
serve the "structure" of the original data. The problem with
applying this technique to the image display problem is simply
stated: how does one assign REG channels to the reduced three­
band image? Another problem is: how does one scale the trans­
formed image?

The simple method of scaling each transformed band to fill
the displayable range (Le., the set {O, 1,... ,255} of numbers the
display system understands in each of the three colors) pro­
duces disappointing display products. The colors are not pre­
dictable; small changes in the input scene lead to wild changes
in in the output colors. There remain six ways to choose the
three color assignments to the three reduced dimensions. This
undesirable behavior so hampers image understanding that the
original multispectral measurements, present as several distinct
images, must be constantly at hand in order to interpret the
reduced one. Thus, no resources have been saved: rather than
fewer images to understand, the user has more. This is pointed
out by Hay and Thomas (1977).

The objective in the principal components approach is to se­
lect an orthogonal set {XI ,X2,X3} of three vectors which minimizes
mean-square truncation error in the expansion of the prototypes
in an orthogonal series beginning with these three vectors. While
some measure of accuracy is provided, the measure is not as
directly tied to the structure question as one might desire. (By
examining the remaining N - 3 eigenvalues of the covariance
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PROTOTYPES

The first step in the solution of the problem is the automatic
estimation of boundary image elements (pixels) in the N band
image. It is essential that spatial boundaries be avoided when
sampling an image to obtain representatives of the classes present,
for the measurements obtained by the sensor do not belong to
any actual object. As elements of RN, boundary pixels are distin­
guished by being significantly different in at least one band from
one of their spatial neighbors. The thresholds (which serve to
define "significant") are initially set so the image is mostly bound­
ary, but adapt rapidly to the actual variability of the data: Be
default, 45 percent of the pixels are sought to be boundary pomts,
so that the boundary is not expected to be small or "thin."

After the boundary is identified, what remains is a collection of
blobs separated by boundary. If the resolution of the sensor is
adequate to sample the actual objects in the scene, then one must
assume that the spectrally homogeneous blobs represent the data.

From the blobs it is relatively easy to extract n samples so that
the samples are distinct and each blob is represented in one sam­
ple. Call the n samples prototypes; they form a set {Pl' ... ,P,,} of .n
elements of N-dimensional Euclidean space RN. In the speCific
application under discussion, they are selected in the course, of
clustering the original N-band image. The program used, VersIOn
12 of AMOEBA (Bryant, 1979; Jenson et aI., 1982), begins by locating
spatially connected regions with relatively homogeneous mesure­
ment-space behavior. Samples from the regions are clustered by
a method which begins with many attractors and reduces the
number while attempting to fit a spatial-spectral model for the
data. When 32 attractors remain, the process is interrupted and
the color display module is entered.

COLOR DISPLAYS

The transformation L takes the original measurements pinto
3-vectors q = Lp. We wish to display the transformed image.
Recall the display device has three 8-bit channels. If we denote
the finite set {O,1, ... ,255} by 0, then we actually seek a mapping
from the set containing the data into 0'. As might be expected,
simply translating and scaling the transformed measurements
q is not sufficient. The objections raised in the introduction
apply here: the color display must be arranged with more care.
Note also that scaling is sure to destroy the relative distances
between prototypes unless the same scale factor is applied to
each of the three transformed bands.

We seek, then, attributes of the original image which can be
found automatically to define the R' to 0 3 transformation. In
this search, let us keep in mind the main application, to mul­
tispectral measurements organized as images. A pixel consists
of N measurements of reflectance or radiation from the object
scene obtained over different parts of the electromagnetic spec­
trum. Presently, essentially all such measurements are at most
eight bits in precision. That is, the original pixels p are con­
tained in DN

• Through the n prototypes Pi we known exactly
where in ON the data lie, and can reduce the dimensionality
linearly to R3 preserving distances between prototypes with small
errors. Our search for attributes to preserve is guided by a de­
sire to make the displayed colors natural, in the sense that the
image produced is similar to a familiar product. Color infra-red
(IR) film is one such product.

To this end, locate the prototype P," with smallest norm in
RN - that is, which minimizes

matrix of the prototypes, one obtains an estimate of how much
"variance" is modeled by the initial terms of the series.) How­
ever, one vital property is present: the transformation is easily
and quickly applied, not only to the prototypes, but to all data,
as a 3 x N matrix multiplication. That is, the dimensionality
reduction step is a linear transformation from RN to R3. In spite
of this, the method considered below, which produces displays,
performs as well on the transformation given by the principal
components mapping. A slight improvement can be obtained,
and this sheds some light on one possible meaning of "struc­
ture" as applied to image analysis problems.

One way to look at structure is from the point of view of a
classifier. Imagine a classifier in N dimensional space, and con­
sider the classification of the prototypes. Suppose that, after the
prototypes were transformed to the lower dimensional .space
(here of dimension three), the classification of the three-dimen­
sional transformed prototypes remained the same as the origi­
nal. (This requires that the classifier also be somehow transformed
to the lower dimensional space.) In that case, one might say
the original set of prototypes was three-dimensional, at least
from the point of view of that particular classifier.

