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ABSTRACT: Seasonal time histories of ice motion parameters were calculated for various regions in the arctic using
pOSItIon data dUrIng May, August, and November of 1979. The motion of the sea ice was considered in terms of
divergence, vorticity, deformation rate, and ice translation speed. These ice kinematic parameters (IKP) are determined
based on the motIon of Ice parcels defined by drifters clustered in small regions in the arctic. The results were used to
quantIfy seasonal space and time scales. The calculations indicate that the divergence was the most temporally and
spatIally varIable of the IKP for all seasons. Translation speed was the most consistent in space and time. It was found
that slgl1lfIcant varIatIons 111 divergence occurred in some areas on the order of 100 km and with an e-folding time of
-2 hours. In contrast, slgl1lfIcant varIatIOns in the translation speed occurred in some areas on the order of 700 krn
and with a time scale of over 80 hours.

The small time scale of the ice pack divergence is a reflection of gravitational and buoyancy forces. These do not
allow for any long term (4 to 5 days) variations in the divergence, a characteristic not reflected by the other IKP. The
small space scale of the Ice pack divergence is shown to be a direct result of its short time scale. These results give a
number of ImplicatIOns for the modeling of sea ice in the arctic. The first is the need for horizontal pressure gradient
terms 111 the model equatIons to account for gravitational and buoyancy forces. Others deal with limitations on the grid
size and tIme step of arctic sea ice models.

INTRODUCTION

T HE ARCTIC is a principal area for ice research because of its
role in the global climate and heat budget and its economical

resources. Because man's scientific and economical interests in
the arctic have grown, knowledge and prediction of sea-ice con­
ditions and the ability to cope with them have become essential.
Accurate forecasting of sea-ice behavior, for example, is indis­
pensable to research and offshore exploration. As a result, much
research has been aimed at understanding the processes af­
fecting sea ice and its distribution in the arctic.

In order to prepare for specific conditions in an environment,
one must determine the modes of motion in that environment.
Kinematic analysis is one of the most basic methods of defining
sea-Ice pro~esses. The basic modes of motion for a parcel of ice
are translation, divergence (area change), vorticity (rotation rate),
and deformation (related to shape changes). These ice kinematic
parameters (IKP) are particularly important in an ice-infested
environment due to the variations in sea-ice loading that each
vana?le causes. Also, the IKP are related to other important
phYSICal phenomena. For example, ice convergence is associ­
ated with ridging, which can produce thick multi-year ice floes
and much under-ice noise. Ice divergence is also associated with
lead formation, which can greatly modify polar atmospheric
heat fluxes.

Our knowledge of sea-ice processes and ice kinematics has
been substantially enhanced over the last 5 or 10 years. A great
amountof research In thiS area has already been performed in
the arctic, a.nd these studies have provided valuable insights
Into Ice motion and related phenomena. Hibler (1974) used ki­
nematic analysis results to point out that sea ice tends to diverge
under at~TlOspheric lows during summer but converge under
lows ~unng winter. McPhee (1978) used kinematic analysis to
quantify lower frequency ice divergence, rotation, and defor­
mation rates in the Beaufort Sea. Similar calculations by Popelar
and Kouba (1983) using positions of ice camps in the central
arctic showed major changes in the ice pack deformation as the
camps passed over the Lomonosov Ridge. Most recently, Lewis
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and Denner (1988) related under-ice arctic ambient noise vari­
ations to sea ice kinematics as determined from satellite-tracked
drifters on the ice.

The results of such kinematic analyses have been very general
in character. Research activities in the arctic now require a more
detailed knowledge of a given parameter and its variations.
Therefore, a critical need exists to establish the time and space
scales over which sea ice and sea-ice processes vary. These scales
indicate the coherency of a parameter both in time at a given
location and in space within a given season. The scales are a
function of ice characteristics and of the response of ice to par­
ticular forcings. As the characteristics of ice and/or forcing vary,
so do the associated scales. As such, one might expect to ob­
serve seasonal and regional variations in the scales. Such scales
are important in aiding in the set up and/or verification of nu­
merical simulations of ice motion, establishing design criteria,
and guidance in developing future studies and monitoring sys­
tems. Space and time scales can also be important in determin­
ing ice characteristics and the relative importance of various
modes of ice motion in a region. Knowledge of space and time
scales can be used to distinguish regions of similar ice motion
characteristics.

To date, few studies of space and time scales of sea-ice
processes in the arctic have been performed. With respect to
space scales, Colony and Thorndike (1980) calculated the co­
herence of summer ice speed in the Beaufort Sea. Considering
the spatial variability of summer ice movement, they found that
synoptic ice motion on the scale of -100 km was highly coh­
erent (squared coherence of -0.9). The coherency of inertial ice
motion was of the order of 0.65.

