
Dominant Geometry Combinations of Two- and
Three-Point Perspective in Close-Range
Applications
James R. Williamson and Michael H. Brill
Science Applications International Corp., 803 West Broad Street, Suite 100, Falls Church, VA 22046-3199

ABSTRACT: In every close-range perspective image there is a dominant geometry that controls the photogrammetric
analysis and allows the reconstruction of the imaged three-dimensional scene. The analysis of multiple two-point
perspective geometry and combined two- and three-point geometry provides additional application tools for close­
range imagery. When there are multiple or combined geometries, parameters such as the camera station and principal
point are shared, so less information is required for three-dimensional reconstruction than when simple geometry
stands alone. This paper discusses application procedures for these multiple and combined geometries, with emphasis
on the least-squares solution of multiple lines to a vanishing point, the analytical location of the true horizon line (THL)
in a two-point solution, the finding of the camera station, and the conversion of object-space coordinates between two­
and three-point perspective solutions.

INTRODUCTION

I N SINGLE-PHOTOGRAPH PERSPECTIVE, dominant geometry
provides the best way for the photogrammetric analyst to

reconstruct the three-space dimensions of the object imaged. In
two previous papers (Williamson and Brill, 1987; Brill and Wil­
liamson, 1987) the dominant geometry was either two- or three­
point perspective, and was assumed sufficient for a complete
reconstruction. (For one-point perspective, see Beamish (1984)
and Slama (1980).) Now, we address the application of multiple
two-point and combined two- and three-point perspective geo­
metries. A cropped perspective image with multiple dominant
geometries can require less prior information than a cropped
image with single dominant geometry. Multiple perspective and
combined geometries can offer enough redundancy to strengthen
a weak solution. These facts motivate using multiple and com­
bined perspective geometries in three-dimensional reconstruc­
tion.

One combined geometry is multiple two-point perspective.
In two-point imagery, numerous objects can rest on parallel
horizontal planes, and have some of the same Phase-1 (image­
space) parameters, e.g., vanishing points (VPs), principal point
(pp), camera station (CSXY), effective focal length (f'), and ro­
tation angles. For example, if the vanishing points for a number
of buildings (in one image) lie on the same THL, the CSXYs
are identical. This identity enables retrieval of the Phase-1 ge­
ometry required to develop the model-space coordinates, even
if the imagery is cropped and no other information is available.
Then, given at least one known dimension, the object-space
(Phase-2) coordinates can be determined.

Another combined geometry contains two-point and three­
point perspective. (The geometry of three-point perspective ex­
ists in any two-point perspective image that contains an inclined
plane.) When the tilt angle is 90° (and the object parallels the
ground plane, but is rotated to the image plane), there is two­
point perspective, and vertical lines in object space are truly
parallel in image space. However, this applies only to the ob­
jects that create the two-point geometry on the image, while
other objects in the image can appear as different perspective
views. For example, if a Cape Cod house is photographed with
a camera tilt angle of 90°, the main walls - and all planes
orthogonal to the main walls - produce a dominant two-point
geometry. However, the roof (an inclined plane, as illustrated
in Figure 1) will be in a three-point perspective that shares the
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two-point Phase-1 parameters VPY, pp, and f'. The three-point
reconstruction can be done without full format or the parametric
values of the Phase-1 perspective, but only after first working
the two-point reconstruction. In particular the point VPZ3 (sub­
scripts refer to two- or three-point perspective values) can be
found graphically by constructing three perpendiculars: (1) from
THLXY3 through the pp, (2) from pp-VPX3 through VPY, and
(3) from pp-VPY through VPX3 . The intersection of the three
lines is VPZ3 • The analytical procedure is essentially the same,
making use of the two VPs and the pp. The solution to the
remaining three-point Phase-1 parameters follows standard ap­
plication procedures.

In this paper, we discuss analytical and graphical reconstruc­
tion applications, with emphasis on the analytical applications.
Perspective reconstruction methods require that certain para­
metric values be either known or determined through the avail­
able geometry (Moffitt and Mikhail, 1980); our emphasis will be
on the latter case. We also discuss analytical procedures that
parallel the graphical methods: conversion between two-point
and three-point object-space coordinates for the same image,
the least-squares solution of multiple lines to a vanishing point,
and the analytical location of the true horizon line in a two­
point solution.

The applications discussed are general in development, and
can be adapted to similar situations. We recommend that, prior
to any graphical or analytical procedures, the photogrammetric
analyst should list what is observed and make limited sketches
of the prospective procedures, even if the approach is to be
analytical. Such preliminary analysis commonly reveals subtle
information about solutions, and therefore is a good investment
of time.