For example, if the classifier is a nearest-neighbor classifier, then
the classifier is determined by the attractors (sometimes casually
called class means or centers) and the distance function. The au­
thor believes that, in the absence of "expert" knowledge, the cor­
rect distance function is Euclidean distance. The three-dimensional
class attractors are easily obtained using the same transformation
which produced the transformed prototypes, and Euclidean .d.is­
tance in R3 can serve as the distance function. Thus, the classifier
in R3 is defined. It is probable that a transformation which pre­
serves distances between prototype pairs in N-dimensional space
in the reduced three-dimensional space will not change any clas­
sification, no matter what the attractors, and this is assumed if
the class attractors are themselves prototypes. Let us make the
idea suggested here more precise.. .

A linear transformation from RN to R3 is a 3 x N matnx L.
From the set of n distinct prototypes form the p = n(n - 1)/2
pair differences Zk = Pi-Pi' lOSi<jOSn. The measure of how we.ll
a matrix L preserves the distances between the prototypes is
the function F of 3N variables, defined by

p

F(L) = L (!Izk II - !ILzJ)2.
k-l

In this, Ilzkll is the Euclidean distance in RN between prototypes
and I!LzJ is the distance in R3 between transformed pairs. This
objective function has been considered before (Bryant and Guse­
man, 1979). The minimization of F is obtained by an iterative
steepest descent method, modified to account for the unfortun­
ate fact that F is not differentiable everywhere! The starting
point for the iterative method is the principal components map
trained on the prototype pair differences.

If we can confidently assume the set of prototypes represent
the measurement space structure of the image, then a linear
mapping from RN to R3 which preserves the distances between
prototypes will automatically preserve the structure of the. N­
band image in R3. Such a mapping will be a congruence relation
from RN to R3 when restricted to the set of prototypes. In prac­
tice, the mapping will not exactly be a congruence relation, but
it will be as close as possible to one, and will almost certainly
not change any classification of a prototype. Moreover, because
of linearity, points other than the prototypes are easily mapped
to R3. The problem, then, is to choose representatives of the
classes present in the image.

'However, F is differentiable at a local extremum. (here p

---

)

1 N

lip!! = -N L pJ
J-l

(Pl" .. ,PN)T). (Water(if present) or wet land will usu-
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FIG. 1. (a) Histograms, bands 1 to 5, input data. (b) Histograms. bands 6
to 10, input data.
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FIG. 2. Histograms, reduced dimensionality data.

EXAMPLE APPLICATIONS

Histogram Band 1

Two typical examples are presented here in Plate 1. The eleven­
band 512 by 512 images were lent to the author by the Natural
Environmen

tal Research Council Unit for Thematic Information, Depart­
ment of Geography, Whiteknights (Reading, U.K.), John Town­
shend, Director. The first image displayed is bands 6, 4, and 3
displayed RGB. This image is scaled to fill the range 0 to 255 of
the P S Model 70. The next is the unscaled transformed image
prepared by the method described here; visible band index 3

served, and the set of prototypes maps comfortably inside the
display space D3. Experience has shown essentially no clipping
(or folding) is required in the application of this map to all of
the data.

2p" + Ilpll
p,

ally be dark, but perhaps not so dark as shadows.) Define the
transformation M by M(p) = L(p-pw); M is not linear but it
preserves distances between prototypes exactly like L does. Note
that M(pw) = O.

Next, locate the prototype P" with maximum RN norm. (If an
urban class or bare soil is present, it will often appear bright,
but perhaps not as bright as a cloud or the sun's reflection from
a body of water if either is present.) In each case which has
been studied, the prototypes p", and p" are extreme points of
the convex hull of the set of prototypes. In most cases, they are
points most separated - that is, the distance between these two
prototypes is the diameter of the set of prototypes.

Let q = M(p,,) ER3. Let R, : R)-'>R3 be a rotation such that R)
rotates q so that the three image coordinates are equal and
positive. (The construction of such a rotation is given in the
appendix.) In all cases which have been studied, the image
under the product RIM of the set of prototypes lies in the first
octant- that is, the subset of three-dimensional space with all
coordinates non-negative. Thus, the transformed prototypes can
be displayed without clipping by scaling. The selection of"colors"
is certainly not clear, and slight changes in the image make large
changes in any arbitrary selection of RGB assignments to be
transformed-rotated-scaled measurements. We now describe how
the colors are assigned.

Many users of multispectral imagery will possess at least one
band (say band v) in the visible part of the spectrum and an­
other (band r) in the near JR. For many years these data have
been displayed by assigning the red display channel to a near
IR band and the green and blue to visible bands. • The resulting
display looks like color IR film; healthy vegetation will appear
red. The ratio of the IR band to a visible band is a good indicator
of vegetation. A better indicator for scenes which may contain
urban classes can be obtained by the following procedure. A
scaled ratio of the IR measurement to the sum of visible mea­
surement and the norm of the prototype is an improved indi­
cator. Select the prototype p" different from Pw and p" in which
this ratio

is largest. (To be sure, the user must supply band numbers of
a visible band and a near IR band, but the process in otherwise
unsupervised.)

