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ABSTRACT: The digital ster 0 image processing literature is briefly reviewed, and an automatic system developed at SRI
International for digital m ching of points in aerial stereo imagery is described. Our system uses area-based correlation,
but couples this very basi measure of match with a variety of novel search techniques to develop a disparity model
for a given stereo image p ir. The techniques used are hierarchical in nature, incorporate iterative refinement, and use
a best-first strategy in the atching process; matches are then checked by a new technique that we call back-matching.
Our techniques are illus ted using some of the results produced by this system when we participated in Image
Matching Test A for lSPR Working Group III/4.

INTRODUC ION

A UTOMATIC TECHNIQUES for the production of three-dimen­
sional (3-D) data by means of digital stereo matching are

receiving increased interest for a va iety of applications, includ­
ing cartography (Panton, 1978), aut nomous vehicle navigation
(Hannah, 1980), and industrial aut mation (Nishihara and Pog­
gio, 1983). The first and most dif cult step in recovering 3-D
information from a pair of stereo ·mages is that of matching
points from one digital image of t e pair to the corresponding
points in the second image. Man computational algorithms
have been used in attempts to sol e this problem (see Brady,
(1982) or Barnard and Fischler (19 2) for surveys of the field).
These techniques primarily use ar a-based measures, such as
correlation between image patches, or edge-based methods that
match linear features in images.

Area matching techniques are th oldest and simplest of the
stereo matching algorithms. Each i age point to be matched is
in fact the center of a small wind w of points in the first or
reference image; this window is sta stically compared with sim­
ilarly sized windows of points in t e second or target image of
the stereo pair. The measure of atch is either a difference
metric that is minimized, such as S difference, or more com­
monly a correlation measure that i maximized, such as mean­
and variance-normalized cross-corr lation (Hannah, 1974). Be­
cause comparison of a given referen e window to every possible
target window is computationally e pensive, various heuristics
have been developed to limit the rea that must be searched.
In addition to the well-known epi olar constraint, these tech­
niques have included extrapolati n from already computed
neighboring disparities (Panton, 1 78), the use of image hier­
archies (Moravec, 1980), and succe ive iterations of correlation
and interpolation (Quam, 1984) in a ·erarchy. Correlation works
well most of the time, but encount rs difficulties when the two
images are taken from extremely d fferent viewpoints, are of a
scene that does not contain adequa e visual texture, or are of a
scene with many depth discontinu ties. However, in these in­
stances, and in the presence of i age noise, correlation de­
grades gracefully-it usually continu s to find the correct answer,
but with reduced confidence meas res.

Studies of human vision (Marr a d Poggio, 1976) led to the
development of edge-based metho s, in which linear features
are first extracted from the images b an edge operator (Hueckel,
1971; Hildreth, 1980), then match d using the epipolar con­
straint. Because the processing to extract edges throws away
much of the information in the i age, many heuristics have
been developed to overcome the r suiting match ambiguities.
These include a priori modeling 0 the scene (Arnold, 1978),
multiresolution coarse-to-fine strat gies (Crimson, 1981), and
longest-first prioritization of the or er of edge matching (Baker,
1985). Because edges are usually so ewhat sparse in the image,
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depths in areas between edges are filled in either by interpo­
lation (Crimson, 1981) or by algorithms that match the image
intensities between edges, using dynamic programming tech­
niques (Baker and Binford, 1981; Ohta and Kanade, 1985). Most
edge matching algorithms rely on the relative sparsity of edges,
and thus tend to be confounded by images with densely tex­
tured areas or moderate levels of image noise, which is precisely
where area-based matching excels. For this reason, edge match­
ing should be regarded as complementary to, rather than as
competing with, area-based matching. A simple experiment in
the fusion of these two techniques (Baker, 1985) showed vastly
improved results over either technique used alone.

In implementing a system at SRI International (SRI), we chose
to base it on area-based techniques, because of their robustness
and wide range of applicability over image types. These attri­
butes were again demonstrated by our results on the test im­
agery provided by ISPRS Working Croup 111/4 as part of their
Image Matching Test A.

DESCRIPTION OF SRI'S STEREO SYSTEM

Over the past few years, SRI has integrated and improved
existing pieces of stereo software into a baseline system for
automated, area-based stereo compilation on aerial imagery.
The system operates in several passes over the data, during
which it iteratively builds and refines its model of a portion of
the 3-D world represented by the disparities between a pair of
images.