As in our previous two papers, the methods in this paper
derive from standard techniques of architectural drawing
(McCartney, 1963; Walters and Bromham, 1970), applied so as
to infer three-dimensional geometry from an image. These
graphical methods have analytical counterparts that are also
used in architecture (Yacoumelos, 1970). The techniques have
been discussed, in part, by Gracie et al. (1967) and Kelley (1978­
1983), and as before we present them here for broader dissem­
ination.

ANALYTICAL SOLUTIONS FOR VANISHING POINTS

The analytical methods discussed in this paper rely on some
fundamental techniques to find the vanishing points. These
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FIG. 1. Two- and three-point perspective in same image - Cape Cod house.

In matrix-vector notation, Equation 1 can be written

The least-square best fit solution for X, Y is obtained by pre­
multiplying both sides by (ATA)-tAT, to obtain the estimate

I~;I = (ATA)-lATC. (4)

The distance Dk from each line to the point Xv Yi is given by

Dk = [(xu - xi+ t(x2k - xtk»Z + (Ytk - Yi + t(y2k - Ylk)Z]1/2, (5)

where

(3)

(6)t = tl/t2,

and

t1 (x2k - XU)(xi - xu) + (Y2k - Ytk)(Yi - Ytk)

t2 (x2k - XU)2 + (Y2k - Yu)z.

A program listing of this procedure is in Section II of the Ap­
pendix. The value of Dk is the minimum distance error with
which the particular line k participates in the solution for the
vanishing point. Hence, to improve precision, lines with large
values of Dk can be discarded and the least-squares solution
performed again with the remaining lines.

DETERMINING THE TWO-POINT THL

The examples in our previous papers always had enough sets
of parallel lines to define the vanishing points, e.g., two sets of

(2)

techniques can be used no matter what the perspective in the
imagery, e.g., one-, two-, or three-point perspective. For ex­
ample, the image of a warehouse and loading dock illustrated
in Figure 2a appears in two-point perspective. We use parallel
lines on the horizontal planes of the warehouse and loading
dock to obtain the analytical solution for a vanishing point. In
this two-point perspective example there are at least eight par­
allel lines (vanishing lines) converging to a point (a vanishing
point). To determine the vanishing point, one can use equations
for two intersecting lines, or for three or more intersecting lines.
(It is sometimes advisable to use the two-line intersection pro­
cedure for quick approximations of the vanishing-point loca­
tion. The application equations for determining the intersection
of two lines are given in Section I of the Appendix.) Although
only two points are needed to determine a line, Section I of the
Appendix may not offer the desired line intersection accuracy.
More measured points per line, and a least-squares solution
(not discussed further here), might provide more accuracy.

For multiple parallel perspective lines (k = 1, m), each defined
by two points, the equations to be solved for a common inter­
section point are

Au x + A 2k Y = Ck (1)

where x, yare the coordinates of a vanishing point. The equa­
tions for All" A zlv and Ck are

Au = Y2k - Ytk'

Ck = Xtk Y2k - Ytk x2k,
where (Xliv Ylk) and (XZIv YZk) are two points on the same line k.
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FIG. 2. (a) Two- and three-point perspective in same image - warehouse
and trailer. (b) Finding two-point THL in subset of Figure 2a.

lines for a two-point solution. Two vanishing points are needed
to define a THL, and two sets of converging lines are sufficient
to determine these vanishing points. However, this condition
can often be absent in real life. For example, consider Figure 2b
(a subimage in Figure 2a) that is cropped so only VPX can be
established directly, and only the top right line of the crate is
available to locate VPY. To determine the position of the THL,
locate VPX, and draw a line perpendicular to the imaged vertical
lines through VPX: this line is the THL. Locate VPY by extending
the right top line of the crate to the THL. The analytical solution
is to use the equation of the perpendicular distance from a line
to a given point to locate the THL. VPY is then determined
using the two-line intersection method, where the two lines are
the THL and the line on the top of the crate.

SINGLE IMAGE CONTAINING MULTIPLE TWO-POINT
PERSPECTIVE

An example of multiple two-point perspective (see Figure 2a)
is an illustrated image of a warehouse and a tilted trailer parked
close to the loading dock. The loading dock contains crates with
various sizes and positions, all appearing in two-point per­
spective. Figure 2a, representing a cropped frame, will be used
in our multiple two-point perspective discussion.

One of the easiest two-point solutions is when two rectan­
gular objects, resting on parallel horizontal planes, are not par­
allel to each other. For example, two large crates on the loading
dock rest on the same horizontal plane, but the corresponding
sides of each crate are not parallel. The dominant geometry is
multiple two-point perspective (see Figure 3). Each crate gives
a different two-point perspective solution. Except for a known
dimension on one of the crates, there is no additional infor­
matjon (such as a known diagonal angle). This is a likely prob­
lem of multiple two-point perspective.

