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ABSTRACT: Multispectral data recorded by a SPOT HRV sensor and an airborne Daedalus 1268 ATM sensor were analyzed
for use in the monitoring of irrigated orchard and vine crops in the Riverland of South Australia. The spectral data
were essentially two dimensional and the additional bands and increased spatial resolution of the Daedalus 1268 ATM
sensor over the SPOT HRV sensor did not provide useful additional information. An accuracy of 85 to 93 percent at the
95 percent confidence level was obtained for the classification of four orchard and vine crops using bands 2 and 3 of
the SPOT HRV data. It is suggested that temporal data are required if the classification is to be extended successfully to
include other crops and dryland farming areas.

DATA COLLECTION

stonefruit and vegetables. Beyond the irrigated area dryland
cereal cropping is practiced except on the floodplains of the
River Murray which support native vegetation.

Three sets of remotely sensed data were used in the research:
(1) SPOT HRV multispectral data recorded in three wavebands at
a 20-m spatial resolution (Chevrel et aI., 1981) on 21 October
1986; (2) airborne Daedalus ATM 1268 multispectral data re­
corded in eleven wavebands at a lO-m spatial resolution on 27
March 1985 (Table 1); and (3) color aerial photographs at a scale
of 1:20,000. The SPOT HRV data were radiometrically corrected
using information supplied by SPOT Image, but calibration data
were not available for the Daedalus MSS data.

The color aerial photographs were used to identify and locate
crop types and areas of new plantings. The mature orchard
trees had an almost complete canopy cover while the vines were
planted in rows 2 to 3 m apart. The interpretation was con­
firmed by ground checking. The collection of multispectral data
in spring (SPOT HRV) and summer (Daedalus MSS) did not per-
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T HE CULTIVATION of irrigated crops depends on a reliable
supply of water. When the supply is limited, it is necessary

to monitor the volume and distribution of water use. This may
be undertaken by controlling the establishment of irrigated crops
and by regulating irrigation scheduling. Remote sensing tech­
niques can contribute to this through the monitoring of crop
types grown and the spatial distribution of these crops.

Considerable research has been undertaken to determine the
most suitable wavebands and spatial resolutions for the classi­
fication of different crop types (Townshend, 1984; Csillag, 1986;
Huete, 1986). It has been suggested that data from a waveband
in each of the visible (0.5 to 0.7 fJ-m), near infrared (0.7 to 1.1
fJ-m), and middle infrared (1.5 to 2.4 fJ-m) regions of the electro­
magnetic spectrum produce the most accurate results while re­
ducing the amount of data to be processed (Toll, 1984;
Townshend, 1984). The most suitable spatial resolution has been
shown to be related to the spectral variability of the scene and
field size (Gervin et aI., 1985; Curran and Williamson, 1986).

Little research has been published describing the spectral
characteristics of orchard crops and vines or the dimensionality
of multispectral data recorded from these crops. Algorithms
have been developed to distinguish between orchard trees and
forest (Gordon and Philipson, 1986; Gordon et aI., 1986) while
Morse and Card (1983) classified orchard crops in the San Joa­
quin valley of California using multitemporal data.

The aims of this research are to analyze SPOT HRV and air­
borne Daedalus 1268 multispectral data for the classification of
irrigated crops (citrus, stonefruit, vines, vegetables) in the Riv­
erland of South Australia where there is a limited supply of
good quality water for irrigation. Analyses were undertaken to
select (1) wavebands containing the greatest amount of spectral
information about the crops, which includes an examination of
the dimensionality of the data, (2) a spatial resolution which is
related to the spectral variability of the crops and the fruit block
size in the study area, and (3) the most suitable season for the
discrimination of these crops.

The study area is based in the Riverland of South Australia
(Figure 1). The initial study was undertaken using data from
the irrigated land in the Loxton area and the later study in­
cluded the entire study area. The area covers 1000 km2

, of which
255 km2 is irrigated by water from the River Murray. It is a flat,
lowland area of grey clay with poor drainage (Laut et aI., 1977).
The average irrigated block size is 36 ha, and cultivation of vines
and citrus dominates the area with scattered cultivation of
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, Data in this band were saturated and not used in this work.

mit the comparison of spectral characteristics between sensors,
but did allow an analysis of the seasonal effect on crop separa­
bility to be made.

where
CV is coefficient of variation,
x is mean radiance of a block, and
SD is standard deviation of radiance in a block.

There was a significant difference at the 95 percent confidence
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FIG. 2. The spectral response of citrus, vines, stonefruit, veg­
etables, and grass as recorded by a SPOT HRV sensor.

