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ABSTRACT: The Adaptive Least-Squares Correlation, combining gray level matching with geometrical constraints, is
applied for X, Y, Z object coordinate determination. The constraints used are the collinearity conditions. A new aspect
is the simultaneous use of multiple (more than two) scenes. This paper outlines the mathematical model and highlights
some essential features of the algorithm with practical data.

Tests using CCD camera data in a close-range environment were performed on the aspects of pull-in range, occlusions,
and reliability (multiple solutions, mismatch). In all cases remarkable advantages result from the use of geometrical
constraints (conditional one-dimensional search) and multiple scenes. Depth errors of 5 %0 average depth (do) (6 pixels
pull-in range) and 10 %0 do (12 pixels pull-in range) were examined, with 100 percent and 70 percent success rate,
respectively. In case of occlusions the success rate is increased and the occluded image patches can be labeled in most
cases. Multiple solutions and the danger of undetected mismatches are considerably reduced.
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Taking into consideration noise and assuming that the tem­
plate noise is independent of the picture noise, Equation 1 be­
comes

(2)

(1 )

f(x,y) - e(x,y) = g(x,y),, ,

f(x,y) = gi(X,y), i = 1,.. .,n.

Xi t; Aitx (3a)

Yi t; Bitx , (3b)

with

f~ (~ x~ x~. ..X~l-I) (4a)

tT (y~ y~ y~ ... y~'-') (4b)
y

where e,(x,y) is a true error vector.
Equation 2 can be considered as a nonlinear observation

equation which models the observation vector f(x,y) with func­
tions gi(X,y) whose locations in the pictures 1,..., n need to be
estimated. The location is described by Llxi, LlYi shifts with re­
spect to an approximate position of each function gNx,y).

To account for systematic image deformations caused by pro­
jection and object reflection effects and to achieve a better match,
additional geometric ("image shaping") transformation param­
eters are included.

Each function g;O(x,y) forms a grid of gray values and is lo­
cated in a larger search window w;(x,y). The image shaping is
achieved by transforming the Xo' Yo coordinates of g;O(x,y) and
resampling over w;(x,y). The geometrical transformation can be
modeled by a bivariate polynomial

discrete corrections, which are required because of the deviation
of the actual sensor geometry from the theoretical model. Ra­
diometric corrections are not part of the estimation model. These
corrections are applied prior to the adjustment.

Assume a sequence of n + 1 images of an object (Figure 1).
The object is defined in a three-dimensional cartesian coordi­
nate system (X, Y, Z), the images in a three-dimensional carte­
sian coordinate systems (x, y, z = 0). The images are discrete
two-dimensional approximations of continuous functions. One
image function f(x,y) serves as the template, a reference, and
the remaining n images g,(x,y), . .., g,,(x,y) as the pictures. An
ideal situation gives
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INTRODUCTION

THE ESTIMATION MODEL

The statistical estimation model used is a combined least­
squares adjustment. The observation equations consist of two
parts, gray level matching and imposed geometrical constraints,
whereby the two parts are related through the shift parameters
of the image patches. Here a multiphoto approach is used,
whereby the gray level matching equations are formulated such
that they allow for simultaneous, local image shaping, for the
inclusion of additional geometrical constraints as well as for

THE LIMITS of stereovision systems, as used for three-dimen­
sional object-space reconstruction, are well-known. The small

redundancy of the point positioning phase leads to low reli­
ability of the object point coordinates, the precision suffers very
often from bad geometrical conditions, there is only little control
of mismatches in case of repetitive object patterns, and occlu­
sions may cause the loss of object points. Little effort has been
made in computer vision and robot vision to overcome this
situation. This paper offers a solution to the problems.

In Gruen and Baltsavias (1985), the method of Adaptive Least­
Squares Correlation was outlined and extended towards a
simultaneous matching/point positioning system by incorpo­
rating geometrical constraints which are defined by the sensor
imaging geometry and the kind of knowledge available with
respect to the sensor orientation parameters and different object
space elements (such as points, planes, distances, parallel and
straight lines, etc.).