The only study of space and time scales using data from
throughout the arctic was performed by Thorndike (1986). He
used 1979 ice velocity data for the central arctic basin, and the
results are given in Figure 1 and Table 1. One sees that the
temporal correlation of the speed components falls to about 0.7
after one day, 0.4 after two days, and decreases slowly at longer
lags (Figure 1). The spatial autocorrelation of velocity (Table 1)
shows a relatively high coherency out to 200 km.
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1979 and 1980 were too sparse and too widely separated to
adequately compose a study region for that season.)

The approximate areas of the regions delimited by the buoys
during spring (15 buoys), summer (15 buoys), and fall (13 buoys)
are shown in Figure 2. The coordinate system has its origin at
the North Pole, its x axis coincident with the Greenwich merid­
ian, and its y axis coincident with the 900 E meridian. Average
times between position fixes for all the buoys ranged between
2 and 3 hours. Time histories of the u and v velocity components
were calculated for each buoy comprising the study area. This
was done to test for anomalously large velocity or acceleration
values, indicators of erroneous position data. Spurious data points
were eliminated. A spline fit was then performed on the posi­
tion data to obtain fixes at three-hour intervals during May,
August, and November 1979. These data were then used in the
kinematic calculations.

FIG. 1. Temporal autocorrelation for 1979 buoys (from Thorndike,
1986). CALCULATION TECHNIQUES

ICE KINEMATICS

DATA

TABLE 1. SPATIAL CORRELATION FUNCTIONS FOR SEA-IcE VELOCITY

(FROM THORNDIKE, 1986). BI I(R) IS THE CORRELATION BETWEEN THE

COMPONENTS OF VELOCITY PARALLEL TO THE LINE JOINING Two POINTS

SEPARATED BY A DISTANCE R. Bol(R) IS THE CORRELATION BETWEEN THE

COMPONENTS OF VELOCITY PERPENDICULAR TO THAT LINE.

In this study, we consider space and time scales in a more
detailed fashion by working with the individual IKP and con­
sidering seasonal variations. Arctic pack-ice kinematics were
determined based on the motion of ice parcels. Position data
from buoys drifting on ice were used to calculate seasonal time
histories of the IKP for regions covering a large portion of the
arctic. This was done using May, August, and November buoy
position data from 1979. The study areas covered by the data
range in size from -180 x 103 krn2 in the fall to -270 x 103

krn2 in the spring. The IKP time histories were then used to
calculate seasonal space and time scales for the translation speed,
divergence, vorticity, and deformation rate in the correspond­
ing study regions.

As part of the United States' contribution to the First CARP
Global Experiment, an array of automatic data buoys was de­
ployed in the arctic early in 1979. The data transmitted by the
buoys were received by the TIROS-N and NOAA-A satellites, re­
transmitted to receiving stations on Earth, and relayed to Ser­
vice Argos in Toulouse, France. The data used in this study
include the time histories of the positions of those drifting buoys
with an assumed rms position error of 500 m. Position data
during May, August, and November 1979 were chosen to rep­
resent spring, summer, and fall conditions, respectively. The
study areas were delineated only by those buoys which trans­
mitted data during the entire months of May, August, and No­
vember. (Unfortunately, the position data for the winters of

Within each study area, the population of buoys was large
enough to form a number of regions, each containing at least
four buoys. These areas ranged in size from -16 x 103 krn2 to
-62 X 103 krn2

• The spring, summer, and fall study areas were
partitioned into 18, 15, and 11 regions (or ice parcels), respec­
tively. The 3-hour position data of each buoy were used to
calculate the time histories of the IKP. The model used to cal­
culate the IKP was developed following Molinari and Kirwan
(1975) and Okubo and Ebbesmeyer (1976) (see Appendix).

The independent components of motion for a parcel of ice
are translation (U), divergence (D), vorticity (0, and deforma­
tion rate (T). These IKP are defined schematically and mathe­
matically in Fig. 3 and are interpreted as follows:

U - the net displacement per unit time of the parcel,
( - the change in the orientation of the parcel (without a

shape or size change),
D - the change in the size of the parcel (without an orien­

tation or shape change), and
T - the change in the shape of the parcel (without a size or

orientation change).

The last three parameters are referred to as the differential ki­
nematic parameters (DKP) and describe relative motion within
the ice parcel as it translates. In this study, U is defined as the
speed at which the ice parcel translates: (u 2 +V 2)1/2, where u and
v are the components of the ice parcel translation velocity. The
deformation rate parameter T represents the shape change rate
of the ice parcel due to forces acting normal to the sides of the
parcel (normal deformation rate) as well as forces acting parallel
to the sides of the parcel (shear deformation rate).

