
A Probabilistic Modification of the Decision Rule
in the Skidmore/Turner Supervised
Nonparametric Classifier
Kim E. Lowell
University of Missouri, 1-31 Agriculture, Columbia, MO 65211

ABSTRACT: Using a hypothetical example, the paper demonstrates how the original classification decision rule may
cause the amount of land in each cover type to be misestimated. An alternative is proposed and discussed which
should provide better area estimates for each type, though locational accuracy may be decreased. The aesthetic quality
of the classified image is also reduced because of the "salt and peppering" that results from the use of the probabil­
istically based rule.
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Utilizing the procedures described, the following probabilities
result for each cell position of the two-dimensional spaces:

~ 0 (10/60) = 0.17 (30/55) = 0.55 0 (50/60) = 0.83 (25/55) = 0.45
n
d
2

Using the original decision rule, the 700 pixelslhectare in cell
positions (0,1), (1,0), and (1,1) are assigned to Type 1 due to
probability values of 0.55, 0.57, and 0.80, respectively, com­
pared to 0.45, 0.43, and 0.20 for Type 2. The 300 pixelslhectare
in cell position (0,0) are assigned to Type 2 due to a probability
of 0.83 compared to 0.17 for Type 1.

However, it is known that 500 pixelslhectare are in each of
Types 1 and 2. If 700 and 300 hectares of Types 1 and 2, re­
spectively, are used as the estimates of the amount of each type
in the area, then erroneous decisions having potentially severe
consequences may be made by land managers. The degree of
misestimation is dependent upon the highest type probability
- as the highest probability decreases, the degree of misesti­
mation increases (Figure 1). In case where the highest proba­
bility is 0.10 at a particular cell position, 10 times as much land

Given that the 200 pixels selected in the training fields are ex­
actly representative of each type, the brightness values of the
1000 pixels can be expected to be distributed:
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o 1

INTRODUCTION

SKJDMORE AND TURNER (1988) presented and discussed a super­
vised nonparametric classifier which was used with multis­

pectral SPOT data to improve classification accuracy compared
to either a maximum-likelihood classifier or a Euclidean distance
classifier for Monterey pine (Pinus radiata D. Don) plantations
in Canberra, Australia. To utilize the classifier, a training field
is selected from an unclassified image for each land-cover type
of interest. For each training sample extracted, a unique N­
dimensional space is created in which each dimension rep­
resents one spectral band of data, and each"edge" of the space
is dimensioned by the possible range of pixel brightness values.
For example, 7-band 8-bit Thematic Mapper data would result
in the creation of a series of seven-dimensional spaces with each
dimension or "side" ranging from 0 to 255. (The space, there­
fore, would have a total of 256 raised to the 7th power cells, a
number which may be reduced by using a "collapsing factor.")
For each training sample, the number of pixels in each cell po­
sition of the appropriate N-dimensional space is tallied based
on the brightness value of each band for each pixel. A proba­
bility is then assigned to each cell position in a particular N­
dimensional space relative to the number of pixels tallied in that
cell position over all N-dimensional spaces. The image is then
classified by assigning each unknown pixel to the cover type
for which the probability is the greatest at the appropriate cell
position.

However, because unknown pixels are not distributed to each
cover type in the same proportion as they occur in the training
samples, this decision rule may cause the amount of land in a
particular type to be misestimated. To demonstrate this and
describe an alternative decision rule, an intentionally simplistic
example will be utilized so that laborious computations are min­
imized. The simplicity of the example does not decrease the
validity of the points discussed, however.

In this example, a tract of land of 1000 hectares is available
on which it is known that two cover types exist, with each type
comprising exactly half - 500 hectares - of the area. A c1oud­
free digital image of the area has been obtained using a sensor
which recorded spectral reflectance values in two spectral bands
using I-bit data and a pixel size of 1 hectare. To classify this
image using the nonparametric classifier, two training samples
of 100 pixels each have been extracted from areas on the image
which are known to be perfectly representative of Type 1 and
Type 2, respectively. For each type, the pixels were tallied in
two-dimensional space based on brightness values and spectral
band numbers with the following results:
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FIG. 2. Locational accuracy. (Based on two classes
only. The graph indicates the percent of all pixels
which will be located correctly with either decision
rule.)