The two crates resting on the loading dock have the same
THL. The multiple two-point perspective of the crates will have
other common parameters: f', pp, tilt angle (t), swing angle (s),
and-most importantly-the CSXY. In this example, to solve
for the CSXY is the key to the problem. Figure 4 shows the two
crates and the axes of a measuring coordinate system. The THL

FIG. 3. Cropped image,
multiple two-point
perspective - two
crates on loading dock.

can be located when the positions of the two sets of vanishing
points (VPX1, VPY1, VPX2, and VPY2) have been determined.
The two sets of vanishing points define the diameters of two
circles whose centers (C1 and C2) are on the THL. In both
perspective geometries, the CSXY is defined to lie on the circle
with VPX-VPY as a diameter. The position of CSXY is common
to each of the two-point solutions, and therefore must be an
intersecting point of the two circles. Two such intersection points
exist, but for convenience we shall select the CSXY to be below
the THL. The point CSXY is a vertex of the triangle C1-CSXY­
C2. Two sides of the triangle are radii R1 and R2 of the circles,
and the third side is the distance 012 between the centers of
the circles.

A simple analytical procedure to determine this multiple per­
spective CSXY is listed in Sections I to III of the Appendix.
Locate the four vanishing points VPX1, VPY1, VPX2, and VPY2
for the two crates, using one of the vanishing-point procedures,
and placing the origin of coordinates at VPY1 with x-axis towards
VPX2. Compute the coordinates of the centers C1, C2 of the
two-point semicircles, and also their radii R1, R2. The centers
are easily found by averaging the respective x and y coordinates
of the vanishing points, e.g., Cx = (VPXx + VPYx)/2, and Cy
= (VPXy + VPYy)/2. The radii are determined from halving
the distance between the same vanishing points, e.g., R = [(VPXx
- VPYx)Z + (VPXy - VPYy)Z]1I2/2. The distance between cen­
ters (012) is found in a similar manner. Compute the coordi­
nates of the CSXY using the law of cosines on triangle C1-C2­
CSXY. The graphical solution is shown in Figure 4.

Once the CSXY is determined, the other common parameters
can be determined graphically by drawing a perpendicular to
the THL through the CSXY. The intersection with the THL is
the pp. The line from the pp to the CSXY is the f', and by
definition the tilt t is 90°. The swing s is computed according
to the alignment of the focal length line (principal line) and the
measuring y-axis. The azimuth a is computed independently
for each crate, and can be determined graphically as shown in
Figure 4. The analytical solutions for these Phase-1 parame­
ters are f' = R1 sin(Ang3) (check using f' = R2 sin(Ang1)),
xpp = R1 cos(180 - Ang3) (check using xpp = c2x - R2
cos(Ang1», and ypp equals the y value of THL. The angles
(Ang1, Ang3) are determined from the law of cosines. These
equations are developed from the geometry shown in Figure
4. The user should be aware that the geometry depends on
the position of C1 and C2 relative to the pp.

In this example, the solution of the multiple two-point per­
spective was developed using the fact that the two sets of van­
ishing points had a common THL. A solution is also possible
with two objects imaged in two-point perspective, but not hav­
ing a common THL. In this case each set of VPs defines a
different THL, and the intersection of the two THLs is the pp.
(Note: Because the pp is always the same, it is impossible to
have parallel THLs in multiple two-point perspective.) The pro­
cedures for determining the Phase-1 parameters are completed
using each THL independently. The graphical solution for this
example is shown in Figure 5.
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FIG. 5. Multiple two-point perspective - non-parallel THLs and a common
pp.

ornetry, but - as with the roof of the Cape Cod house - only
two of the three vanishing points can be located. A major prob­
lem with three-point perspective is to have enough parallel lines
to establish each vanishing point. Imagery with combined per­
spective geometry eliminates that problem, as the two-point
solution provides information required by the three-point so­
lution.

This example poses the problem of choosing coordinate sys­
tems for both image- and object-space. For simplicity of calcu­
lations it is best to transform the image coordinate system, as
soon as possible, so the two-point VPY2 becomes the new origin
and the THL2 becomes the x-axis.