This paper focuses on the problem of multiphoto matching
with the collinearity conditions as additional constraints for X,
Y, Z determination. The mathematical model is presented and
some features of this method are outlined using practical data.
This mathematical model can always be applied when the in­
terior and exterior orientations of the various scenes are known
and when the sensor geometry is defined by the collinearity
condition. Deviations from the strict geometry, caused by sys­
tematic errors resulting from lens distortion, video signal gen­
eration, etc., are also incorporated. Particular emphasis in the
practical tests is put on the aspects of reliability (mismatch,
multiple solutions), goodness of approximate values, and oc­
clusions.

The practical experiences are based on a few data sets only;
they highlight some aspects, but do not approach the problem
in a fully comprehensive and systematic manner.
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FIG. 1. Multiphotg arrangement for matching and point positioning. P....correct (matched position
of object point. P....initial position of object point.

(12)

(13)

(lOa)

(lOb)

(lOc)

rotation matrix of scene (k)

image coordinates of point p in scene
(k), reduced to the principal point
camera constant of sensor of scene (k)

E(e;) = 0

I; = f(x,y) - g;(x,y), and

A; = (gx gxXo gxyo gy g,;.:o gyyo);'

Equation 9 results in

- e;(x,y) = A;x; - 1; ; P;

With

with k = 0,1,2,..., n

p = object point index

P;...weight coefficent matrix of 1; (11)

with the assumption

Equation 7 becomes finally

f(x,y) - e;(x,y) = gt(x,y) + gx;da ll ; + gx,xoda12i

+ gx;Yoda2);

+ gy,db,); + gy,xodb'2; + gy;yodbw . (9)

Equations 11 form a system of 17 sets of gray level correlation
equations, with each set consisting of 11 1'112 correlation equations
(n l , n 2••• dimensions of pixel patch used for the match). In
Equation 11, the n sets are orthogonal to each other; they do
not have any joint parameter. This is equivalent to solving the
17 sets independently of each other using the standard Ieast­
squares technique.

If the image forming process followed the law of perspective
projection, a set of 11 + 1 collinearity conditions can be formu­
lated for each imaged object point p as

(5)

(6)

blm

aim

b"""

allllll

_ _ [all a12]Ai - ,
a21 0 ;

all a ,2

A;

all/I

bll b'2

13;

bml

Because Equation 2 is nonlinear, it is linearized according to

f(' ) - ( ) - 0 ag;(x,y) ag;(x,y) (7)

[~J
Xl'k,ypk.1,y e; x,y - g; (x,y) + --- dx; + --- dy;.

ax; ay; ->
x IJk Ck

With the notations

= ag;(x,y) = ag;(x,y)
gx; ax;

, gy;
ay;

(8) Rk (r , r2 (3).' Rk

and the parameter matrices A;, 13; are given by

where xo,Yo are the grid coordinates of the function values
g;O (x,y), and m-l is the degree of the polynomial.

The transformation parameters all, , a""", bll , .. _, b"m'
need to be estimated from Equation 2. Because the image patches
to be matched are usually rather small and as such generated
by: a very narrow bundle of rays, the perspective projection
might be locally replaced by a parallel projection. Therefore, an
affine transformation (six parameters) is a valid approximation
for the geometrical image forming process. So the parameter
set in A;, 13; is specified to be
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Equations 11 and 19 are connected by means of the shift pa­
rameters ~Xk' ~Yk that appear in both equations.

The Equations 19 are not treated as functional constraints but
as a set of observation equations.