We note that the mathematical definitions of the ice kinematic
parameters given in Figure 3 involve line integrals along the
perimeters of the ice parcels. As discussed by Thorndike (1986),
such definitions represent spatial averages of the kinematic pa­
rameters over the ice parcel. Thus, the kinematic parameters
represent large-scale average divergence, vorticity, and defor­
mation of the ice. We are forced to use such definitions because
sea ice is formed from an aggregate of rigid floes, and velocity
gradients, in the classical sense, are not continuous. The large­
scale average kinematic parameters act as direct analogs of the
kinematic parameters as defined by velocity gradients for a con­
tinuous medium. The large-scale kinematic parameters can be
used to compare the responses of a sometimes highly viscous
medium to the large-scale forcing of the atmosphere, the pri­
mary driving force for sea ice in the central arctic. Such com­
parisons have provided a number of valuable insights into sea

Bol

1.00
0.95
0.84
0.51
0.06

-0.09
-0.10
-0.06

0.00

BII
1.00
0.98
0.91
0.68
0.37
0.19
0.10
0.01
0.00

Distance (km)

o
100
200
400
800
1200
1600
2000
2400



SEA ICE KINEMATICS: SEASONAL SPACE AND TIME SCALES 1115

(a) (b) (c)

FIG. 2. Approximate study areas covered by the data for (a) May, (b) August, and (c) November of 1979. The areas are delimited using buoy positions
on the first day of the month.
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The er indicates the average time at which one could expect
significant variations in the IKP at a given location and season.
The e-folding time scales can be thought of in terms of persistence,
with longer e-folding times implying a slower rate of change in
the variable. If the calculations did not show a correlation
dropping below e- ' for up to three days time lag (at 3-hour
intervals), 80 hours was used as the er. In addition, each eT was
associated with the average position of the centroid of the
corresponding cluster of buoys. From this information, two­
dimensional contour maps of seasonal e/s for each IKP were
produced.

Time varying oscillations can be considered in terms of the
magnitude of the variations and how rapidly these variations
occur. The er's are a measure of the time scales on which these
variations occur. The er's are a measure of the time scales on
which these variations occur. In order to intercompare the er's,
it was necessary to ensure that the magnitudes of the variations
were comparable as well (i.e., of the same size). Intercomparisons
of IKP time scales have little meaning when the magnitudes of
the IKP variations are significantly different from one region to
the next. There is the possibility that the magnitudes of the
variations of ice kinematics in one region are insignificant in
comparison with kinematics from other regions. In such a case,
a comparison of regional e-folding scales or two-dimensional
contour maps is of questionable value. To confirm that the IKP
had similar magnitudes of temporal oscillations, the variances
of the IKP of all the ice parcels were calculated and compared.
It was found that the time-varying oscillations of the IKP for
each season had similar variance magnitudes (Table 2). Thus,
the time scales for the clusters can be readily intercompared.

Divergence

I f- -- u· n dlA I

-Ot Deformation Rate--t --±[(frr·n3 dll
2
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t
FIG. 3. Mathematical and physical definitions of the four basic com­
ponents of the motion of a parcel of ice. The closed integral is about
the perimeter of the ice parcel (with area A), the velocity vector is that
along the perimeter', and the unit vectors n, are the outward normal
(n, ,n2 ) for i = 1, the cyclonic parallel (- n2 ,n,) for i = 2, (n" -n 2 ) for
i = 3, and (n 2 , n,) for i = 4.
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ice process (e.g., Hibler, 1974; McPhee, 19787; Popelar and Kouba,
1983; Lewis and Denner, 1988).

TIME SCALES

To consider scales of temporal variations, the autocorrelations
of the IKP were calculated using the spring, summer, and fall
time histories. One should recall that the IKP, when used in
conjunction with space and time scales, includes the speed of
the ice parcel as opposed to the velocity. The time scale of the
variations in the IKP was defined as that time lag at which the
autocorrelation dropped to e- ' = 0.36 (e-folding scale). This
allowed us to define a seasonal e-folding time, eT , for each IKP.

TABLE 2. RANGES OF MAGNITUDE VARIATIONS (IN TERMS OF VARIANCES
ABOUT THE MEANS) OF THE KINEMATIC PARAMETERS FOR ALL ICE

PARCELS PRESENT DURING SPRING, SUMMER, AND FALL, 1979. UNITS
ARE S-2 FOR D, T, AND?; AND M2/S2 FOR U.