80

level, using a students t test, between the CV of vine and citrus
in the green and near infrared wavebands of the SPOT HRV data,
and in wavebands 2 and 6 of the Daedalus MSS data (Table 2).

It should be noted that the radiance and standard deviation
values of the two data sets cannot be compared as the bandwidths
differ and no atmospheric corrections were applied, but the CV
data should be comparable.

Correlation Analysis. The correlation coefficients between
wavebands were calculated for each crop and the data set as a
whole. Only the results of the latter are discussed in detail here.

SPOT HRV data. The visible wavebands were positively
correlated at the 95 percent confidence level and the red and
near infrared wavebands were negatively correlated at the 95
percent confidence level (Table 3). In contrast to the overall
results, the radiance values from the vines were all significantly
positively correlated. This is probably caused by the large amount
of woody vegetation and soil within the vine blocks in October.

DAEDALUS MSS data. There were significant positive correlations
between the wavebands at which radiance is primarily absorbed
by green vegetation (Bands 2,3,4,5,6,9,10) and between the
two wavebands at which radiance is primarily reflected by green
vegetation (Bands 7 and 8) (Table 4). The correlations between
these two groups of wavebands were not significant at the 95
percent confidence level. This suggests that the data are two
dimensional. Results from the individual crop types were similar
to the overall results.

Principal Component Analysis. The correlation analysis
undertaken showed significant positive correlations between
several of the wavebands. A principal component analysis (PCA)
was employed to examine this further and to identify groups
of related data Oohnston, 1980; Townshend et aI., 1983).

The PCA was undertaken using multispectral data from each
of the 35 blocks described previously for each sensor. The first
two components calculated with the SPOT HRV data explained

(1)

0.50 - 0.59
0.61 0.68
0.79 0.89
0.42 0.45
0.45 0.52
0.52 0.605
0.605 - 0.625
0.63 - 0.69
0.695 - 0.75
0.76 0.90
0.91 1.05
1.55 1.75
2.08 2.35
8.5 - 13.0

Band edges
(IJ.m)

1
2
3
1
2
3
4
5
6
7
8
9

10
11'

i

SD
x 100CV

Waveband Number

Daedalus ATM

Sensor

TABLE 1. SENSORS AND WAVEBANDS USED IN THIS STUDY

SPOT HRV

DATA ANALYSIS

The data analysis was undertaken using multispecral data
recorded by the SPOT HRV sensor and the Daedalus 1268 ATM
in the Loxton irrigation area. The nature and dimensionality of
the data were analyzed by employing standard statistical tech­
niques and were tested in a trial classification. The information
obtained from these analyses was used to classify irrigated and
subsequently dryland crops over the entire study area.

STATISTICAL ANALYSIS OF THE DATA

The mean radiance and standard deviation of 35 blocks were
calculated from both data sets in all wavebands. This included
blocks of mature citrus and stonefruit, vines, grass, and
vegetables.

Data Description. The spectral response of the crops was plotted
for each sensor (Figures 2 and 3). The responses as recorded by
SPOT HRV in October were typical of vegetation at varying stages
of growth. The stonefruit and citrus had low radiance values in
the red waveband (Band 2) and high radiance values in the near
infrared waveband (Band 3) as was expected from a green
vegetation canopy. The vines and grass scrub had higher red
radiance and lower near infrared radiance values than the orchard
crops because of their relative lack of greenness in October.

Due to the lack of calibration of the Daedalus MSS data, it was
not possible to compare radiance variations between wavebands.
The radiance from vines is higher than from citrus in the visible
(Bands 1 to 5) and middle infrared (Bands 9 and 10) wavebands,
but lower in the near infrared (Bands 7 and 8) wavebands (Figure
3).

Interpretation of the aerial photographs showed differences
in within-block variability between crops as the citrus had a full
canopy while the vines were planted in rows with bare soil
showing between the rows. This was measured in the
multispectral data on a per-block basis using the coefficient of
variation (cv): i.e.,
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FIG. 3. The spectral response of citrus, vines, stonefruit, vegetables, and grass as recorded by a Daedalus 1268 ATM sensor.