In this case, Equations 19 become

~

X I' = vector of object coordinates of
point p

~

X ok = vector of object coordinates of
the perspective center of scene (k)

the extended Equations 17 yield

Bk x + tk = 0; k = 0,..., n

- e, = Bx + t; P,
P" ...weight coefficient matrix of t

with

(19)

(20)

e, - N (0, (J~Q,J; Q" = P,-I (21)

The least-squares solution for the joint system Equation 11,
Equation 20 gives

x = (ATPA + BTP,B)-I (ATPI - BTP,t). (22)

The weight matrices P, P, are used as diagonal mat:ices.
Therefore, the normal Equations 22 are of great sparsity (Figure
2), which is favorably exploited when solving the system for x.
With the solution vector xwe get

v Ax - I, residual vector for intensity observations,
v, Bx + t, residual vector for collinearity constraint (23)

observations, and
6 2 vTpv + VTp V .

o I I I, vanance factor, (24)
r(15)

(14a)

(14b)

X,Jk =

Apk = scale factor for point p imaged in scene (k)

The x,y components of Equations 13 are

~ ~

r1, (XI' - X ok) ,: _ Fy.
Y,'k = - Ck ~ ~ k

rrk (XI' - X ok)

For simplification, the point index p is ignored in the follow­
ing.
With

n '" number of pictures
6 = transformation parameters per picture
3 '" objecl coordinates of point P
2 ... shift parameters per piClUre

n - u, redundancy,

n number of observations, and

FIG. 2. Matrix sparsity pattern of normal equations (Equation 22).

6n + 3

u - number of parameters.

Because of the nonlinearity of the joint system, the final so­
lution is obtained iteratively, whereby approximate values for
the nonlinear parameters (six transformation parameters for each
picture patch, object coordinates of point p) are. required. The
iteration is stopped if each element of the solution vector x 111

Equation 22 falls below a certain limit.
A key element of this algorithm is the conditional one-di­

mensional transformation of the images. The word" co­
nditional" refers to the fact that the transformation follows certain
rules. These rules relate the transformation of the images to
each other and is one important reason for the improved per­
formance of this algorithm, as shown in the section on Practical
Tests.

More specifically, for the X, Y, Z version of the algorithm,
the x,y-shifts of all patches are functionally related to the alter-

(18)

(17a)

(17b)

(16a)

(16b)~Yk + Fr + y~ = O.

x = vector of all parameters, and

Bk = design matrix of the coefficients
of the parameters for scene (k),

AX + em dX + aF: dY + aF: dZ + F~(o) 0 0
'-" k ax aY az • + X k = ,

aFr aFr aFr
~Yk + - dX + - dY + - dZ + Fr(o) + y~ = O.

ax aY az

In order to take care of a possible systematic image defor­
mation, the linearized collinearity conditions can be augmented
by correction terms t1x,,, t1Y,k' Their use is important, especially
for close-range applications, where the deformations are sig­
nificant; e.g., for CCD images, they were 140 J.lm at the image
border. These corrections may be introduced according to the
effects of previously determined self-calibration parameters.

With

where ~Xk' ~Yk are the shift parameters in Equations 11 and where
~xo = ~Yo = 0 (for the template), Equations 14 become

It is assumed that the exterior orientation parameters of each
sensor k, (Xo' Yo' Zo' w, 4>, K)" k = 0,..., n are either given or
can be derived from object information (control points, control
elements), and the interior orientation parameters of the sen­
sors (xH , YH' •• principal point coordinates, c...camera con­
stanth are given as well. Then the parameters to be estimated
in Equations 16 are the shift values Lh" t1Yk and the coordinates
of the object point X, Y, Z. Equations 16 are nonlinear in X, Y,
Z. Linearization of Equations 16 with respect to the object co­
ordinates X, Y, Z results in
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where CX, CY are known.

Substituting Equation 26 in Equation 25 for k = 1,2.. .,n leads
to

ations of X, Y, Z object coordinates and are, thus, related to
each other. Following the notation of Equations 17, this relation
is given by

IMAGE jIMAGE i

SOFTWARE IMPLEMENTATION

Pu -. 00 The ith condition is strictly valid; the match point of
the corresponding image patch must slide along its
image epipolar line during the iterations.