Variance

Spring Summer Fall

D 2.2 - 15.6 x 10- '5 5.0 - 19.1 X 10- '5 10.6 - 35.4 x 10-'5
?; 7.9 - 43.1 x 10- 15 17.3 - 43.3 x 10- '5 24.0 - 116.0 x 10 15

T 6.2 - 18.2 x 10- '5 5.2 - 19.6 x 10-15 8.9 - 39.7 x 10- '5
U 5.5 - 21.4 x 10-4 4.8 - 19.8 x 10- 4 11.5 - 44.3 x 10- 4
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SPACE SCALES

The spatial autocorrelation of a parameter is a measure of how
well the pattern of variations of the parameter is correlated with
distance. However, the autocorrelation gives no indication of
the magnitude of the changes of the parameter with distance.
(A signal with a magnitude of 10 can be perfectly correlated
with another signal of amplitude 0.1 as long as they are in
phase.) Because we wanted to quantify the variations in the
magnitude of the IKP, we, therefore did not use spatial
autocorrelations. Instead, we considered spatial similarities of
the (KP.

The spatial similarity is defined as the degree of similarity
(1.0 being identical) between the values of an IKP at two locations.
Let PI and Pz be defined as values of an IKP at positions 1 and
2, respectively. We define the spatial similarity,S, as the average
for all observations of the value
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FIG. 4. Contour map of the e-folding time scales of divergence across the
study area during May, 1979.

when PI and Pz have the same sign. Thus,S is a measure of
the average change in P (in terms of a ratio) with distance. The
space scale of variations is defined as that distance at which the
spatial similarity for an IKP dropped to a value of 0.6.

Because space scales are a function of ice characteristics and
forcing, seasonal and regional variations of these scales were
expected. Therefore, we attempted to determine regions with
IKPs that had similar curves of 5 versus distance. However, the
results suggested that distinct regions of spatial coherence within
the arctic could not be defined. We, therefore, considered the
entire arctic as one region in performing the seasonal space scale
analysis of the IKP.

RESULTS

TIME SCALES

Ice pack divergence had a large temporal variability during
all seasons, with the smallest e/s being -2 hours for each sea­
son (Table 3). During the spring, divergence had its widest
range in temporal consistency, from 2.3 to 26.8 hours (Figure
4). Within the study areas, the coherency in time of the diver­
gence appears to have generally decreased slightly from spring
to fall. For all seasons, low eT's of divergence were prevalent
over the central portions of each study area. Towards the vicin­
ity of the North Pole and the central arctic, the ice-pack diver­
gence was more consistent in time.

Pack ice vorticity had a distinctly larger temporal coherency
for all seasons than did the divergence. Vorticity time scales
had a range of 8.0 to 80.0 hours from May to November. The
smallest eT for vorticity (8.0 hours) occurred during spring (Fig­
ure 5) and the largest (80.0 hours) during summer (Table 3).
The temporal consistency of the vorticity within the study areas
gradually increased from spring to fall. The areas of larger e/s
of ice-paCk vorticity (temporally consistent) varied from one sea­
son to the next.

Temporal variations in the ice-pack deformation from May to
November yielded a range of e/s from 2.7 to 32.8 hours (Table

TABLE 3. RANGE OF E-FoLDING TIMES (IN HOURS) OF EACH ICE

KINEMATIC PARAMETER DURING EACH SEASON. AN E-FoLDING TIME OF

80 HOURS IMPLIES THAT THE TEMPORAL AUTOCORRELATION NEVER FELL

BELOWE-'.

Spring Summer Fall
0 2.3 - 26.8 2.6 - 15.2 1.7 - 10.1
( 8.0 - 38.5 9.2 - 80.0 20.0 - 46.1
T 10.2 - 32.8 4.9 - 15.9 2.7 - 24.3
U 14.9 - 80.0 13.0 - 31.5 21.3 - 27.4

37.2

38.5

FIG. 5. Contour map of the e-folding time scales of vorticity across the
study area during May, 1979.

3). The smallest eT occurred during fall and the largest during
spring. From spring to summer, the temporal coherency of the
deformation generally decreased nearly two-fold. There was then
a slight increase from summer to fall. Lower e/s of deformation
occurred in the southern Beaufort Sea and the vicinity of the
North Pole during spring and summer (Figure 6). However,
this trend was not very pronounced. During the fall the largest
e/s of deformation occurred in the vicinity of 78°N, 158°W at
the south-western edge of the study area.

From spring to fall, e/s for the ice parcel translation speed
ranged form 13.0 to 80.0 hours (Table 3). Near the North Pole,
the temporal coherency of speed decreased markedly from spring
to summer and then increased slightly from summer to fall. The
spatial structure of the speed was similar to that of the defor­
mation in fall and summer. During the fall, the largest e/s oc­
curred at the south-western edge of the study area, while the
lowest values were present in the vicinity of the North Pole
during the summer. However, during spring the largest e/s of
speed were found in the central arctic and near the North Pole
(Figure 7).
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of the time scale analyses, we see that the divergence is the
most spatially and temporally incoherent of the IKP.