The first step in our matching process is to select a set of well­
scattered windows in one image, such that each window con­
tains sufficient information to produce a reliable match. To ac­
complish this, a statistical operator is passed over the image;
this operator is a product of the image variance and the mini­
mum of ratios of directed differences (hence edge strength) over
windows of the specified size (Hannah, 1980). Local peaks in
the output of this operator are recorded as the preferred places
to attempt the matching process (Figure 1). The motivation be­
hind this operator is that it penalizes windows with low infor­
mation and windows whose only information is contained in
strongly linear edges, because either of these situations can cause
difficulties in obtaining the correct match by means of area­
based correlation. The chosen windows are characterized by
their center points, which are referred to as "interesting pOints"
(Moravec, 1980). To ensure that we are working with selected
windows that are well-scattered in the image, the image is di­
vided into a grid of subimages, and the relative ranks of the
best few interesting points within their grid cell are recorded;
this permits the most interesting points in each area to be matched
first.

Whether or not point (Xl' YI) in the first image II is matched
by point (x" y,) in the second image I, is determined by com-
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FIG. 1. Results of interest operator on ISPRS Test Image 5 - Bridge.

puting the cross-correlation, normalized by both mean and var­
iance, over windows (typically 11 by 11 pixels) surrounding the
points (Hannah, 1974). The matching point is taken to be the
point in 1z with highest correlation, as located by one of several
search algorithms.

Our system employs several different matching algorithms.
The underlying strategy is to begin with a few points that are
highly likely to be matchable (based on their "interest" values,
Le., the information content of the windows surrounding the
points); these are matched by very global, but very conserva­
tive, search algorithms. Each successive algorithm operates on
less promising points, but uses more information from matches
made at previous levels to constrain the search to smaller and
smaller portions of the epipolar line, until eventually all inter­
esting points have been processed. All of our matching algo­
rithms use image hierarchies to some extent. Pixels in each
reduced image of the hierarchy are produced by convolving the
parent image with Gaussian, then sampling (Burt, 1980); images
are almost always reduced in size by a factor of 2 at each step
of the hierarchy (Figure 2).

The first matching algorithm, unconstrained hierarchical
matching, assumes that nothing is known about the relative
orientations of the images, other than that they cover approx­
imately the same area, at about the same scale, with no major
rotation between the images nor any significant time-lapse
changes. Each specified point (usually the most interesting point
in each grid cell) is matched using an unguided hierarchical
matching technique (Moravec, 1980). This technique begins with
a point in the largest image (that is, the highest-resolution im­
age, in this case, the 240- by 240-pixel left image for each of the
test sets) and numerically traces that point back up through that
image's hierarchy (moving toward smaller, hence lower-reso­
lution, images) by repeatedly scaling down the coordinates of
the point until it reaches an image that is approximately the
size of the correlation window. It then uses a two-dimensional
spiral search, followed by a hilI-climbing search for the maxi­
mum of the correlation between the image windows (Quam,
1971). This global match is then refined back down the image
hierarchy (moving toward the larger, hence higher-resolution,
images); that is, the disparity at each level (suitably magnified
to account for relative image scales) is used as a starting point
for a hilI-climbing search at the next level (Figure 2). The cor­
relation window size remains constant at all levels of the hier­
archy, so the match is effectively performed first over the entire
image, then over increasingly local areas of the image. This

technique permits the use of the overall image structure to set
the context for a match; the gradually increasing detail in the
imagery is then followed down through the hierarchy to the
final match. Figure 3 shows the result of applying uncon­
strained hierarchical matching to the most interesting point in
each grid cell.

In this matching technique, as in all the others we use, matches
must pass fairly strict tests in order to be considered correct,
and only the successful matches are recorded for further use.
At any level in the hierarchy, matches with very poor correla­
tion (compared either against an absolute threshold or with
respect to an autocorrelation-based threshold (Hannah, 1974))
are discarded, as are matches that fall outside the image.