TABLE 4. CORRELATION MATRIX FOR DAEDALUS 1268 ATM BANDS FOR
35 IRRIGATED BLOCKS

TABLE 2. MEAN COEFFICIENT OF VARIATION (%) FOR FIVE CROPS AS
RECORDED BY A SPOT HRV AND A DAEDALUS 1258 ATM SENSOR

SENSOR

SPOT HRV Daedalus MSS
CV (%) CV(%)

CROP 1 2 3 1 2 3 4 5 6 7 8 9 10

Vine 2.4 3.0 1.1 1.8 4.2 5.6 7.9 8.6 5.1 5.1 4.8 7.8 11.7
Citrus 3.8 3.6 2.5 1.5 2.9 3.8 5.5 5.9 3.0 5.3 3.3 6.2 10.3
Stonefruit 3.5 7.3 2.7 1.6 3.8 5.2 7.2 7.5 2.8 3.9 3.2 7.0 10.5
Grass 3.7 4.8 3.2 1.7 4.1 4.5 9.8 5.4 5.1 4.5 4.0 4.2 7.2
Vegetables 3.9 7.4 3.7 1.9 2.9 3.2 3.3 3.6 4.2 4.1 3.5 4.4 10.0
All 3.3 5.8 3.5 1.7 3.5 4.4 6.6 6.7 3.8 4.8 3.8 6.5 10.3

Waveband

1 2 3 4 5

1 0.460.36 0.36 0.36
2 0.94'0.91'0.89'
3 0.98 0.97'
4 0.99'
5
6
7
8
9

10

Waveband
6 7 8 9

0.18 -0.14 -0.20 0.34
0.64' -0.14 -0.14 0.83'
0.79' -0.12 -0.01 0.92'
0.77' -0.19 -0.09 0.96'
0.75' -0.21 -0.12 6.97'

0.09 0.50' 0.70'
0.41' -0.19

-0.15

10

0.36
0.81'
0.89'
0.95'
0.96'
0.64'

-0.20
-0.23'

0.99'

, Significant at 95% confidence level.

TABLE 3. CORRELATION MATRIX FOR SPOT HRV BANDS FOR THIRTY
FIVE IRRIGATED BLOCKS

Waveband
2 3

TABLE 5. PRINCIPAL COMPONENT ANALYSIS FOR SPOT HRV AND
DAEDALUS 1268 ATM DATA

Waveband 1
2
3

'Significant at 95% confidence level.

0.82' 0.17
- 0.45'

Cumulative percentage
Sensor 1st component 2nd component 3rd component

SPOT HRV 64.1 97.9 100.0
Daedalus MSS 64.4 81.7 98.3

97.9 percent of the variance of the data set (Table 5). The first
component contained high loadings from the visible wavebands,
and the second component contained a high loading from the
near infrared waveband. These are similar groupings to those
displayed by the correlation analysis. When the individual crops
were analyzed, over 90 percent of the variance from the vines
was explained by the first component with high loadings in all

wavebands. The results from the other crops were similar to
the overall results.

Using the Daedalus MSS data, 98.3 percent of the variance
was explained by the first three components (Table 5). The first
component had high loadings in all wavebands except wavebands
1, 7, and 8. The second component had high loadings in
wavebands 7 and 8. The third component was dominated by
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TABLE 6. CLASSIFICATION ACCURACY USING DISCRIMINANT ANALYSIS
FOR FIVE CROPS

CLASSIFICATION OF DATA

Maximum-likelihood classifications were undertaken using a
Dipix digital image processor. The supervised classifications were
undertaken on a per-pixel basis rather than using the mean
radiance of a block as previously. These classifications therefore
included a larger range of radiance and boundary pixels. Several
classifications were computed using the information decribed
above. The accuracies of the classifications were calculated for
200 fruit blocks using the aerial photographs as ground data.
The percent confidence level was calculated by means of
bionomial expansion (Hay, 1979).

The classification using SPOT HRV red and near infrared
wavebands had an accuracy of 85 to 93 percent at the 95 percent
confidence level (Table 7). The discrimination between the citrus

waveband 1, which was affected by haze. The individual crops
varied little from this.

The PCA and correlation analysis suggest that the data are
essentially two dimensional. The brown or dry vegetation (vines
in October, grass throughout spring and summer) has been
shown to be one dimensional, which concurs with other research
(e.g., Quarmby and Townshend, 1986) and shows the value of
collecting data at a season when differences in greenness between
crops are maximized.

Discriminant Analysis. The two dimensionality of the data
suggested in the previous analyses was tested using Wilks
Lambda discriminant analysis (Johnston, 1980) to classify the
data. The classification used the radiance data which were free
from edge effects and contained data solely from the crops under
study in the 35 blocks. Due to the limited number of samples,
the discriminant function was calculated using all the samples,
and the classification used the same data. This back-classification
approach is not considered a legitimate statistical measure of
accuracy but does provide insight into the relative effectiveness
of the spectral variables to discriminate between classes (Yool
et aI., 1985). Classifications were undertaken using all wavebands
and also using a combination of wavebands as suggested by
the earlier analyses, by stepwise discriminant analysis, and by
other researchers (e.g., Nelson et al., 1984; Townshend, 1984;
Everitt et aI., 1986).