(which are actually Type 2) will be incorrectly assigned to Type
1, and also that no pixels at this cell position will be correctly
loacted for Type 2, 90 percent of all pixels (or 100 percent of the
type 1 pixels) can be expected to be located correctly. Con­
versely, use of the proposed decision rule would result in 90
percent of the unknown pixels randomly placed in Type 1 being
classified correctly (or 81 percent of the total) and 10 percent of
these being classified incorrectly (9 percent of the total). For
Type 2, 10 percent of the pixels placed in Type 2 would be
classified correctly (1 percent of the total), but 90 percent of
those placed in Type 2 would be classified incorrectly (9 percent
of the total). Thus, the original rule could be expected to locate
90 percent of the unknown pixels correctly, whereas the pro­
posed rule would locate only 82 percent correctly.

The proposed rule is not inferior for locational purposes over
the entire probability range, however. In cases where the high­
est probability is near 1.0, and in cases where the probability
for a cell position is nearly equal over all types, the two rules
can be expected to locate approximately the same number of
pixels correctly (Figure 2). Thus, both rules perform similarly
when there is either near certainty, or great uncertainty, about
the true type of a pixel at a particular cell position.

Considering the trade-off between accuracy and location, the
choice of either decision rule depends on a number of factors.
In the original article, Skidmore and Turner used the classifier
to identify types - forest plantations of different ages - which
are known to occur in blocks, rather than in a distributed pat­
tern. In similar situations, the original decision rule is probably
preferable because it may be undesirable to have the inherent
"salt and peppering" which occurs if pixels are classified based
on a random number. However, area estimates may be slightly
incorrect using the original rule due to the mixed pixels which
would occur at the edges of different plantations.

This also leads to the suggestion that the probability matrices
should be examined for each type before selecting a decision
rule. Figure 2 demonstrates that the two decision rules perform
similarly for both area and location if great certainty or uncer­
tainty exists concerning the actual type of a pixel. Thus, to clas­
sifya scene where types are either spectrally very similar (e.g.,
soy beans and corn) or spectrally very different (e.g., roads and
forest), the choice of decision rule may make little difference.

Rarely, however, does a scene exist where all classes of in­
terest are either extremely similar or different. Therefore, the
selection of either decision rule must be based upon the in-
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FIG. 1. Area overestimation for each decision rule. (A
value of 1.0 indicates no overestimation. A factor of
10 indicates that 10 times too much land will be es­
timated for the type with the highest probability. The
area in all other classes will be underestimated.)

as actually exists will be placed in a single type and zero area
will be estimated to occur for the remaining classes, even though
90 percent of the pixels at this cell position in the training samples
were not in this type. If accurate area estimates are to be obtained,
therefore, one must hope that the errors of under- and over­
estimation for each type will compensate - rather than com­
pound - over all cell positions

A possible alternative is a decision rule which would assign
unknown pixels to land types in an unbiased fashion so that
pixels are distributed according to the calculated probabilities.
To do this, a range of values is associated with a particular type
proportional to its probability at a given cell position, and a
random number is generated to determine to which type the
pixel is assigned. For cell position (0,0) in the example pre­
sented, values 1 through 17 and 18 through 100 would be as­
Signed to Types 1 and 2, respectively. For each unknown pixel
having brightness values of 0 for both Bands 1 and 2, a random
number between 1 and 100 inclusive would be generated with
a value less than 18 resulting in the classification of the pixel as
Type 1, and a larger random number resulting in the pixel being
assigned to Type 2. In this way, 17 percent of the pixels in this
cell position would be assigned to Type 1 and 83 percent would
be assigned to Type 2, as similar pixels were distributed in the
training samples. As a result, a better estimate of the amount
of land in each type should result. In this example, the proba­
bility for each cell position can be multiplied by the expected
number of pixels in each position for the entire scene to dem­
onstrate that area estimates would better reflect true values:
~ Position ~