• In order to save computing time and to gain flexibility, the radio­
metric corrections (gain and offset transformations, histogram range
scaling, histogram clipping, Wallis filtering) can be applied prior
to or during matching and are not treated as model parameters.
This is tolerable because the most important radiometric correc­
tion parameters are largely independent of the matching param­
eters in case of good approximate values for the transformation
parameters.

tui _ Cx;. ~ _ ~
ilYi - Cy,' t::..Yi - CYi

FIG. 3. Movement of match points along epipolar lines. STi'
STi' ..starting wrong match point locations.
A;, Ai' . .intermediate match point locations.
C;, Ci . ..correct match point locations

to

Because the transformations of the images are related to each
other, the target function to be minimized by the matching al­
gorithm (e.g., squared sum of residuals) is a single global func­
tion, i.e., depends on the position of all images simultaneously,
as compared to the unconstrained matching, where the trans­
formation of the images is independent from each other, and
there are n(n = number of transformed images) local target
functions to be minimized. This is a considerable advantage in
comparison to other algorithms (even epipolar matching), where
there is no relation and mutual support among the images.

The previous estimation model is FORTRAN 77-coded and is
installed at the Digital Photogrammetric Station (DIPS) of the
Institute of Geodesy and Photogrammetry, ETH Zurich. The DIPS
is described in Gruen (1986). As a software module, it is part
of a larger program, which includes several mathematical models,
which solve for different problems spanning from simple gray
level stereo matching to a combined matchinglbundle solution
for any number of photographs. The program uses only the
host computer and the graphic display facilities of DIPS. Al­
though a pipeline processor (MIAP) with a large number of fast
image processing functions is available at DIPS, all necessary
image preprocessing routines (like filtering with variable masks),
spatial resampling, geometrical warping, radiometric correc­
tions, etc., have been rewritten for the host computer. The fol­
lowing functional features and options, apart from those that
can be set interactively, are realized in the program:

• The matching parameters are introduced as observed quantities.
Each individual parameter can carry its own weight. Thus, param­
eters in any combination can be constrained or even excluded
before or during the iteration process.

• The collinearity conditions are introduced as observed quantities.
Their weight may be chosen in the range from

Ph -. 0 The ith condition is not effective; the corresponding
image patch is subject to gray level matching only

(27)

(25)

aF:; dY _ aF:; dZ
aY az

aFt dY _ aFt dZ
aY az

( - CX FXk - CY Fh - F~k) dZ

( - CX F3<k - CY FYk - F~k) dZ

~Xk = - aF:; dX
ax

aPt dX
ax

FXk
aF:; p aF:; an-p
ax Yk aY Zk az

and similarly for y

FXk
aFt aFt p aFt
ax Fh aY Zk az

this procedure yields

dX = Fzo F~o F~o Fyo dZ CXdZ
Fxo Fyo Fxo Fyo (26)
P P Fxo Fzp dZdY = xo zo CYdZ
Fxo Fyo p P

X o Yo

k = 0,1. ..n

Because the template (k = 0) is not transformed, dXo = dyo
= O. Thus, from Equations 25 for k = 0, we can express, dX,
dY as functions of dZ. Using the notations

where CXk, CYk are known.
Equations 26 to 27 show that all parameters can be expressed

as functions of one parameter (e.g., in this case of dZ). They
form a system of 2n + 2 equations in 2n + 3 unknowns. The coef­
ficients CX, CY, CXy CYk that appear in these equations depend
only on the X, Y, Z derivatives of the collinearity equations.
These derivatives again depend on the exterior and interior ori­
entations of the sensors (which are assumed to be known) and
the location of the match points in the image system. Small
changes in the point locations leave the derivatives almost un­
affected, so practically they can be considered constant
throughout the iterations. Their recomputation, though, is a
trivial task. From Equations 27 it is apparent that the image
patches cannot move arbitrarily along the epipolar lines, but
they must follow a certain direction and step ratio. If we as­
sume, for example (see Figure 3), that patch i moves along its
epipolar line with a step Si

Si = (dx? + dy?)1/2 = (Cx? + Cy?)I/2 dZ

and any other patch j (j = 1,.. .,n, j + i) with a step Sj'

Sj = (Cx/ + Cy/)l/2 dZ,

then the ratio Rij = Si ISj is given by

R.. = [CX? + Cy?]I/2 (28)
') Cx/ + Cy/

This ratio (Equation 28) is practically constant throughout the
iterations for the reasons explained above. That means that, if
the patch i moves with step Si at point Ai' then any other patch
j must move with step Sj = S/Rij at point Aj. So, these "step
conditions" force the images to move simultaneously at "fixed
step ratios" (e.g., A k, k = 1,.. .,n) along the epipolar lines.
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• Approximate values for the location of the patches and XYZ object
coordinates can be obtained by either selecting

gray level patches in the image space, whose centers, apart
from the template, do not have to fulfill the collinearity con­
dition

or
by starting with approximations for X, Y, Z-coordinates of the
object point and deriving the image patches by locating them
by means of the collinearity condition.