Accuracies achieved using the red and near infrared wavebands
were similar to the results obtained using all wavebands of the
SPOT HRV data. Accuracies decreased when using only a red
and a near infrared waveband of the Daedalus MSS data as
compared to using all the Daedalus wavebands. The addition
of a middle infrared waveband to the red and near infrared did
not increase significantly the accuracy of the classification (Table
6).

CV3 is the coefficient of variation for band 3
CV6 is the coefficient of variation for band 6

71-82
85-93
58-73
55-68
68-81

Accuracy %
(95% confidence

level)
All bands

2,3
All bands
3,4,6,10

4,7

WavebandSensor

Daedalus MSS

and stonefruit was poor, but they were successfully separated
from other crops. It would be possible to separate citrus and
stonefruit using data recorded during winter months as
stonefruits are a deciduous tree and citrus are evergreen. There
was also some overlap between the vegetables and vines.

The accuracy of the classification using the red and near infrared
wavebands of the Daedalus MSS was sHghtly lower than when
using the corresponding wavebands of the SPOT HRV sensor
(Table 7). There was some variability in classification within
blocks; consequently, the classification was considered correct
if the majority of the pixels fell in the correct class. The main
source of error was a confusion between the vines and vegetables,
and in some blocks new citrus plantings were classified as vines.
This was probably because radiance from the canopy, bark, soil,
and grass contributed to the mean radiance of these blocks while
most of the citrus and stonefruit blocks have an almost complete
canopy cover. The vines and vegetables are planted in distinct
rows at all angles in relation to the multispectral data. No pattern
of misclassification was found which was related to the row
direction. As the number of wavebands used in the classification
increased, a larger proportion of the scene remained unclassified.
Between 34 and 45 percent of the vines were unclassified while
only 11 to 23 percent of the citrus blocks remained unclassified.

DISCUSSION

TABLE 7. CLASSIFICATION ACCURACY OF IRRIGATED CROPS

SPOT HRV

The statistical analyses showed that many of the wavebands
were significantly positively correlated, and the red and near
infrared wavebands explained much of the variance in the data.
Data from additional wavebands only restricts the spectral do­
main of the classifier, resulting in large areas unclassified, es­
pecially boundary pixels and areas of high variability.

The spatial resolution of the SPOT HRV data (20 m) was suf­
ficiently high to prevent edge effects affecting the radiance of a
large proportion of the pixels. The 20-m spatial resolution
smoothed out the variability within blocks containing row crops.
Although the Daedalus MSS with a 10-m spatial resolution pro­
vided more spectral information about each block, this led to
confusion during classification. The 20-m spatial resolution gave
an adequate number of pixels within each block, retained the
most consistant percentage of canopy and background within
a pixel, and required less processing time than the 10-m Dae­
dalus MSS data. Landsat Thematic Mapper data with a 30-m
spatial resolution may also prove to be useful for this type of
work but was not tested in this study. A second series of clas­
sifications were undertaken to test the accuracy over the larger
study area of the South Australian Riverland using SPOT HRV
data in the red and near infrared waveband. The training sta­
tistics computed in the Loxton study were used, and the ac­
curacy of the classification was tested on 150 fruit blocks using
color aerial photographs taken near Barmera as ground data.
An accuracy of 77 to 90 percent at the 95 percent confidence
level was obtained using only sites within the irrigated areas.
The main source of error was vines which were classified as
vegetables or grass. The area of citrus was much smaller than

56-88
57-87
64-90

70-96
53-84
46-80
60-90
41-75
53-84
56-86

Accuracy %
(95% confidence

level)Waveband
All bands

2,3
2,3,CV3

All bands
3,4,6,10
3,4,8,10
3,4,6,9
3,4,7,10

4,7
3,4,6,9,CV6

Sensor

Daedalus MSS

SPOT HRV
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CONCLUSIONS

eSPOT HRV data were used to classify irrigated orchard and vine
crops with an accuracy of 85 to 93 percent at the 95 percent confi­
dence level. The accuracy was reduced to 51 to 59 percent when the
study was extended to include dryland cropping classes.
eDiscrimination between crops is greatest when the difference in
the greenness between crops is at a maximum. Multispectral data
recorded in different seasons would assist in separating citrus and
stonefruit, orchard and vine crops, and irrigated and non-irrigated
crops.
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eThe radiance data recorded in the irrigated areas of orchard and
vine crops were two dimensional. Data from a red waveband and a
near infrared waveband explained most of the spectral variance.
eThe accuracy of the classification was higher using data with a 20­
m spatial resolution than using data with a lO-m spatial resolution
for the crops and block size occuring in this study.

in the Loxton area, but there was little misclassification between
vines and citrus.

