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ABSTRACT: The method of least squares is unsuitable for dealing with blunders in measurements. Other so called robust
computation methods are explained and applied to photogrammetric problems (relative and absolute orientation) en
abling the automatic detection and elimination of blunders. It is shown that these robust methods considerably improve
the photogrammetric mapping process.

REVIEW OF ROBUST ESTIMATION METHODS

A LTERNATIVE METHODS to least-squares adjustment have been
proposed in recent years (see, for example, Fredriksen et

al. (1985) and Kubik et al. (1986)) which reduce the influence of
blunders in the computation process. These are the so called
robust estimation methods. Robust estimators are estimators
which are relatively insensitive to limited variations in the fre
quency distribution function of the measurements and, thus,
to the presence of outIyers and blunders. All these methods
have in common: they do not minimize the (weighted) square
sum of residuals, i.e.,

but, rather, a properly chosen function <I> of r, which, for large
values of r" increases less rapidly than r,2, i.e.,

"I r/ ~ min; r, residuals
;= 1

"I <I> (r;) ~ min.
, I

(1 )

(2)

LEAST-SUM ESTIMATION

In least-sum estimation, the weight function is chosen equal

to p; = I~r thus minimizing 'Lhl ~ min. *). In Table 1, the iterative

computation is shown. The second column of the table lists the
weights P; for the five measurements used for the weighted
average computations. The last column lists the five residuals
Ir;1 = abs (Z;-m) for every iteration.

The proper solution m = 11 is obtained after ten iterations.
This example illustrates the necessity to limit the absolute
magnitude of P;; otherwise, some measurements receive very
large weights and the mean estimate becomes equal to these
measurements.

HUBERS ESTIMATE

In Hubers estimate (Kubik et aI., 1986), the weight is limited
in magnitude according to the following rule:

P = 1 for Irl < a

Examples for the choice of <!> are

<I>(r;) Ir,1 and

<I>(r;) r,2 exp (- r/la 2).

The numerical solution of Equation 2 can be obtained by using
the method of "reweighted least squares." Equation 2 can be
written as

a
p = - for Irl >aIrl -

We use an iterative algorithm similar to the previous one and
assume a = 2.(1 = 10 units. Table 2 summarizes the results.

The computation converges after three iterations to the mean
estimate, 13.5. This estimate is different from before, as we are
minimizing a different function Equation 2.

TABLE 1. LEAST SUM ESTIMATION OF MEAN VALUE

Sample Values: 10 11 11 12 100
'Lp(r;) x r,2 ~ min

where the weight function per) is given by

p(r;) = <1>(:;)
r,

(3) Iteration
No.

Weights p for Weighted
Samples Mean

1 2 3 4 5 M
Residuals for Sample
1 234 5

* This estimator is equal to the median, being the value correspond
ing to the 50 percent percentile in the cummulative frequency distri
bution. For our example, the median is equal to 11 units.

The procedure is iterative, starting with the least-squares so
lution (p = 1).

In the second iteration the individual weights are calculated
from Equation 3 using the residuals from the least-squares so
lution. In the third and following iterations, the residuals from
the previous iteration are used for calculating new weights. This
procedure is continued until convergence is obtained.

ROBUST ESTIMATION OF A MEAN VALUE

This section presents results from the application of three
robust alternatives to the least-square method for estimating the
mean value of a set of measurements. These examples serve to
illustrate the flow of computation.

Let us assume the following sample of five values given: Z
= (10, 11, 11, 12, 100) and (1 = 5 units. The least-squares es
timate for the mean is equal to m = 29 units.