The point r = R)M(p,,) almost certainly lies in the first octant
in R3. Let Rz be the rotation about (l,l,l)T which maps r into
the plane determined by the two vectors (l,O,Or and (1,1,1)T
which maximizes the first (red) coordinate of Rzr. (Details on
how the rotation can be constructed are given in the Appendix.)
The composition T = RzR,M takes the set of prototypes into
the first octant in RJ. To the extent that L preserved distances
between prototypes, the affine mapping T also preserve dis­
tances.

A scaling operation is now applied to bring the transformed
prototypes into D3. Determine the transformed measurements
t; = Tp;. Each t; is a 3-vector. Find the three smallest intervals
(Ie' me)' C = 1,2,3, which contain the components of the t;. For
example, I) is the minimum transformed red coordinate and m)
is the maximum. Let d = maxe~l.2.3{me -Ie}. Let a = 200/d.
Define a bias vector b = (30,30,30)T. Under the transformation
U(p) = a T(p) + b, relative interprototype distances are pre-

'Some applications will make different color assignments; in that case,
band r should be the band displayed red and band v the band displayed
green. Then the process outlined here will produce a composite display
similar to the one expected which contains all the class separation struc­
ture of the original.
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PLATE 1. (a) Bands 6, 4, 3 displayed RGB, scaled. (b) Composite of 11 bands, not scaled. (c) False color cluster map. (d) Bands 6, 4, 3 displayed
RGB, scaled. (e) Composite of 11 bands, not scaled, (f) False color cluster map.
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APPENDIX

[

cO 5]
Rp = 0 1 0

-5 0 C

Let v. be the projection of v, onto the plane determined by the
last two columns of Q. Let c = v, . bllivell and 5 = V, . c/Jlvell,
where b is the second column of Q and c is the third. Note c2

+ 52 = 1. Then

is a rotation about b in the P coordinate system which will make
u point in the d direction. In the natural coordinate system, the
rotation is R j = p-I Rp P.

Now apply this rotation of the transformed vegetation-like
prototype v: v r = R1v. Define a new coordinate system by the
orthogonal matrix

- ~/\/2 ]
-1/\/2 .

2/V6
-1/V6
-1/V6[

1/\/3
Q = 1/\/3

1/\/3
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Here we outline the construction of the two rotations men­
tioned above. The first rotation is essentially arbitrary, but the
choice of the axis of rotation described now is a natural one.
Denote by x x y the vector (cross) product and x . y the scalar
(dot) product of vectors x and y in R3. Recall that if P is or­
thogonal then p-I = PT.

Recall q is the transformed urban-like prototype. Let d =
(l,1,1)T/\/3, b = (q x d)lIlqxdll, and c = dXb. The matrix P
constructed with columns (d,b,c) is orthogonal. Let c = u·d/Ilull
and 5 = \/1-c2 • It is easy to see that c = cos 8, 5 = sin 8,
where 8 is the angle to rotate about b so that the rotated q lies
on d. The matrix

and IR band index 6 were used to position the reduced dimen­
sional image in display space. The third image is the cluster
map output from AMOEBA; the colob have no significance. Each
image was photographed directly from the display screen.

Also of interest are the one-dimensional histograms obtained.
For two of the images, the one-dimensional histograms of typ­
ical input bands and of the display product are shown. In Figure
1, typical histograms of bands 1 to 10 are shown. Figure 2 shows
the three bands of a typical output product.

CONCLUSIONS AND DIRECTIONS OF FUTURE WORK

A digital image with more than three measurements per pic­
ture element is not readily displayed on a conventional color
monitor; it is difficult to interpret because only three bands can
be presented at once as an image, so the analyst must shuffle
between several display products. We have introduced a trans­
formation from the multispectral image to a displayable three­
band image which preserves the n\easurement-space structure
of the data in the sense that relative distances between auto­
matically selected prototypes are preserved in the three-band
false color image. Color selections are stable and reproducible
in the sense that small changes in the sensor or scene cause
inperceptible changes in the displayed colors. Image processing
operations such as clustering and classification can be per­
formed on the three-band image instead of the original higher
dimensional data with essentially identical results. The entire
process is unsupervised. I

The method has been tested on several multispectral scanner
data sets, and preliminary results were presented. The saving
in processing time on the three-rather than eleven-band test
images more than repays the time taken to find and apply the
dimensionality reduction transformation. Research is now being
undertaken on the question of recoIjlstructing approximately the
original image form the reduced displayable image. It appears
that this should be possible with subjectively negligible errors.
If this proves to be the case, then new light will be shed on the
meaning of the term "structure."
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is a rotation in the Q.coordinate system which places v, in the
plane determined by d and b nearest to b; such a vector will
have the second and third components equal and as large as
possible (under rotations). Again, the natural coordinate system
rotation is R2 = Q-I RQQ.

FOR SALE
Wild PUG IV Point Marker and Kern CPM-l Comparator Point Marker
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