In contrast, results in Table 4 indicate that speed was the most
spatially consistent of the IKP, with space scale values ranging
from 650 to 700 km. During summer, the spatial similarity in
speed was at its greatest value. The variabilities during the spring
and fall were nearly equal and slightly smaller than those of
summer. The deformation rate also had high spatial coherency,
particularly during spring. The range of space scale values was
from 650 km in spring to 400 km in fall. A gradual increase in
spatial variability occurred from spring to fall 1979.

The vorticity had smaller length scales in comparison to those
of speed and deformation rate. Values ranged from -300 km
in summer to 350 km in spring. There was an increase in spatial
variability from spring to summer and then a gradual decrease
from summer to fall.

An interesting point can be noted about the plots of similarity
as a function of distance (Figures 8 to 10). Beyond a given distance
L, the average spatial similarity for each IKP appears to be nearly
constant. Thus, for a given IKP, the minimum average similarity
between the lKP at two locations is reached when the locations
have a separation of at least L. The value L is defined as the
distance between two locations beyond which the average
similarity between IKP at the locations is approximately constant
and at a minimum.

We define Smin as the constant, minimum average similarity
associated with the distance L. One sees that, for a given lKP,
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FIG. 6. Contour map of the e-folding time scales of deformation across
the study area during May, 1979.
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FIG. 7. Contour map of the e-folding time scales of speed across the
study area during May, 1979.
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Spatial similarities of the IKP were determined as functions of
distance. The length scale for each IKP is defined as that distance
at which the spatial similarity fell to 0.6. These scales for each
lKP and season are given in Table 4..

The length scales given in Table 4 provide interesting
information on the lKP during spring, summer, and fall 1979.
One sees that the ice-pack divergence had the largest spatial
variability of all the kinematic parameters considered, with space
scale values ranging from 100 to 200 km. The lowest similarity
occurred during summer, with significant variations having a
scale of -100 km. From these results, as well as from the results
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TABLE 5. VALUES OF Sm'n AND L FOR EACH IKP DURING EACH SEASON.

the position data (to remove position errors) had little effect on
the time scale results. Data were low-pass filtered using a 10.5­
hr half-power point filter that passed 95 percent of the energy
at 12 hours. In general, the speed, vorticity, and deformation
time scales of the filtered data were similar to those of the
unfiltered data (within 10 percent). The time scales of the
divergence using the filtered position data increased from 2-3
hr to 5-6 hr, still 5 to 7 times smaller than the scales of the other
parameters. These factors indicate that position error is not the
cause of the short time scales of ice pack divergence.

To fully understand the differences in the time scales of the
IKP, we must first consider the implication of the e-folding time
scales. If we are dealing with a purely sinusoidal signal, the
correlation drops to e- 1 when the sinusoid is shifted 79.40 with

the Sm'n's and the L's are nearly equivalent during spring,
summer, and fall (Figures 8 to 10). For example, the Sm'n for
vorticity is approximately 0.47, and the value of L is about 575
km during all seasons. Table 5 gives values of Sm'n and L for
each IKP for each season.

DISCUSSION

The results of the last section indicate that ice-pack diver­
gence had the largest temporal and spatial variability of the IKP
during all seasons studied. Spatial variations in divergence ranged
from only 100 to 200 kIn. The time scales were as low as -2
hours. In contrast, significant variations in the translation speed
occurred in some areas on the order of 700 km and over a time
period as great as 80 hours. Overall, the short space and time
scales of ice-pack divergence were not reflected in the other ice
kinematic parameters.

TIME SCALES

One might immediately suspect that the short-term variability
of pack ice divergence is a result of measurement noise. However,
upon closer inspection this is seen to be unlikely. First, the
methodology in calculating differential motion is one in which
the bias of the position error is estimated and then removed
(Kirwan and Chang, 1979). Secondly, in almost all cases only
the divergence of a cluster for a given month had a short e­
folding time while the vorticity and deformation had time scales
that were up to 8 to 12 times longer. Finally, low pass filtering

L(km)

Spring Summer Fall

0 0.42 0.43 0.43
? 0.48 0.47 0.46
T 0.56 0.55 0.55
U 0.58 0.56 0.59

0 478 469 475
? 560 575 590
T 625 630 628
U 810 830 849
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SPACE SCALES

B(x,t) = AI> sin [(t - T x/L) 2/ T/,]
C(x,t) = Ac sin [(t - t x/L) 2/ Tcl,

Therefore, the initiation of Band C at a point x begins at time
t = Tx/L. Thus, for any x and t, responses Band C can be
written as:

where A is the amplitude of the oscillation. The above expressions
imply that the ice-paCk responses are triggered as the trough of
the disturbance passes, and they then continue to oscillate at
their own natural frequency.