Each match must also be confirmed by a technique that we
call back-matching. Having found that point (XI' Yl) in the first
image 1, is best matched by (x2 , Yz) in the second image 12, we
then repeat the entire matching algorithm, this time starting
with (xz, Y2) in 12 and searching for the point (x' " Y'I) in 1, that
best matches (xz, Yz). If (x" y,) and (x' " Y'1) differ by more than
one pixel, the entire match is discarded as being unreliable.

The addition of back-matching to our matching algorithms
has improved both the number of points for which matches
could be found and the reliability of the matches accepted.
Matches are more reliable because each one has been confirmed
by a second, independent matching process. More matches can
be found because the matching process no longer needs to rely
on carefully tuned correlation thresholds to separate good
matches from bad. Confirmed matches are accepted, despite
low correlation values, while matches with high correlations
that cannot be confirmed are rejected. Correlation thresholds
are stilI used, but they are now set at much lower levels than
was possible without back-matching, thus permitting many more
matches.

Further processing makes use of camera models (Le., relative
or absolute orientation data). For imagery supplied with camera
models, the given information is used. If camera models are
unavailable, undecipherable, or unreliable, the system can cal­
culate a simplistic relative camera model from the set of point
pairs produced by unconstrained hierarchical matching. This is
accomplished by searching for five angles that describe the rel­
ative positions and orientations of two ideal pinhole cameras
(Hannah, 1974). The object of the search is to minimize the error
between (xz, yz) in Iz and the epipolar line produced when (x"
YI) in 11 is projected into space, then into Iz through the hy­
pothesized pinhole cameras. The search proceeds by a lineari-
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zation of the equations and their a alytic derivatives (Gennery,
1980). Once a solution is found, t e reliability of each matched
point is assessed. Points that ap ear to contribute too much
error to the solution are removed rom the calculation, and the
solution is redone. This process OIl reach a successful conclu­
sion if a subset of points is found hat allows convergence to a

consistent model, or it will report failure if too many points are
rejected.

The next technique to be applied is epipolar constrained hi­
erarchical matching. Having the camera parameters, we now
know the manner in which a point in the first image projects
to a line in the second image - the epipolar constraint. This
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constraint allows us to cut the search from two dimensions (all
around the point) to one dimension (back and forth along the
epipolar line) at each level of the hierarchy. In all other respects,
epipolar constrained hierarchical matching proceeds very much
like unconstrained hierarchical matching, with the additional
match-evaluation criteria that matches must lie within a speci­
fied distance of the epipolar line. This technique is used on any
unmatched points among the two most interesting points for
each grid cell.

Once a good basis of reliable matches has been found, these
matches can be used as "anchor" points for the anchored
matching technique, which again uses the grid cells in the im­
age (Figure 4). A given point will lie in some grid cell; the closest
matched points should lie in that cell or in one of the eight
neighboring cells. Under the assumption that the world is gen­
erally continuous, a point would be expected to have a disparity
similar to that of its neighbors. Thus, the disparity for a point
is expected to lie in the interval of the disparities of the well­
matched points in the current and neighboring cells. This dis­
parity interval is used along with the epipolar constraint to per­
form a very local search for the match to a point, perhaps
proceeding one or two levels up the image hierarchy, to provide
context for the match. All matches are required to pass the same
tests as for the hierarchical matching algoithms described pre­
viously, including an anchored-matching version of the back­
matching test. Figure 5 shows all of the interesting points that
were matched by these techniques.

Our system can produce matched points on a regularly spaced
grid (in image coordinates), if desired. This matching algorithm
also uses the anchored matching technique, searching along
specified portions of the epipolar line, to calculate matches for
the user-specified grid of points in the first image (Figure 6).
However, holes can result if a grid point does not have suitable
information for matching, and again, only matches that pass all
the tests are recorded. This highlights a problem with matching
a grid of points - not all areas of an image have information
suitable for matching, and forcing a match at such areas can
lead to poor results. Matching on a grid in the image must be
used with caution.

Our system also incorporates code that can use randomly
spaced matches to interpolate either disparities or elevation val­
ues for points that were not matched directly. This technique
can be used either to fill in holes in a grid, or to produce results
on a grid that is more closely spaced than that provided by the
stereo matching process. However, this technique [Smith, 1984]

explicitly assumes a single, continuous surface, an assumption
that is not always met in stereo imagery. For this reason, in­
terpolation must also be used with caution.