300*0.167 50 (0,0) 300*0.833 250
275*0.545 150 (0,1) 275*0.454 125
175*0.571 100 (1,0) 175*0.429 75
250*0.800 200 (1,1) 250*0.200 50

TOTAL 500 TOTAL 500
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While this decision rule clearly provides better estimates of
the total area of each type, there are other factors that will affect
which rule is preferable in individual cases. The primary weak­
ness of the proposed rule is that of location. For example, if
there are only two types represented at a cell position for which
probabilities are 0.90 and 0.10, respectively, the original deci­
sion rule will assign 100 percent of the unknown pixels to Type
1. Though this means that 10 percent of the unknown pixels
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tended use of the imagery, and the composition of the land
cover within the scene. In cases in which estimates of area are
of greatest importance, then the alternative decision rule is su­
perior. Conversely, the original decision rule will decrease the
amount of "salt and peppering" to produce a more aesthetically
pleasing classified image in which a greater number of features
are located correctly.

Response
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Why Areal Accuracy Is Not Correctly Estimated Using Lowell's Modification of the Supervised
Nonparametric Classifier

Two TYPES of thematic mapping error are (a) locationai, where
a pixel is incorrectly classified according to some ground

truth criteria, and (b) areal, where the area of a class on an
image does not equal the area of the class according to the
ground truth.

The concern of Lowell is that areas for classes may be poorly
estimated using the supervised nonparametric classifier. This
problem is common to all probabilistic classifiers, including the
maximum likelihood classifier.

At the outset, it should be emphasized that spectrally discrete
classes will yield images with a higher spatial and areal accu­
racy, independent of the probabilistic classifier used. As dis­
cussed by Skidmore and Turner (1988), the image (Figure 4 on
page 1418) of the empirical probability of correct classification
(i.e., P(iIX)) clearly differentiates classes which are spectrally
similar from classes which are spectrally discrete. Thus, spec­
trally similar classes that will have low locational and areal ac­
curacies can be identified. If there is co-occurrence at vector
position (X) then information cannot be created from the con­
fusion. The advantage of the supervised nonparametric classi­
fier becomes apparent when two adjacent vector positions (X)
each contain a separate class. In such a situation, parametric
classifiers (such as the maximum likelihood classifier) may par­
ameterize the adjacent vector positions as having the two classes
co-occurring, when in fact the classes do not co-occur.

Lowell's example of a binary data set with two features is
unrealistic as it is not characteristic of remotely sensed data. As
discussed by Skidmore and Turner (1988), data sets such as the
one proposed by Lowell could be considered to be in a severe
state of "collapse" from the original 6- or 8-bit data. Using such
a data set, a classifier will behave unpredictably due to classes
being merged into (i.e., co-occurring in) a common vector po­
sition. High mapping accuracies are obtained when classes do
not co-occur in vector positions, which is hopefully the situation
when using a less severely collapsed data set. With more vector
spaces, the area estimates of the supervised nonparametric clas­
sifier would be closer to the true values.

Furthermore, Lowell's modification will not correctly estimate
the area of a class, where the estimated a priori probability for
a class (over the area being classified) does not equal the true
proportion of the class.

Following the notation of Skidmore and Turner (1988), the
supervised nonparametric classifier is used to compute (P(iIX)
for i = 1,2, where P(iIX) is the probability of class i occurring

at vector position X. Lowell's allocation of pixels to class 1 can
be succinctly stated as follows:

n

S, = L P(lIX) T(X)
x~ 1

where S, is the proportion of the image classified as class 1,
T(X) is the total number of image pixels occurring at vector
space (X), and n is the total number of pixels in the image. Note
that it is not necessary to perform list sampling or create a
classified image as proposed by Lowell.