Combined two- and three-point perspective calculations also
require common object-space coordinates. Unlike three-point
perspective, two-point perspective involves two vertical planes
(XZ and YZ). Hence, the object-space coordinate systems im­
posed by two- and three-point geometries are shifted and ro­
tated relative to one another. Both the two- and three-point
coordinate systems are orthogonal right-handed systems. Com­
bining the systems requires using one object-space coordinate
system to define point locations in both object-space systems.
Ideally, this is developed using the projective equations and a
point common to both geometry sets. A form of the projective
equations, shown in Equation 7, provides the object-space co­
ordinates of points in a system whose origin is the camera sta­
tion, whose Z axis is along the principal ray, and whose X and
Y axes are parallel to the image coordinate axes x and y.

The subscript IP stands for image plane. The projective equa­
tions for the three-point solution are written as

(7)

(8)
X j - Xc
Yj - Yc
Zj-ZC

3P

x - Xc
[R] Y - Yc

Z - Zc

X
Y
Z IP

xj - xpp
Yj - ypp kj-\p = [Rbp

o - f'

The subscript 3p defines the variables involved as belonging to
the three-point solution. (To define two-point terms, 2p may be
substituted for 3p in Equation 8.) Values on the left side of
Equation 8 are the same for the two- and three-point solutions.
Ail the terms on the right side of Equation 8 are Phase-1 and
Phase-2 parametric values.

SINGLE IMAGE WITH COMBINED TWO- AND THREE-POINT
PERSPECTIVE

FIG. 6. Combined two- and three­
point perspective example.

Once all the Phase-1 parameters are known for the image
with the two crates, it is then possible to complete the standard
procedures (Phase-2) for determing the object space coordinates
and dimensions (Williamson and Brill, 1987).

Consider a cropped image containing one crate on the loading
dock, and a trailer next to the loading dock (Figure 6). The trailer
is neither parallel nor perpendicular to the ground plane of the
building or loading dock. On the bed of the trailer is a very
large sign, centered on and coincident with the central axis
plane of the trailer. The sign has three-point perspective ge-
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To convert the three-point object-space coordinates to two­
point object-space coordinates, combine the two- and three­
point versions of Equation 8 to obtain

The procedure for using Equation 9 is simple. The Phase-l and
Phase-2 parametric values for both the two- and three-point
solutions have already been found, and the object-space coor­
dinates for the point in the three-point solution are determined.
This information determines the right-hand side of Equation 9,
and hence the XYZ coordinates in the two-point solution on
the left-hand side of Equation 9. The important features of this
procedure are (1) Phase-l and -2 parameters are computed only
once, (2) the three-point XYZ values are computed for each
point, and (3) the three-point XYZ values cannot be computed
without knowing one of the XYZ values.

The step-by-step procedures for completing the photogram­
metric analysis are discussed in the following paragraphs. Al­
though very tedious if done using a non-programmable desktop
calculator, the procedures can easily be programmed for desk­
top computers, and are streamlined by using a digitizer to col­
lect the image data.

The required Phase-l parameters for two- and three-point
perspective analysis are the principal point coordinates (xpp,
ypp); the effective focal length (£'); the rotation matrix [R] in­
volving a, t, and s; vanishing point VPX(x,y) for the X-axis;
vanishing point VPY(x,y) for the Y-axis; and vanishing point
VPZ(x,y) for the Z-axis (3p only). These values are presumed to
be found by methods previously discussed in this paper.

Now assume that a known vertical distance (V) is to be used
in both the two- and three-point solutions to determine the
object-space camera station CS (a Phase-2 computation). Be­
cause the distance V is known, the coordinates of the endpoints
can be assigned, e.g., to (Xl, Yl, Zl) and (X2, Y2, Z2), where
Xl = X2, Yl = Y2, and Z2 - Zl = V. Any other known dimen­
sion, in the orthogonal planes, may be substituted and the co­
ordinates assigned accordingly. For instance, a horizontal
dimension (H) in the X or Y direction could be used, and X2 - Xl
= H or Y2- Yl = H. However, when the dominant geometry
of the image is two-point, it is best to use a vertical line, which
is represented true-view (not foreshortened by perspective).

The equations for the CS are defined in three cases - XY,
XZ, and YZ - depending on which plane contains the known
dimension. In the Appendix (Section V), a procedure is listed
to determine the two- and three-point camera station coordi­
nates (XC2 , Yc2 , Zc2 ), and (XC3, Yc3 , Zc3 ). Because there are two
different coordinate systems, the object-space coordinates for
the camera stations will have different origins and orientations
for the two-point and three-point solutions.

TWO-POINT SOLUTION IN THE COMBINED IMAGE

For the two-point analysis without full format, the origin of
the mensuration coordinates is best selected such that
mensuration values are positive. The following steps determine
the Phase-l values for the two-point perspective of Figure 6
(using only the right-hand crate), given a known vertical-diagonal
angle. The application procedures are elaborated in the Appendix.