For convenience, we choose as a frame of reference Xu such
that t - T XjL = 0 (i.e., Band C, are zero). Now consider the
space scales LI> and Lc which are distances over which Band C,
respectively, are continuously positive at time t:

Response B - positive from Xv = t LIT to XI> = (t - T/2)LlT
Response C - positive from Xo = t LIT to Xc = (t - Tj2)LlT.

Therefore, length scales of the responses Band C are defined
as

the actual minimum length scale may even be somewhat less.
It is seen that other IKP have length scales 3 to 7 times as large
as those associated with divergence. In our search to provide
the most simple explanation for these space scale differences,
we found that the short time scales of ice-pack divergence could
directly cause spatial incoherency.

Consider an atmospheric disturbance, W(t), which takes time
T to travel length L across the ice pack. We assume that the
moving troughs of such disturbances trigger various modes of
responses in the ice pack. We will consider responses Band C.
Responses Band C are assumed to be oscillatory and have their
own time scales, T/, and Tc' respectively. Let the position of the
trough of the atmospheric disturbance at time t be given by

X(t) = t LIT, 0 < t < T.

LI> = X" - XI> = T/,Ll2 T
Lc = X" - Xc = T,L/2 T.

Hence, it is shown that there is a simple one-to-one relation
between the relative magnitudes of space and time scales. It
follows1that modes of motion triggered by a passing disturbance
and having small time scales (e.g., ice-pack divergence) will also
exhibit a high degree of spatial variability. And motions that
are coherent in time will tend to be spatially consistent when
triggered by a moving disturbance.

Finally, we comment on the parameters Sm;n and L (Table 5).
The magnitudes of the Sm;n values suggest a simple explanation
for this characteristic in the similarity plots. Suppose we have
a variable X which is uniformly distributed over the interval
(a,b). It can be shown that the mean similarity of sets of
independent samples of X from the interval (a,b) has a value of
0.5. The similarities of all the IKP also tend toward a value of
0.5, but at different distances for each variable. Thus, a simple
interpretation of this phenomena is that, at distances> L, the
spatial variations of the IKP can be considered nearly uniformly
distributed. Geophysically, this implies that L is beyond the
range at which one can detect, in the mean, a distinct trend in
the spatial distribution of the IKP. As expected from the space
scale results, ice pack divergence has the smallest L scale, being
-475 km. The trend for larger L scales for vorticity, then
deformation, and then speed is followed, with the ice speed
having an L scale of -825 km.

SUMMARY AND CONCLUSIONS
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respect to itself. If the period of oscillation of the sinusoid is T
hours, then a 79.40 phase shift translates to a Tx 79.4/360 hour
phase shift (approximately 22 percent of the period). Based on
this simple illustration, the 2- to 3-hour time scales of pack-ice
divergence would imply a signal with an average period of
oscillation of 9 to 13 hours. The 20- to 25-hour time scales of
the other IKP indicate oscillations on the order of 4 to 5 days.
The actual implication of these time scales is seen in the spectral
density of divergence, vorticity, and deformation for various
regions in the arctic. An example is shown in Figure 11. These
data show that we must answer the question as to why pack
ice can undergo significant long-term oscillations (4 to 5 days)
in deformation, rotation, and translation, but not in divergence.

The most simple explanation for such differences is the mass­
conserving requirement that horizontal convergence/divergence
be compensated by motion in the vertical. In the case of ice,
long-period oscillations in rotation rate (vorticity) and shape
changes (deformation) can be easily triggered by the passage of
atmospheric fronts. But for ice to have long-period divergence/
covergence, there must be compensating long-period oscillations
in ridge building and keel formation.

Ridge building and keel formation are processes that include
the overcoming of (1) the compressive strength of the pack ice,
(2) the retarding force of gravity, and (3) the buoyancy forces
of the denser sea water. A convergent ice field may fracture the
ice, but additional energy is required to push the fractured floes
upward against gravity or downward into the ocean. As a ridge
or keel grows larger, the restoring forces of buoyancy and gravity
become greater. Thus, long-term oscillations in ice-paCk
divergence would imply long-term upward and downward
motion and, essentially, mountainous ice structures. Of course,
buoyancy/gravity restoring forces can be overcome to only a
limited extent. Therefore, restrictions placed on the amount of
vertical movement by the buoyancy/gravity restoring forces can
result in smaller time scale oscillations for divergence and a lack
of energy at low frequencies. Conversely, rotating and
deformative motion are not inhibited by any vertical restoring
forces and, therefore, may persist over longer periods of time.

The minimum length scale of pack ice divergence was
calculated to be -100 km (Table 4). This value is of the order
of the distance between the ice parcels considered. Therefore,

FREQUENCY (CY(DAY)

FIG. 11. Power spectra for ice divergence, vorticity, and
deformation in the Beaufort Sea. Confidence intervals
of 95 percent are indicated.