1
2
3
4
5
6
7
8
9

10
11
12

1.00 1.00 1.00 1.00 1.00 28.8
0.05 0.06 0.06 0.06 0.01 16.3
0.16 0.19 0.190.240.01 12.4
0.41 0.69 0.69 2.25 0.01 11.7
0.59 1.42 1.42 3.39 0.01 11.6
0.64 1.79 1.79 2.26 0.01 11.4
0.71 2.47 2.47 1.68 0.01 11.3
0.79 3.73 3.73 1.37 0.01 11.2
0.86 0.09 6.09 1.20 0.01 11.1
0.91 10.64 10.64 1.10 0.01 11.1
0.95 19.57 10.57 1.05 0.01 11.0
0.97 37.31 37.31 1.03 0.01 11.0

18.8 17.8 17.8 16.8 71.2
6.3 5.3 5.3 4.3 83.7
2.4 1.4 1.4 0.4 87.6
1.7 0.7 0.7 0.3 88.3
1.6 0.6 0.6 0.4 88.4
1.4 0.4 0.4 0.6 88.6
1.3 0.3 0.3 0.7 88.7
1.2 0.2 0.2 0.8 88.8
1.1 0.1 0.1 0.9 88.9
1.0 0.0 0.0 1.0 89.0
1.0 0.0 0.0 1.0 89.0
1.0 0.0 0.0 1.0 89.0
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TABLE 3. THE DANISH METHOD

TABLE 2. HUBER'S ESTIMATE FOR MEAN VALUE

Sample Values: 10 11 11 12 100

Sample Values: 10 11 11 12 100

TABLE 2. HUBER'S ESTIMATE FOR MEAN VALUE
TABLE 4 LEAST-SQUARES RELATIVE ORIENTATION - UNPERTURBED

CASE

Point No. Photo No. X' (mm) y' (mm) VX' (f.Lm) VY' (f.Lm)
100 1 ~ 100.0000 100.0000 0.0 0.2

2 0.000 100.0000 -0.0 -0.2
101 1 0.0000 100.0000 0.0 0.6

2 100.0000 99.9960 -0.0 -0.6
102 1 0.0000 60.0000 0.0 -1.1

2 100.0000 60.0000 0.0 1.1
103 1 -100.0000 40.0000 0.0 -2.1

2 0.0000 40.004 -0.0 2.1
104 1 0.0000 40.0000 0.0 1.1

2 100.0000 39.9960 -0.0 -1.1
105 1 -100.0000 20.0000 0.0 1.3

2 0.0000 19.9970 -0.0 -1.3
106 1 0.0000 20.0000 0.0 0.3

2 100.0000 19.9980 -0.0 ~0.3

107 1 -100.0000 0.0000 -0.0 -0.3
2 0.0000 0.0000 0.0 0.3

108 1 0.0000 0.0001 0.0 -1.0
2 100.0000 0.0010 -0.0 1.0

109 1 -100.0000 -40.0000 0.0 2.1
2 0.0000 -40.0000 -0.0 -2.1

110 1 0.0000 -40.0000 0.0 0.9
2 100.0000 -40.0000 -0.0 -0.9

111 1 -100.0000 -60.0000 0.0 1.0
2 0.0000 -60.0000 -0.0 -1.0

112 1 0.0000 - 60.0000 0.0 ~2.4

2 100.0000 -59.9950 -0.0 2.4
113 1 -100.0000 - 80.0000 0.0 -1.6

2 0.0000 -79.0000 -0.0 1.6
114 1 0.0000 - 80.0000 0.0 0.7

2 100.0000 - 80.0000 -0.0 -0.7
115 1 -100.0000 -100.0000 -0.0 -0.6

2 0.0000 -100.0000 -0.0 0.6
116 1 0.0000 -100.0000 0.0 0.9

2 100.0000 -100.0000 -0.0 -0.9

10/

10l.

lOt,.
~/06

108/01

/00

~/03

~/05

y..