Step 1: Locate VPX. Using three or more parallel lines, measure two
points per line, and calculate the image coordinates of the VPX (VPXx,
VPXy).
Step 2: Locate VPY. Select three or more lines, and using the same
method as in Step 1, determine the coordinates of the VPY (VPYx,
VPYy).
Step 3: Transform image coordinate system so VPY becomes the
new origin. Use the transformation procedures in the Appendix,

Xc
Yc + [R]T 2p [R]3p
Zc 2p

X j - Xc
Yj Yc
Zj - Zc 3p.

(9)

Section IV, with the x-axis defined coincident to the THL, and + x
towards VPX. Determine the coordinates of the midpoint C between
VPX and VPY on the THL.
Step 4: Locate vertical for VPDVX. Using VPX-C as one leg of a 45°
right triangle, calculate the endpoint of the end of the leg (vertical
side) of the right triangle. The vertical side will be a line through
VPX perpendicular to THLXY. The VPDVX will be located on this
line.
Step 5: Locate VPDVX. Extend the known image diagonal of the
crate until it intersects with the vertical line of Step 4. Use the two­
line intersection equations to determine the intersection, which is
the vanishing point VPDVX, with image coordinates VPDVXx,
VPDVXy. (If several known diagonals are available, then as many
VPDVX positions should be determined, which in turn will help
determine the location of MPX.)
Step 6: Locate MPX (CSXY rotated). With the position of VPDVX
and the true angle of the diagonal known, calculate MPX using
MPXx = VPXx - (VPDVXy - VPXy) tan (angle), and MPXy = o.
Step 7: Locate CSXY. The graphical location of CSXY involves rotating
the point MPX, with VPX as the center of rotation, to intersect with
the semicircle for VPX-VPY. Analytically, the solution involves using
the isosceles triangle CSXY - C1- VPX with the radius of the semicircle
as the two equal sides and the midpoint (Cl) of VPX-VPY as the
apex. The side opposite C1 is VPX-CSXY, which is equal to the line
VPX-MPX. The angle (Angl) at VPX is determined using the law of
cosines, and the sides of the isosceles triangle. The CSXY coordinates
are computed using CSXYx = VPXx - (VPXx-MPXx)cos(Angl),
and CSXYy = - (VPXx - MPXx)sin(Angl).
Step 8: Determine remaining Phase-l parameters. The pp, f', a, and
s can now be determined from the coordinates of VPX, VPY, and
CSXY. The tilt angle, by definition, is 90°. The swing angle will be
180°, if the image coordinate axis for x is parallel to both the THL
and the bottom edge of the frame. Equations to determine the rotation
matrix are listed in Section VI of the Appendix, and equations for
the angles are in Section VII.
Step 9: Locate XC, YC, ZC. Given the two-point perspective Phase­
1 parameters, determine the Phase-2 camera station coordinates.
First compute one CS coordinate (using Section V of Appendix).
Next compute the remaining two coordinates (using Section VIII of
Appendix). (For two-point perspective, the value of I VPZy I should
be an extremely large number, e.g., 1 x 10+ 7, instead of zero, and
the t will be 90°.) Of course, there are also other ways to determine
the object-space camera station coordinates.

THREE-POINT SOLUTION IN THE COMBINED IMAGE

The procedures for the three-point solution, of Figure 6, are
a continuation of the two-point steps.

Step 10: Locate VPX3 • Compute the image coordinates of VPX3 using
the same procedures described in Step I.
Step 11: Locate VPZ3 • Using the same procedures of Step 1, to
determine the image coordinates of VPZ3 •

Step 12: Locate VPY3 • With the known image coordinates of pp,
VPX3 , and VPZ3 , compute VPY3 using the equations in Section XI
of the Appendix.
Step 13: Locate the f' 3. Determine the effective focal length (fl) for
the three-point solution by using one of more of the focal-length
equations listed in Section IX of the Appendix.
Step 14: Compute [R]. Calculate the rotation matrix elements using
the same procedures described in Step 8.
Step 15: Locate XC, YC, ZC for three-point geometry, and find the
camera station coordinates for the three-point solution as in Step 9.
Step 16: Locate an object-space point. Given a known object-space
coordinate of a point in the three-point solution, compute the other
two coordinates of this point, using equations in Section X of the
Appendix.
Step 17: Convert the object-space coordinates of Step 16 to two-point
object-space using Equation II.
Step 18: Repeat steps 16 and 17 to convert other three-point object­
space coordinates.