Seasonal time histories of the ice kinematic parameters were
calculated using position data from drifting buoys in the arctic
during May, August, and Novemeber 1979. The results were
used to determine seasonal space and time scales of 0, C, T,
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APPENDIX

There are three classes of solutions depending on different val-

Ui = [(0 + N) xi J/2 + [(5 - () y,]/2 + Ii (AI)
Vi = [(S + () x,]/2 + [(0 - N) Yi]/2 + gi·

Drifters clustered in small regions of the ocean have been
used to infer characteristics of horizontal shears. A model fre­
quently used for this purpose was developed by Molinari and
Kirwan (1975) and Okubo and Ebbesmeyer (1976). The model
is of the local variety. In essence, it is a Taylor's expansion for
the velocity of the i'h drifter in the cluster relative to some mov­
ing origin:

(A2)of = N2 + S2 - f.

linear-viscous model of the arctic-sea ice cover.]. Glaciology, 22(87),
293-304.

Kirwan, A. D., 1988. otes on the cluster method for interpreting rel­
ative motions. j. Geophys. Res., 93(C8), 9337-9339.

Kirwan, A. D., and M. S. Chang, 1979. Effects of sampling rate and
random position error on analysis of drifter data. j. Phys. Oceanogr.,
9, 382-387.

Kirwan, A. D., W. J. Merrel, J. K. Lewis, R. E. Whitaker, and R. Le­
geckis, 1984. A model for the analysis of drifter data with an ap­
plication to a warm core ring in the Gulf of Mexico. j. Geophys. Res.,
89 (C3), 3425-3438.

Lewis, J. K., and W. W. Denner, 1988. Arctic ambient noise in the
Beaufort Sea: seasonal relationships to sea ice kinematics.]. Acoust.
Soc. Am., 83(2), 549-565.

McPhee, M. G., 1978. The free-drift velocity field across the AIDJEX
manned camp array. AIDjEX Bull., 38, pp. 158-163.

Molinari, R., and A. D. Kirwan, 1975. Calculation of differential kine­
matic properties of the Yucatan Current from Lagrangian obser­
vations. ]. Phys. Oceanogr., 5, pp. 483-49l.
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Here the coordinates of the drifter i with respect to the origin
are (Xi,Yi), 0 is divergence, ? is vorticity, S is shear deformation
rate, N is normal deformation rate, and (ji,gi) represent the sum
of the higher order non-linear terms in the expansion as well
as random turbulent motion. From the statistical standpoint,
(ji,gi) represent random deviations from the model. In an ab­
solute frame, the cluster is being translated at the absolute ve­
locity of the origin. In a recent note, Kirwan (1988) discusses
some of the limitations of this method.

Previous studies have estimated O,?, N, and S (the differ­
ential kinematic parameters, or DKP) by determining the (Ui,Vi)
and (Xi' y;) from absolute position data and then employing least
squares. But least-squares procedures assume that the indepen­
dent variables in the equations (drifter velocities and positions)
are determined independently. Of course, this assumption is
never true, but the analysis procedure presented in Kirwan et
al. (1984) provides a means of overcoming this short-coming.
To do this, we make explicit use of the appropriate solutions to
Equation AI. The method of LaPlace Transforms gives the forms
of the solutions for these coupled equations, all of which are
crucially dependent on the frequency parameter

REFERENCES

and U variations in the arctic. An e-folding scale was used as a
measure of the temporal coherency. Spatial variability was de­
fined in terms of the degree of similarity between the magni­
tudes of a parameter at two locations.

In general, the ice-pack divergence was the most temporally
and spatially variable of the IKP during spring, summer, and
fall. In contrast, the translation speed showed the highest de­
gree of temporal and spatial coherency during all seasons. The
time scale calculations indicate that significant variations of some
ice kinematics can occur on the order of 2 hours. The minimum
time scales of divergence were of the order of the sampling
interval of the drifter position data (3 hours). Thus, there is the
possibility that the average minimum time scales for this pa­
rameter may actually be lower than those calculated in this study.

The short time scales of ice pack divergence are not reflected
in the other IKP but can be explained by considering the buoy­
ancy/gravity restoring forces at work in ice. These forces act to
limit the size of the ice ridges and keels created in ice conver­
gence. lee pack divergence is, thus, a mode of motion charc­
terized by smaller time scale oscillations with very little energy
at lower frequencies. In contrast, the other kinematic motions
are not restrained by such restoring forces and, as such, can
sustain long-term variations.

It is shown analytically that there can be a simple one-to-one
relationship between temporal and spatial variability for a given
mode of motion. Therefore, the mechanisms at work to produce
the short time scales of ice-pack divergence can also be respon­
sible for its small space scales.