• Deformation of the perspective sensor model can be compensated
by applying discrete image coordinate corrections Llx" Lly, in the
collinearity conditions. Because the image corrections Llx" Lly,
follow a global image function and because of the relatively small
pull-in range (compared to the whole image format), they are kept
constant during the iteration steps.

• The complete covariance matrix for the estimated parameters is
computed to allow for a thorough analysis of the results.

• Besides the global variance factor 6 0
2

, the partial variance factors
6 0;2 for the individual patches (i) are computed. This information
can be used for mismatch and occlusion detection.

• For the approximate values of the transformation and object point
coordinates parameters, information from previously processed
points can be used.

PRACTICAL TESTS

These practical tests are published in order to highlight some
interesting features of this multiphoto matching method. They
are only part of a more extensive research effort and as such do
not cover the problems in a very systematic manner.

Issues to be addressed in the following are

• approximate values and pull-in range,
• multiple solutions (mismatch), and
• occlusions (partial, multi-occlusions, template occlusion).

In order to work in a controlled test environment, a close-range
test plate (format 50 by 50 em) has been used. Figure 4 shows
the arrangement. The plate consists of 25 precisely surveyed
control points. Between these points a number of markings have
been fixed, most of them showing a repetitive pattern. These
markings are simple photo copies of quilt and basket patterns.
Four convergent scenes (I c/> I == 30g, I w I == 20g) taken with an
AQUA-TV HR 600 CCD frame transfer camera cover the plate.

At DIPS each scene covers 512 by 512 pixels, with a pixel spacing
of 7.3 J.Lm in x and 7.8 J.Lm in y. The image scale was approxi­
mately 1:160 and the average object depth from the perspective
centers was 2 m.

The interior and exterior orientation of the scenes and the X,
Y, Z object coordinates of the control points were determined
by self-calibrating bundle adjustment using all 25 control points.
Image coordinate measurement was performed digitally with
the unconstrained least-squares matching technique using two
shift and three shaping parameters and a synthetically designed
circular template. The image corrections for the deviation from
the perspective model, as obtained from self-calibration, were
applied in all subsequent computations. For the calibration
problems and accuracy potential of these CCD cameras, see Be­
yer (1987) and Dahler (1987).

In general, the data processing procedure is set up such that
a template is selected in reference scene no. 1. For the com­
putation of the approximate values two options are used:

(a) Selection of object point coordinate 2 (0
); computation of the re­

lated Xlo), YIO)-coordinates using the imaging ray of scene no. 1;
computation of image patches for scenes nos. 2,3-4 by perspec­
tive backprojection of object point Xlo), Y<o), Zlo)

(b) Free selection of image patches 2,3-4 (in this project: interactive
selection). Xlo), YIO), ZIO) computation according to (a)

Method (a) delivers geometrically consistent approximate val­
ues, while this consistency is not obtained with method (b)
because the imaging rays of the point do not intersect in object
space. However, with method (b) consistent values are obtained
right after the first iteration step of the matching/point posi­
tioning procedure, if the weight of the collinearity conditions is
set to P,; --'> 00 (the patches "jump" right away at the correspond­
ing epipolar lines).

Some preliminary tests have shown that, in case of bad ap­
proximations, it is advisable to run a coarse matching, i.e., the
first few iterations without shaping parameters. Thus, shaping
parameters are used only at the fine matching level (final two
to three iterations). In all computations the patches were pre­
filtered with a three by three convolution mask (local average)
to speed up the iteration process. The derivatives of the gray
levels were computed using the average of the patch and the
template.