This completes the analytical procedures for the example of
combined two- and three-point perspective. The result of the
graphical procedure is shown in Figure 7.
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FIG. 7. Combined two- and three-point perspective solution.

SUMMARY
Although three-dimensional reconstruction from a single im­

age always requires some prior information about object space,
less information is needed when there is multiple or combined
dominant geometry than when the geometry is simple. To il­
lustrate this fact, we chose a multiple two-point perspective in
which the imaged objects rest on a common horizontal plane.
In cropped imagery with Simple two-point perspective, a hor­
izontal or vertical diagonal angle had to be known to complete
the reconstruction (Williamson and Brill, 1987). However, such
an angle need not be known for cropped imagery with multiple
two-point perspective in which nonparallel objects share the
same ground plane or share parallel ground planes. Under these
conditions the CSXY is found by locating the vanishing points
for each nonparallel object, constructing the circles defined by
the respective sets of vanishing points, and identifying an in­
tersection point of the circles as the CSXY. With three or more
sets of vanishing points, the precision of the method is indi­
cated by how close the circles come to intersecting at a point.
If the respective object horizontal planes were not parallel, but
each offered two-point perspective, the camera station could
emerge with equal ease by noting that the unique principal
point is the intersection between the THLs.

Nonparallel ground planes that are perpendicular to the im­
age plane are rare. More frequent are planes that are skewed
both to the two-point horizontal plane and to the image plane
(as in three-point perspective). However, as was the case with
the roof of the Cape Cod house and the sign on the trailer, such
planes are often not attached to deep enough rectangular struc­
tures to enable determination of more than two vanishing points.
It has been shown here that available two-point geometry can
be used to augment the three-point problem to retrieve the
missing three-point vanishing point. As in most combined-per­
spective geometry problems, there is a need to embed the so­
lutions in a single object-space coordinate system. This can be
done analytically using a dimension of known length parallel
to one of the major orthogonal coordinate planes.

From the examples discussed, it should be clear that com-

bined perspective geometries in a single image can serve not
only to fill in missing information, but also to strengthen ge­
ometry by using redundant information to enhance the preci­
sion of the solution. In this paper, emphasis was given to some
analytical representations, with recommendations that the pro­
cedures be placed on a programmable calculator or desktop
computer system for use in a close-range photogrammetric
workstation. Such a workstation, developed for multiple close­
range digital imagery (Williamson, et aI, 1988), incorporates these
single image-perspective procedures as a secondary system.
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APPENDIX

The following eleven application procedures were taken from
~ book (in preparation by the authors) on analytical and graph­
Ical procedures for the photogrammetrist.

I. INTERSECTION OF Two LINES

WI = (yA1 - YA2)(XB2 - XB1) - (YB1 - YB2)(XA2 - XAI)
W2 = (YA1XA2-YA2XA1), W3 = (YB1 XB2-YB2XBI)
VPx = (W2(XB2 - XB1 ) - W3(XA2 - XA, »IW,
VPy = (W3 (YA1 - YA2) - W2(YB1 - YB2»1W,

II. INTERSECTION OF MULTIPLE LINES, WITH MINIMUM DISTANCE

The following equations (program code) are used to establish
the matrix of coefficients to be used in a Gaussian simultaneous
adjustment routine. In this code the terms X(N), Y(N), X(NPI),
and Y(NPI) are the coordinates of two points on a line. The
number of lines read is N/2. D(K) is the minimum distance of
each line to the intersection point XI, YI, and the number of
lines is NMAX.

DO 10 N = 1, NMAX, 2
NP1=N+1
READ' X(N),Y(N),X(NP1),Y(NP1)
Q(l) = Y(NP1) - Y(N)
Q(2) = X(N) - X(NP1)
Q(3) = Y(N)'X(NP1) - X(N)'Y(NP1)
DO 10 I = 1,2

DO 10 J = 1,3
C(I,J) = C(I,J) + Q(l)'QG)

10 CONTINUE
CALL [GAUSSIAN ROUTINE](C,2)
XI = C(1,3)
YI = C(2,3)
WRITE ' XI,YI
K=O
DO 20 M = 1, NMAX, 2

K=K+1
MP1=M+1
Q(l) = Y(MP1) - Y(M)
Q(2) = X(M) - X(MP1)
Q(3) = Y(M)'X(MP1) - X(M)'Y(MP1)
S = SQRT(Q(1)"2 + Q(2)"2)
D(K) = (Q(l)'XI + Q(2)'YI + Q(3))/S
WRITE' D(K)