RESULTS ON IMAGE MATCHING TEST A

To test our system, we participated in the ISPRS Working
Group III!4 Test A on Image Matching (Giilch, 1988). In this
test, 12 pairs of digital images, each 240 by 240 pixels in size,
were provided to various stereo researchers, representing both
the photogrammetric community and computer vision re­
searchers. The objective of the test was to assess the state of
the art in image matching - how well the various procedures
could handle imagery of different types and complexities, how
much a priori information was needed to produce good results,
how well the procedures could assess the quality of their re­
sults, and how precise the disparities were. Each participant's
results (limited to 300 points per image) were submitted to the
University of Stuttgart's Institute for Photogrammetry, where
they were checked against disparities (parallaxes) determined
by traditional manual photogrammetry. The imagery used in
this test represented a wide variety of image subjects (from
engine compartments of cars to aerial photos), image scales
(from 1:20 to 1:30,000), and image quality (from very crisp to
blurred or grainy). Most of this imagery does not reproduce
well, so we have used only a few of the clearer images in our
examples.

For each of the 12 image pairs they provided, we attempted
to perform their Standard Task B - determination of the par­
allaxes at selected points - which is what our system does best;
for a few of the images, we also performed Standard Task A ­
determination of the parallaxes at a grid of points. Most of the
images were run with the standard parameters for the system,
which had been set while processing a large, high-quality, aerial
image pair unrelated to the test imagery. Because of incompat­
ibilities in format, we did not use the camera information given
with each test image pair, or any other a priori information; we
used the raw images, without transforming to normal images
or doing any other resampling.

For the most part, matching proceeded routinely, using the
standard procedures and parameters. One parameter - a
threshold on the "interest" value that indirectly controls the
number of interesting points that the system has to work with ­
was changed for each data set; this was done to produce be­
tween 100 and 300 points per image, as requested for the test.

For 10 of the 12 tests, we were able to handle the image pairs
without substantially altering the default parameters or proces-

FIG. 4. Example of anchor points for matching.
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rithms participating in the test (first in accuracy in 6 of the 12
images, and never below fifth among the 17 test participants)
(Gulch, 1988). As of this writing, we have not received the final
results of the committee's detailed analysis, which should be
very interesting.

SUMMARY

In this paper, we have described SRI's automatic system for
stereo image matching, a system that uses area-based correla­
tion but applies this basic technique in a variety of novel ways.
Our techniques are hierarchical in nature, and use iterative re­
finement, as well as a best-first strategy, in the matching process,
and they apply the new constraint of back-matching to verify
matches. Finally, we have illustrated our techniques by pre­
senting some of our results on the Image Matching Test A data
set recently distributed by ISPRS Working Group IIV4. Our re­
sults on ISPRS test imagery have again demonstrated the ro­
bustness of the correlation-based matching technique, its wide
range of applicability over image types, and its accuracy.
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FI . 6. Results of grid matching algorithm on ISPRS Test Image 2-Quarry.

ing sequence (Hannah, 1988). Ou only problems came on the
two image pairs of the Olympia ome in Munich; this is not
surprising, because our algorith s were designed for use on
highly textured natural terrain, n t the bland faces of cultural
objects with mostly linear or am iguous features. For one of
the Olympia images, we were abl to obtain results (Figure 7)
with a minor change in paramete and the hand-deletion of a
single mismatch that was preventi g us from forming a camera
model. (If our relative camera mo el solver included the RAN­
SAC technique (Fischler and Bolle, 1980), we believe it could
have proceeded without manual ·ntervention.) On the other
Olympia image pair, the unconst ained hierarchical matching
technique failed to produce any orrect matches. We believe
that the combination of repetitive st uctures, very different points
of view, and the transparency of he dome caused our hierar­
chical matching techniques to fail. If we had elected to use the
accompanying camera informatio we might have been able to
do some matching, although the t ansparency would undoubt­
edly have led to numerous proble s.

For the most part, our results ap ear to be reasonably correct,
even in the face of large disparity ranges within small areas of
the image. Preliminary review by the test architects indicated
that our algorithm was in a two-wa tie for most images processed
(11 out of 12), and was clearly t most accurate of the algo-
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FIG. 7. Overall results on ISPRS Test Image 3 - Olympia I.
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