PULL-IN RANGE

In order to evaluate the pull-in range and thus the necessary
goodness of approximate values, the circular targets of the single
points were used (see Figure 4). The signal size is about seven
pixels in diameter.

All 25 targets were tested, each with two different .12 errors
(L1Z is the deviation of the approximate value for the 2-object
coordinate from its correct value):

(a) LlZ = 10 mm or 5 %0 do (do . ..average depth of the object with
respect to the perspective centers); patch size: 29 by 29 pixels

(b) LlZ = 20 mm or 10 %0 do; patch size: 41 by 41 pixels

L1Z = 10 mm corresponds to a maximum pull-in range of six
pixels. This pull-in range appears for all points in at least one
image coordinate direction in all scenes. .12 = 20mm corresponds
to 12 pixels pull-in range.

In the following figures the upper row shows the windows
of images 4,3,2 from left to right and the template. The lower
row shows the respective patches. In each window the epipolar
lines and the transformation of the patch are shown. The cross
represents the current position of the patch center, the small
rhombus shows the starting position. In the figures showing
the test results on pull-in range, the square represents the correct
position of the patch center.

In case (a) all matches converged to the correct location (Figure
5), while in case (b) this was true only for 17 points (Figures 6a
and 6b). The considerable improvements in convergence radius

10
/ 0,

/
/

/

x

z

y

f---------- 2.0m ---------'----4

/
/

/

@O,

r/ Template
Scene

FIG. 4. cco camera arrangement and test object.
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OCCLUSIONS

Because of the flatness of the test plate, occlusions were
simulated by blackening a number of the pixels.

The occlusion test distinguishes three cases:

(a) Semi-occlusion of the patch in image 2 by 50 percent (see Figure
9);

(b) Multi-occlusions; patch 2 is occluded by 50 percent and, in
addition, patch 3 is occluded by 25 percent (see Figure 10); and

and rate of the geometrically constrained multiphoto matching
versus the unconstrained matching are clearly shown in Figures
6b and 6c. In Figure 6c the images 4 and 2, which have worse
approximations than image 3, are still far away from the correct
position, while in Figure 6b image 3 supports the convergence
of the other two images.

Failure in convergence included two different cases:

• Patches with very homogeneous background and few edges. As
a result the insufficient signal cannot pull in the patches (Figure
7a) .

• Patches with many edges and enough texture but very dissimilar.
Because of the dissimilarity, the shifts at the coarse matching stage
do not converge and the subsequent transformation with all shaping
parameters at the fine matching stage is wrong (Figure 7b).

Both problematic cases can be improved by increasing the patch
sizes so that significant signal is included and the similarity
between the patches is increased.

It must be noted that these results refer to points lying on
the epipolar lines. If the image coordinate approximations are
determined by selecting gray level patches in the image space,
which do not fulfill the collinearity condition, then already in
the first iteration the patches jump on the epipolar line,
independently of how far they are initially away from it.

Figure 8 shows a special characteristic which was already
observed in the DTM matching algorithm (Gruen and Baltsavias,
1986). If the approximate values are bad, the alterations of the
estimated parameters are small in the first part of the iteration
process. Then there is a point where the alterations take on
bigger values and the iteration process speeds up considerably.

a

a

(a)

II
(b)

FIG. 5. Six pixels pull-in range. (a) Starting, (b) End position of matching
procedure.

(a)

(b)

FIG. 7. Twelve pixels pull-in range. (a), (b) two typical failure examples
(starting position).

(c)

(b)

(a)

FIG. 6. Twelve pixels pull-in range. (a) Starting, (b) End position of one
case of convergence, (c) same iteration number as (b) without geometr­
ical constraints.
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(c) Template occlusion; a 31- by 31-pixel template is occluded by a
12- by 12-pixel square in the center (see Figure 11).

The patch sizes were 31 by 31 pixels and a LlZ-value of ~Z =
6 mm was used. Correct convergence was obtained in all cases.