20 CONTINUE

III. MULTIPLE TWO-POINT PERSPECTIVE SOLUTION FOR CS

Locate CI and C2:
Clx = (VPXlx + VPYlx)/2, Cly = (VPXly + VPYly)/2
C2x = (VPX2x + VPY2x)/2, C2y = (VPX2y + VPY2y)/2
Determine the radii and distance between centers
RI = [(VPXlx-VPYlx)2+(VPXly-VPYly)2]1/2/2
RZ = [(VPX2x- VPY2x)2+(VPX2y- VPY2y)2]1/2/2
012 = [(Clx - C2x)2 + (CIY- CZy)2l'l2
Solve for CSXY using Law of Cosines
Angl = atan[(C2y - Cly)/(Clx - C2x)J
Ang2 = acos[(0122+ RZ2 - RP)/2(RZ 012)]
Ang3 = Angl + Ang2
CSXYx = Clx + RI cos(Ang3)
CSXYy = Cly - RI sin(Ang3)

IV. TRANSFORMATION OF IMAGE ORIGIN TO VPY, X-AxiS ON THL

wI = VPYy - VPXy, w2 = VPXx - VPYx
xl = Xi - VPYx, yt = Yi - VPYy
Xi = (xt wI - yt w2)/(wP + w22)1/2
Yi = (xt w2 + yt wl)/(wP + w22)1/2

V. COMPUTE A CS COORDINATE FROM A DISTANCE IN OBJECT­

SPACE

One object-space camera coordinate can be computed using
a known dimension parallel to a coordinate plane (XY, XZ, or
YZ). The known dimension is defined as OXY, OXZ, or OYZ,
depending on the coordinate plane to which it is parallel. All
Phase-l parametric values for the image must be known.

wXi = Xi - xpp, WYi = Yi - ypp
where i = 1,2 are the end points to known line;
use i = 1 values
wI = rl1 wXi + r21 WYi - r31 l'
w2 = r12 wXi + r22 WYi - r32 1'
w3 = r13 wXi + r23 WYi - r33 l'
Repeat eqs. wI to w3 as w4 to w6, using i = 2.

Case One: Given distance (DXY) is parallel to XY plane:
w7 = (w4/w6) - (wl/w3), w8 = (w5/w6) - (w2/w3)
w9 = [w72 + w821'12. If Zl <ZC, then w9 = - w9.
(Where end point 1 is below the horizon line)
Given Xl: XC =. XI- (wl/w3) DXY/w9
Given YI: YC = YI - (w2/w3) DXY/w9
Given Zl: ZC = Zl- (DXY/w9)

Case Two: Given distance (DXZ) is parallel to XZ plane:
w7 = (w4/w5) - (wl/w6), w8 = (w6/w5) - (w3/w2)
w9 = [w7" + w821'12. If YI<YC, then w9 = -w9.
Given Xl: XC = XI- (wl/w2) DXZ/w9
Given YI: YC = YI - (DXZ/w9)
Given Zl: ZC = Zl- (w3/w2) DXVw9

Case Three: Given distance (DYZ) is parallel to YZ plane:
w7 = (w5/w4) - (w2/wl), w8 = (w6/w4) - (w3/wl)
w9 = [w7" + w82]l/2 If Xl < XC, then w9 = - w9
Given Xl: XC = XI- (DYZ/w9)
Given Yl: YC = YI- (w2/wl) DYZ/w9
Given Zl: ZC = Zl- (w3/wl) DYZ/w9

VI. COMPUTE [R]

Let i = 1 for VPX, i = 2 for VPY, and i = 3 for VPZ.
wXi = VPxi - xpp, wYi = VPYi - ypp
VR i = [wXr + wYr + j'21'/2
r li = wX/VRi, r2i = wY/VRi, r3i = - j'NRi
Note: If w6 is negative, then r,3 = - r,y r23 - r23, r33

-r33·

VII. COMPUTE THE ROTATION ANGLES USING [R]

Angles are computed in decimal degrees.
a = tan-1(abs(r3,1r32» [0° to 90°]
l = cos- 1(r33) [0° to 180°]
s = tan- l (r,/r23) + 180.0 [90° to 270°]

VIII. COMPUTE THE REMAINING Two CS COORDINATES

Start by computing wI, w2, and w3 as in Section V.