Weights p for Weighted
Iteration Samples Mean Residuals for Sample

No. 1 2 3 4 5 M 1 2 3 4 5

1 1.00 1.00 1.00 1.00 1.00 28.8 18.8 17.8 17.8 16.8 71.2
2 0.53 0.56 0.56 0.60 0.14 16.3 6.3 5.3 5.3 4.3 83.7
3 1.00 1.00 1.00 1.00 0.12 13.6 3.6 2.6 2.6 1.6 86.4
4 1.00 1.00 1.00 1.00 0.12 13.5 3.5 2.5 2.5 1.5 86.5

Weights p for Weighted
Iteration Samples Mean Residuals for Sample

No. 1 2 3 4 5 M 1 2 3 4 5

1 1.00 1.00 1.00 1.00 1.00 28.8 18.8 17.8 17.8 16.8 71.2
2 0.03 0.04 0.04 0.06 0.00 11.2 1.2 0.2 0.2 0.8 88.8
3 1.00 1.00 1.00 1.00 0.00 11.0 1.0 0.0 0.0 1.0 89.0
4 1.00 1.00 1.00 1.00 0.00 11.0 1.0 0.0 0.0 1.0 89.0

FIG. 1. Point Distribution for Rel
ative Orientation, Photo NO.2

The results of the iterations are summarized in Table 3 (using
a = 2.0').

Because the Danish Method uses exponential weights,
measurements outside a chosen confidence interval are
completely rejected, thus resulting in a truncated sample and
mean estimator. Convergence of the iterations is extremely fast,
and that is why we favor the exponential weight method over
other methods.

THE DANISH METHOD

In the Danish Method, (Kubik et aI., 1986) the weight of outlying
measurements is reduced as the value of their residuals increases.
The following weighting rule is used:

P = 1 for Irl < a

P = exp ( _1~~2) for jrl 2 a

linearity conditions. A simulated model with 17 points for rel
ative orientation, as shown in Figure 1, is used for this purpose.
At first, random errors of a = 3 J.1m were superimposed on the
ideal image coordinates and a least-squares adjustment was
performed. The results are shown in Table 4, and the residual
y parallaxes are consistent with the initially introduced perturb
ance. Next, the least-squares relative orientation is repeated,
but now a blunder of 40 J.1m is introduced in point 100. The
results of the computations are shown in Table 5; the largest
real parallax appears at point 103, thus making it a non-trivial
task to properly locate the blunder, even with so many relative
orientation points. The computation is repeated but now using
robust estimation according to the least sum principle, and re
sults are presented in Table 6. The blunder can now be clearly
recognized in point 100 (as 2 x 13.9 J.1m - 28 J.1m).

Finally, the Danish Method is applied to this example. The
results of Table 7 show that the total amount of the blunder is
correctly found and eliminated. The magnitude of the estimated
error is 2 x 20.5 J.1m = 41 J.1m, corresponding to the 40 J.1m
originally introduced, demonstrating the superiority of this
method. The measurements at point 100 were iteratively weight
reduced and finally, after 2 iterations, were assigned weight e.
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NUMERICAL RELATIVE ORIENTATION '--------------+x
Let us now consider the application of these robust methods

to numerical relative orientation, based on the well known col-
FIG. 2. Control Points Used for Numerical Ab
solute Orientation
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TABLE 6 RELATIVE ORIENTATION - LEAST SUM PRINCIPLE

TABLE 5 LEAST-SQUARES RELATIVE ORIENTATION - BLUNDERS IN

POINT 100

TABLE 8. INPUT DATA FOR ABSOLUTE ORIENTATION (IN UNITS OF MM AT

PHOTOSCALE)

NUMERICAL ABSOLUTE ORIENTATION

As a final example, we illustrate the application of robust
estimation to absolute orientation from an application in indus
trial photogrammetry. Consider five points to be given in the
model and ground coordinate system as listed in Table 8 and
shown in Figure 2. All magnitudes are transferred to mm at
image scale.

In the X and Y coordinates of the last two points 9 and 11,
blunders of 10 i-Lm have been added to the model coordinates.
Tables 9 and 10 summarize the results of absolute orientation
according to the least-squares method and the Danish Method,
respectively.

After least squares, the four blunders cannot be located in
the residuals. There are large residuals at all points. The largest
residual appears in point 1, and even advanced (Baarda) test
theory does not allow a proper identification of the blunders.
On the other hand, the Danish method clearly locates and elim
inates the four blunders of 10 i-Lm, thus preserving the high
accuracy of the other measurements of this example.