Table 1 shows the total and component standard deviations
of unit weight of the matches that were used to detect occlusions.
It shows clearly that occlusions can be very well detected as
long as at least one image is non-occluded. If the template is
occluded, other measures of goodness of fit than those of Table
1 have to be used.

TABLE 1. STANOARD DEVIATIONS OF UNIT WEIGHT OF THE MATCHES
(TOTAL AND COMPONENTS) WITH RESPECT TO THE TEMPLATE. THE

DIMENSIONS ARE GRAY LEVELS

(To (T02 (To) (To-!

Case Total Image 2 Image 3 Image 4

a 19.8 31.6 5.1 12.5
b 34.8 53.6 25.6 12.6
c 20.5 21.0 20.2 20.6

(a)

(b)

(c)

behavior was examined. All versions were without radiometric
correction, with filtering as mentioned above, LlZ = 6 mm, only
shifts at the beginning and all other affine transformation
parameters at the end stage. The dimensions of the patches
were 9 by 9 pixels, which was about the size of the repetitive
pattern.

Multiple solutions (side-maxima) are strongly reduced with
this matching technique and mismatches are signalized in most
cases. The collinearity condition forces the patches to move along
the epipolar lines, which greatly reduces the danger of side­
maxima. All ambiguites and mismatches outside the epipolar
lines are geometrically inconsistent and are thus automatically
raised, as shown in Figure 12.

Apart from that, because of the conditional one-dimensional
search, the success rate is increased and the detection of false

FIG. 12. Three mismatches outside the epipolar lines. Correct conver­
gence. (a) Start position, (b) First iteration, (c) End positionFIG. 11. Template occlusion.

FIG. 10. Multi-occlusions.

FIG. 8. Number of iterations versus parameter altera­
tions, with L1Z = 20 mm for one patch.

10 11 12 13
NUMBER OF
ITERATIONS

X X·SHIFT (pi)
V V-SHIFT (pi)

PARAMETER·
ALTERATIONS

FIG. 9. Semi-occlusion in one image.

MULTIPLE SOLUTIONS

For this test, image patches of the repetitive patterns were
chosen in different unfavorable positions and the convergence
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convergence is in most cases possible. Success rate is increased
because of the mutual relation and support among the image
patches, especially when more than two images are used. As
an example, a patch that is closer to a side-maximum will converge
correctly if the other patches are closer to the correct match
point. Thus, good patches can support and pull in candidate
patches for mismatch (Figure 13). Additionally, as the number
of image patches increases, the probability that all patches hit
a side-maximum simultaneously decreases and, therefore, the
more easier it is to detect a false matching.

False convergence can not be detected only if a side-maximum
is selected on the epipolar line of each image simultaneously,
which is highly improbable. If at least one patch (i) does not hit
a side-maximum, this would be reflected in the size of some
partial quality measure (e.g., o-Oi and correlation coefficient of
patch (i)). Also, in such a case the shaping parameters are going
to be inflated. The resulting object coordinates are wrong and
thus a comparison with the results of neighboring points can
provide an additional control. An example is shown in Table 2
and Figure 14. Image 2 is a perfect mismatch but images 3 and
4 cannot reach a side-maximum because of the geometric
constraints. Thus, the values of 0-

0
, the correlation coefficient,

and the shaping parameters for images 3 and 4 signalize the
false convergence.

CONCLUSIONS

The geometrically constrained multiphoto matching tech­
nique offers considerable advantages with respect to pull-in range,
reliability, and occlusions. Because of the use of all the geo­
metric information available and the internal consistency of the
algorithm, the success rate increases and many problematic sit­
uations are signalized .