The work has concentrated on the discrimination of crops
within the irrigated areas. If remotely sensed data are to be used
in monitoring the extent or area of irrigated crops, it is necessary
to separate them from other land uses such as dryland agricul­
ture and native vegetation. The spectral responses of these classes
are shown in Figure 4.

Training sites of dryland cereal crops and native vegetation
[floodplain (Eucalyptus spp.) and shrublands (Chenopodium spp.)]
were defined. A maximum-likelihood classification was under­
taken for the larger study area using these classes in addition
to vines and citrus. The area of vegetables was small and was
excluded from the classification and, as the spectral response
from the grass (which was dead) was similar to that of the
dryland agriculture, the former was also excluded.

The accuracy of the classification was calculated using color
aerial photographs from the Loxton and Barmera areas. Accur­
acies of 51 to 59 percent at the 95 percent confidence level and
50 to 67 percent at the 95 percent confidence level were calcu­
lated for the Barmera and Loxton areas, respectively. The ac­
curacy of the classification was above 90 percent for the citrus,
but there was considerable misclassification between the vines
and the dryland cereal cropping. At the time of data collection
(October) there was little green vegetation on the vines and the
soil background effect was dominant. There was also some mis­
classification between the floodplain and the shrubland due to
the similar spectral responses of the different types of native
vegetation. Remotely sensed data recorded in summer would
increase the accuracy of a classification separating dry and ir­
rigated areas, although at this time of year it would be increas­
ingly difficult to discriminate between the irrigated crops.
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FIG. 4. The spectral response of dryland agriculture and native vegetation
as recorded by a SPOT HRV sensor.
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variables that can be manipulated within a macro. For example, users working with mapping or facilities management applications can
use this feature to work with all the data associated with figures.

Additionally, a map coordinate system can be used to specify an offset map origin point to coordinate a HICAD GM-I000 map with
established mapping coordinate standards. For more information on Hitachi's products and services, call 451-872-1902.

Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, CA 94043

Telephone 415-960-1300; tlx 287815

Founded in 1982, Sun Microsystems, Inc. supplies network-based distributed computing systems, including technical workstations,
servers, and UNIX® operating system and productivity software. In response to the needs of the end-users, Sun provides a dis­

tributed computing environment whose strength lies in its ability to automatically and transparently access, distribute, and execute data
on various computer architectures and vendor platforms, and then present the results on high-resolution color graphics displays
tailored for each individual.

Three families of workstations, the Sun-3'", Sun-4'", and Sun386i'" product lines, provide a range of performance from 1.5 to 10
MIPS, and include standalone and networked systems, diskless workstations and large fileservers, color, grayscale, and high-resolution
monochrome models. Sun's large server systems are used as fileservers for diskless workstations, as terminal servers (replacing tradi­
tional minicomputers), and as shared-resource compute engines.

Two new workstations have enhanced Sun's product line: The Sun386i'" family of workstations is the first true workstation based
on the Intel 80386 microprocessor to fully merge the power of UNIX system performance with DOS applications while accommodat­
ing AT bus add-on boards; the newest Sun workstation is the Sun-4/110TC, a low-cost, high-resolution 24-bit color system based on
Sun's SPARCN (Scalable Processor Architecture) microprocessor. The system's virtually limitless "true color" graphics capabilities lets
GIS and mapping users accurately display the full range of their data with 16.7 million color possibilities.

A dramatic addition to Sun's product line is the high-performance, 32-bit TAAC-r" Application Accelerator. The TAAC-l increases
productivity for compute-intensive applications such as image processing, surface modeling, and GIS. While the TAAC accelerator
board includes a variety of highly interactive functions (image filtering, transforms, 3D perspective, etc.), it offers a wealth of tools to
the users, and is programmable in C. All of these systems provide the backdrop for Sun's growing commitment to the GIS market.

Sun gives customers more than 1,500 software applications and add-on hardware products from third-party vendors - the largest
number of UNIX system-based application solutions in the industry. Sun offers a full selection of the top vendors over a wide range of
application software, peripherals and add-on hardware, and connectivity products. With a full range of hardware and software, Sun
gives OEMs and end-users a complete workstation platform.