WT.
0.0
0.0

VY' (jJ.m)
-20.5

20.5
-0.7
-0.7

1.1
-1.1

2.0
-2.0
-1.1

1.1
-1.4

1.4
-0.2

0.2
0.2

-0.2
1.1

-1.1
-2.1

2.1
-0.8

0.8
-1.0

1.0
2.5

-2.5
1.6

-1.6
-0.8

0.8
0.6

-0.6
-1.0

1.0

-0.0
0.0

-0.0
0.0
0.0
0.0

-0.0
0.0

-0.0
0.0

-0.0
0.0

-0.0
0.0
0.0

-0.0
-0.0

0.0
-0.0

0.0
-0.0

0.0
-0.0

0.0
-0.0

0.0
-0.0

0.0
-0.0

0.0
-0.0
-0.0
-0.0

0.0

Ground Coordinate
X Y Z

30.519 280.731 27.715
46.892 280.307 133.078
49.143 148.55 133.13
46.919 52.8 133.437
89.689 52.176 57.745

0.0000 99.9600
-100.0000 100.0000

100.0000 99.9960
0.0000 100.0000

100.0000 60.0000
0.0000 60.0000
0.0000 40.0000

-100.0000 40.0000
100.0000 39.9960

0.0000 40.0000
0.0000 19.9970

-100.0000 20.0000
100.0000 19.9980

0.0000 20.0000
0.0000 0.0000

-100.0000 0.0000
100.0000 0.0010

0.0000 0.0000
0.0000 - 40.0050

-100.0000 - 40.0000
100.0000 - 40.0020

0.0000 - 40.0000
0.0000 - 60.0000

-100.0000 - 60.0000
100.0000 - 39.9950

0.0000 - 60.0000
0.0000 -79.9980

-100.0000 - 80.0000
100.0000 - 80.0010

0.0000 - 80.0000
0.0000 -100.0000

-100.0000 -100.0000
100.0000 -100.0000

0.0000 -100.0000

2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1

Model Coordinates
X Y Z

30.523 280.731 27.717
46.89 280.307 133.076
49.144 148.555 133.134
46.91 52.798 133.44
89.98 52.175 57.744

TABLE 7 RELATIVE ORIENTATION - DANISH METHOD

III

116

115

114

112

106

104

103

102

113

109

108

110

107

105

101

100

1
2
3
4
5

Point

Point No. Photo No. X' (mm) Y' (mm) VX' (jJ.m)

VY (jJ.m)
-5.6
-5.6

3.2
-3.2

1.0
-1.0

7.3
-7.3
-2.4

2.4
1.7

-1.7
-2.3

2.3
1.5
1.5

-1.3
1.3

-3.0
3.0

-2.4
2.4

-2.3
2.3
1.9
1.9
0.4

-0.4
0.2

-0.2
-0.1

0.1
2.0

-2.0

VY' (jJ.m)
13.9

-13.9
-0.1

0.1
-0.6

0.6
-4.5

4.5
1.9

-1.9
-0.2

0.2
1.2

-1.3
-1.0

1.0
-0.0

0.0
2.4

-2.4
1.3

-1.3
1.6

-1.6
-2.5

2.5
-0.9

0.9
0.0

-0.0
0.0

-0.0
-0.6

0.6

VX' (jJ.m)
0.0

-0.0
0.0

-0.0
0.0

-0.0
0.0

-0.0
-0.0

0.0
0.0

-0.0
-0.0

0.0
0.0

-0.0
0.0

-0.0
-0.0

0.0
-0.0

0.0
-0.0

0.0
0.0

-0.0
0.0

-0.0
0.0
0.0
0.0
0.0
0.0

-0.0

VX (jJ.m)
0.0

-0.0
-0.0

0.0
-0.0

0.0
-0.0
-0.0

0.0
-0.0
-0.0

0.0
0.0

-0.0
-0.0

0.0
0.0

-0.0
0.0

-0.0
0.0

-0.0
0.0

-0.0
-0.0

0.0
0.0
0.0

-0.0
0.0
0.0

-0.0
0.0
0.0

Y' (mm)
100.0000

99.9600
100.0000

99.9960
60.0000
60.0000
40.0000
40.0000
40.0000
39.9960
20.0000
19.9970
20.0000
19.9980