Case One: Known Camera Station Coordinate is Xc.
YC = YI + (w2/wl) (XC-Xl)
ZC = Zl + (w3/wl) (XC - Xl)

Case Two: Known Camera Station Corrdinate is yc.
XC = Xl + (wl/w2) (YC - YI)
ZC = Zl + (w3/w2) (YC - YI)

Case Three: Known Camera Station Coordinate is Zc.
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XC = Xl + (wl/w3) (ZC-Z1)
YC = Y1 + (w2/w3) (ZC - Zl)

IX. COMPUTE THE EFFECTIVE FOCAL LENGTH (F')
The value of /' is determined from one or more of these vector

dot-product equations:

/'2 = I(VPX - PP)·(VPY - PP)I

= I(VPY-PP)'(VPZ-PP)I

= I(VPZ-PP)'(VPX-PP)I

The application equations are:
f'xy = [(VPXx - xpp)(VPYx -xpp) + (VPXy- ypp)(VPYy-ypp)]l/2
f'xz = [(VPXx -xpp)(VPZx-xpp) + (VPXy-ypp)(VPZy-ypp)]l/2
f'yz = [(VPYx - xpp)(VPZx - xpp) + (VPYy- ypp)(VPZy - ypp)]l/2

where f' may be one or the average of these equations.

X. COMPUTE THE REMAINING Two OBJECT-SPACE

COORDINATES

Start by computing wI, w2, and w3 as in Section V.

Case One: Known Object-Space Corrdinate is Zl.

Xl = Xc + (wl/w3) (Zl - Zc)
Y1 = Yc + (w2/w3) (Zl- Zc)

Case Two: Known Object-Space Coordinate is Yl.
Xl = Xc + (wl/w2) (Y1- Yc)
Zl = Zc + (w3/w2) (Y1- Yc)

Case Three: Known Object-Space Coordinate is Xl.
Y1 = Yc + (w2/w1) (Xl-Xc)
Zl = Zc + (w3/w1) (X1- Xc)

XI. DETERMINE VPY GIVEN PP AND OTHER Two VPS.

wI = VPZy (ypp - VPXy) + VPZx (xpp - VPXx)
w2 = ypp (VPZy - VPXy) + xpp (VPZx - VPXx)
w3 = wI (VPZy - VPXy) - w2 (ypp - VPXy)
w4 = wI (VPZX - VPXx) - w2 (xpp - VPXX)
w5 = (ypp - VPXy)(VPZx - VPXx) - (VPZy - VPXy)(xpp

- VPXx)
VPYx = w3/w5
VPYy = w4/ w5
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URPIS 17

"INFORMATION SYSTEMS: ASSESSING THE IMPACT"
21·24 NOVEMBER 1989

PERTH, WESTERN AUSTRALIA
The Australasian Urban and Regional Information Systems Association (AURISA) is conducting its 17th Urban and Regional Plan­

ning Information Systems (URPIS) Conference 21-24 November 1989. A Technical Exhibition will be held in conjunction with the
Conference and will provide opportunities to view recent technological advances.

The 1988 conference looked at "Information Systems in Action", and this Conference takes this a step further by assessing the effec­
tiveness/impact of these systems in terms of costs and benefits to society. Some of the suggested topics include:

Community:
Appropriate low cost US/GIS to meet community needs
Public access - US/GIS's as a community resource
Public perspectives of US/GIS in planning
Local Government and US: serving the local community
Integration of community and local government records within the US/GIS framework

Effects and impacts:
US/GIS development - who pays and who benefits?
Effective integration of technology
Effects/Impacts of US/GIS on the individual, organization, community
Systems development, planning, and management
US/GIS contributions to environmental impact assessment

Retrospect:
Socio-economic repercussions, e.g. impact, benefit, development
Confidentiality, copyright and liability issues
Post-implementation reviews
System management and data maintenance
Costs, cost recovery and marketing

Papers indirectly addressing the conference theme, for example on research, new technology, theory, and initiatives, are also wel­
come. Prospective authors are invited to prepare an abstract of approximately 300 words, together with a short biographic sketch of the
author/s and submit these by 26 May, 1989 directly, via mail or facsimile service, to: The Conference Manager, URPIS 17 Conference
C/-Walis Secretariat, 1st Floor, 533 Hay Street, Perth 6000 Western Australia, Fax: 09-221-3163, Telex: Lands AA93784

(Abstracts submitted by international authors after the above date may be accepted by the Conference Manager provided the date
for submission of the completed paper can be complied with.)

Authors are requested to include a return contact facsimile, telex or telephone number, together with their postal address. Authors
whose papers have been accepted will be advised, shortly after the closing date for abstracts, and will be expected to transmit the com­
pleted paper by 31 August, 1989, to allow for publication in the Conference Proceedings. Authors will be advised at a later date on
matters regarding presentation times, audio/visual aids and related aspects.

All enquiries concerning proposed papers should be directed to Brian Walsh or John Richard at: Australian Callers: Telephone: (09)
325-8444, Facsimile:, (09) 221-3163. International Callers: Telephone: (619) 325-8444, Facsimile: (619) 221-3163