• Approximate values with errors of about 5 to 10%" do (6 to 12
pixels) are successfully handled. The use of the geometrical con­
straints increases the convergence radius and rate because the
search is one dimensional. The use of multiple scenes has the

(b)

FIG. 13. One mismatch and two patches closer to correct match point
along the epipolar line. Correct convergence. (a) Start, (b) End position

TABLE 2. DETECTION OF A FALSE CONVERGENCE FROM THE PARTIAL
RESULTS OF IMAGE 3 AND 4 (EXAMPLE OF FIGURE 14)

p ... CORRELATION COEFFICIENT SX. ..X-SCALE, Sy. ..y-SCALE, Rx. . .X­

SHEAR, Ry. ..y-SHEAR

Total Image 2 Image 3 Image 4

0"0 34.9 16.6 41.2 44.1
p 0.92 0.13 0.07
Sx 1.17 2.14 0.03
Sy 0.99 0.78 0.40
Rx -0.11 0.15 0.36
Ry 0.42 0.14 0.53

(b)

FIG. 14. Convergence to a wrong point, with at least one imperfect mis­
match. (a) Start, (b) End position

same effect. In addition, the search is here constrained with re­
spect to direction and step size, so that the less displaced image
patches can support the further displaced ones.

• In many cases occlusions do not prevent correct convergence.
Again, the less occluded patches beneficially influence the more
distorted ones. The quality measures of the algorithm allow for
the detection of occlusions.

• Multiple solutions are drastically reduced because of the condi­
tional one-dimensional search. Mismatches can be detected unless
all image patches hit false maxima along epipolar lines simulta­
neously, a very rare case.

Further studies will make use of more extensive data sets and
will examine other aspects of the algorithm.
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1988 Short Courses in Remote Sensing
South Dakota State University

The courses present basic to advanced techniques for remote sensing of natural resources. Data handling and processing, image
interpretation, and field methods are among the tools presented. An applications orientation accompanies all courses. A seven­
week program (courses 1 to 6) is also an option. For a complete presentation, see course listing number 13.

(1) 12-16 September 1988 - Basic Remote Sensing and Image Interpretation
(2) 19-23 September 1988 - The Basics of Digital Image Processing
(3) 26-30 September 1988 - Geographic Information Systems (GIS)
(4) 3-7 October 1988 - Remote Sensing in Land Use Studies
(5) 11-14 October 1988 - Remote Sensing: A Tool for Soil Surveys and Resource Inventories
(6) 17-23 October 1988 - Understanding Hydrologic Systems
(7) 14-18 November 1988 - Tools in Remote Sensing for Cultural Resources Survey and Management
(8) 1-5 August 1988 - Remote Sensing and GIS Applications in the Social Sciences
(9) 24-26 October 1988 - Photographic Theory and Production Methodology for the Image Interpreter

(10) 19-23 September 1988 - Reproduction of Colors and Tones in Remotely Sensed Imagery
(11) 26-28 September - Theory and Practice of Digital to Analog Conversion of Digital Data
(12) 7-9 September 1988 - How to Develop a Comprehensive Quality Assurance Program for Remotely Sensed Data
(13) 12 September-28 October 1988 - Tools and Techniques for Natural Resource Evaluations

For further information please contact
Mr. Kevin Dalsted
Office of Remote Sensing
South Dakota State University
Box 507
Brookings, SD 57007-0199
Tele. (605) 668-6894

Short Course
Introduction to Remote Sensing

Hyatt Regency Hotel. Kansas City, Missouri
17 October 1988

This Short Course - being held in conjunction with the 1988 AEG meeting and cosponsored by the American Society for
Photogrammetry and Remote Sensing - is oriented toward the use of aerial and space photography, infrared, radar, and advanced
sensors for engineering geology. The course is designed for those with some knowledge of aerial photointerpretation who wish
to learn more about "remote sensing," photography and imagery, computer-based image processing, and recent developments
in this dynamic field. The course will concentrate on applied aspects of the various sensors: when, where, and how to obtain
the photography you need; and what to do with the photography/imagery when you get it. A consultant's forum will be held to
discuss tactics in practical applications of remote sensing in the field and office. Participants will be introduced to

• Remote sensing terms
• Non-traditional sensors and imagery
• How to select, obtain, and use remote sensing imagery
• Applications for remote sensing in engineering geology and in regional and site studies
• Geographic information systems and their use in engineering and environmental investigations
• Microcomputer-based image processing and GIS

For further information please contact
Christopher J. Stohr
Illinois State Geological Survey
Natural Resources Building
615 East Peabody Drive
Champaign, IL 61820
Tele. (217) 244-2186