There are several implications here for the modeling of arctic
pack ice. The first deals with the governing equations and scales
for pack ice divergence. The horizontal equations of motion
should include horizontal pressure gradient terms. These terms
incorporate the effects of gravitational and buoyancy forces and
force the pack ice to limit its duration of convergence. In Hib­
ler's (1979) original model formulation, only a sea surface tilt
term was incorporated. A modification of the Hibler model is
run operationally by the U.s. Navy, and it too lacks horizontal
pressure gradient terms. Thus, we can suspect that such models
will produce unreliable estimates of the time variations of pack
ice divergence. And, as pointed out above, space scales are
related to time scales. So we should also expect too large of a
spatial coherency for divergence from these models.

Another implication of this work deals with the time step and
grid size of a numerical model. If ice pack divergence is to be
resolved, a minimum time step of 5 to 6 hours is required. Such
a time step gives a Nyquist frequency of 10 to 12 hours (corre­
sponding to minimum e-folding times of 2.2 to 2.6 hours).
Moreover, a grid size of -100 km is required to resolve signif­
icant spatial variations in divergence.
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TABLE A1. DEFINITIONS OF THE H, J, AND K FUNCTIONS. HERE IjJ REPRESENTS THE MAGNITUDE OF (N2 + S2 - f) 1/2.
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-yO H(t) J(I) K(t)

>0 e 'Jt12 (cosh 1jJt/2 + (NN) sinh #/2) e
DI/2 sinh #/2 e D /12 (cosh 1jJt/2 - (NN) sinh 1jJt/2)

=0 e DI/2 (1 + N 1/2) (te'Jl12 )/2 e/>tI2 (1 - N 1/2)

<0 e
DI12 (cos 1jJt/2 + (NN) sin #/2) e lJl/2 sin #/2 e D /12 (cos 1/11/2 - (NN) sin #/2)

y,(I)

ues ofy (see Okubo (1970) for a discussion). All three can be
expressed in the form

x;(t) = Xi H(t) + Yi ](t) (5 - 0 + J'm - {3) H({3) d{3
tJ

+ (5 - 0 L gi(t - {3) ](f3) d{3 (A3)

Yi K(t) + Xi J(t) (5 + 0 + Jlgi(t - {3) K({3) d{3
tJ

+ (5 + 0 Lm - {3) ]({3) d{3

The (X" Yi) are the coordinates of the i"' drifter at time t = 0
relative to the local origin at that time.

The forms of the H, ], and K functions depend on y. Table
Al summarizes the possibilities. This table shows that, when
the sum of squares of the shear and normal distortion exceeds
the squared vorticity (y>O, Case I), then the drifter displace­
ments will increase exponentially with time (for 0 = 0). For
Case II, (y = 0), the solutions show that the drifter displace­
ments will grow linearly with time (aside from the divergence
term). Finally, for Case III (y<O), the drifter trajectories relative
to the origin form ellipses (for 0 = 0). When N2 = 52 = 0,
these ellipses become circles.

We now note that, for appropriately short times (i.e., Ot/2
and yl/2 < < 1) and constant (fi,gi), all of the cases reduce to the
approximate linear form

Xi = Xi + t [Xi (0 + N)/2 + Yi (5 - 0/2 + f,] (A4)
Yi = Yi + I [Yi (0 - N)/2 + Xi (5 + 0/2 + gJ

These equations state that the present position relative to the

moving origin is obtained by adding to the previous relative
position the displacements due to the random velocity and to
the velocity induced by the average rotation, divergence, and
distortion of the cluster during the time interval. We may re­
write the first equation in Equation A4 as

(x, - Xi)/t = X, (0 + N)/2 + Y, (5 - 0/2 + f, (AS)

which is similar in form to Equation AI. The form of Equation
AS typically used in previous studies was

(Xi - X;)/t = (Xi + Xi) (0 + N)/4 + (Yi + Y;) (5 - 0/4 + f,

where the DKP values were those associated with the time at
which the drifter was at position (Xi + Xi)/2 and (y, + Y,)/2.
Thus, the analytical solutions show that the previously used
solution techniques were using an incorrect form of the Taylor's
expansion.

We see that the solutions to the governing expressions pro­
vide information concerning three important factors. First, they
provide a system of equations in which the only dependent
variables are position and random velocity. This eliminates the
problem of having two variables (position and velocity) which
are not determined independently. Second, the solutions give
the correct form of the Taylor's expansion to calculate the DKP.
Finally, we see that we can apply the expressions in Equation
A4 only if the time interval t between position fixes is such that
01/2 and yt/2 < < 1. This last factor is of considerable impor­
tance. For open ocean conditions, the time step restriction is of
the order of 6 hrs. But for arctic ice conditions, position fixes
should be on the order of 1 day except during winter, when
position fixes of once every S to 6 days can be used to calculate
the DKP.
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