0.0000
0.0001
0.0001
0.0010

- 40.0000
-40.0000
-40.0000
-40.0000
- 60.0000
- 60.0000
- 60.0000
-59.9950
- 80.0000
-79.9980
- 80.0000
-80.0000

-100.0000
-100.0000
-100.0000
-100.0000

Y (mm)
99.9600

100.0000
99.9960

100.0000
60.0000
60.0000
40.0000
40.0000
39.9960
40.0000
19.9970
20.0000
19.9980
20.0000
0.0000
0.0000

.0010
0.0000

-40.0050
-40.0000
-40.0020
-40.0000
-60.0000
-60.0000
-59.9950
-60.0000
-79.9980
- 80.0000
-80.0010
-80.0000

-100.0000
-100.0000
-100.0000
-100.0000

X' (mm)
-100.0000

0.0000
0.0000

100.0000
0.0000

100.0000
-100.0000

0.0000
0.0000

100.0000
-100.0000

0.0000
0.0000

100.0000
-100.0000

0.0000
0.0000

100.0000
-100.0000

0.0000
0.0000

100.0000
-100.0000

0.0000
0.0000

100.0000
-100.0000

0.0000
0.0000

100.0000
-100.0000

0.0000
0.0000

100.0000

X (mm)
-100.0000

100.000
100.0000

0.0000
100.0000

0.0000
0.0000

-100.0000
100.0000

0.0000
- 0.0000
-100.0000

100.0000
0.0000
0.0000

-100.0000
100.0000

0.0000
0.0000

-100.0000
100.0000

0.0000
0.0000

-100.0000
100.0000

0.0000
0.0000

-100.0000
100.0000

0.0000
0.0000

-100.0000
100.0000

0.0000

Point No. Photo No.
100 1

2
101 1

2
102 1

2
103 1

2
104 1

2
105 1

2
106 1

2
107 1

2
108 1

2
109 1

2
110 1

2
111 1

2
112 1

2
113 1

2
114 1

2
115 1

2
116 1

2

Point No. Photo No.
100 2

1
101 2

1
102 2

1
103 2

1
104 2

1
105 2

1
106 2

1
107 2

1
108 2

1
109 2

1
110 2

1
111 2

1
112 2

1
113 2

1
114 2

1
115 2

1
116 2

1
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TABLE 9. RESIDUALS AFTER LEAST-SQUARES ABSOLUTE ORIENTATION CONCLUSIONS

Point

1
2
3
4
5

dx

0.007
0.001
0.004

-0.006
-0.006

dy

-0.000
-0.000

0.005
-0.002
- 0.001

dz

0.001
-0.003

0.003
0.002

-0.002

These few examples demonstrate how important it is in prac
tical photogrammetry to use robust adjustment methods in sim
ple operations like relative and absolute orientation, as well as
in block adjustment. The reader should be aware that today
many blunders go unnoticed, because the least-squares meth
ods distribute them evenly over all measurements. Therefore,
we strongly recommend that robust adjustment methods be
used as a replacement for or error check of the conventional
least-squares method. In particular, the Danish Method, de
veloped by Krarup (personal communication) and further re
fined by the authors, proves to be a very effective tool for modem
photogrammetric computations.

TABLE 10. RESIDUALS AFTER THE DANISH METHOD REFERENCES

Point

1
2
3
4
5

dx

0.002
-0.003

0.000
-0.010
-0.009

dy

-0.000
-0.000

0.001
0.009
0.008

dz

0.001
-0.002

0.004
0.003

-0.003
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