P(iIX) may be calculated using Bayes' Theorem (see Skid­
more and Turner, 1988). Using Lowell's example, P(l) = 0.5,
P(2) = 0.5, the area of class 1 is 500 pixels, the area of class
2 is 500 pixels, and there are two features. It is then simple
to calculate P(lIX), P(2IX), S" and S2 at each vector position
in two-dimensional feature space, as shown in Table 1.
So when P(l) = (S,In), Lowell's modification works. In other
words, the modification works when the a priori probabilities
equal the actual proportions of class areas in the image.

However, if the a priori probabilities are not known exactly
and (as is usually the case) estimated incorrectly, then the areas
of the classes are also incorrectly estimated. For example, the
effect of changing P(l) to 0.45 and P(2) to 0.55 on the estimated
areas can be seen in Table 2. Therefore, using Lowell's modi-

TABLE 1.

Vector
position T(X) P(IIX) P(2IX) P(IIX)'T(X) P(2IX)'T(X)

0,0 300 0.167 0.833 50.1 249.9
0,1 275 0.545 0.455 149.9 125.1
1,0 175 0.571 0.429 99.9 75.1
0,0 250 0.800 0.200 200.0 50.0

S, = 500.0 S2 = 500.0

TABLE 2.

Vector
position T(X) P(IIX) P(2IX) P(IIX)'T(X) P(2IX)'T(X)

0,0 300 0.141 0.859 42.2 257.8
0,1 275 0.495 0.505 136.2 138.8
1,0 175 0.522 0.478 91.3 83.7
0,0 250 0.766 0.234 191.5 58.5

5, = 461.0 52 = 539.0
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fication the area of class 1 is incorrectly estimated as 461 and
the area of class 2 is incorrectly estimated as 539.

The errors in estimating class areas become larger as the
estimate of the a priori probabilities deviates further from the
true values. For example, when P(l) = 0.2, S, = 250; and
when P(l) = 0.75, S, = 700 (remember, the true value should
be 500).

The following question then arises. If we know a priori the
exact area of class 1 and class 2, then why are we bothering to
calculate the areas? If we do not know the exact areas, then an
incorrect estimation of the a priori probabilities will lead to an
incorrect estimation of the class areas.

Even using Lowell's pathological example, the supervised
nonparametric classifier decision rule gives an equal or better
estimate of area at some a priori probabilities (e.g., between P(l)
= 0.75 and P(l) = 0.8), even though the spectral resolution
(i.e., a binary two-feature data set) has little similarity with re­
motely sensed data (which normally has three to seven features
and a spectral resolution per channel of 6 to 8 bits), and such
a discretised data set accentuates errors in the area estimates of
the supervised nonparametric classifier because there are only
four vector spaces at which the classifier makes a decision.

Lowell's modification will increase locational errors in the
classified range at all a priori probabilities (except 1.0, 0.5, and
0) by introducing noise through randomly allocating pixels to
classes according to the proportions of P(lIX) and P(2IX) (see
Lowell's Figure 2).

A final problem not discussed by Lowell is that training areas
may not be representative of cover classes, because of natural

variability in cover classes or pixels containing more than one
cover class (i.e., a mixed pixel). If it is assumed, for the example
Lowell presents, that training areas are not representative of
the classes, the areal (and of course locational) estimates would
be incorrect. This is because the P(lIX), P(2IX), and T(X) calcu­
lated from the training areas would not equal to the P(lIX),
P(2IX), and T(X) for the whole image.

Methods for improving mapping accuracies include merging
similar classes into one class, selecting realistic training areas,
introducing collateral data, considering the spatial context of
features in the remotely sensed data, or improving the spatial,
spectral, and temporal resolution of the remotely sensed data.
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Erratum

In the paper, "Forest Mapping Accuracies Are Improved Using a Supervised Nonparametric Classifier with SPOT Data," by
Andrew K. Skidmore and Brian J. Turner (PE&RS, October 1988, page 1416), Equation 2 should read as follows:

P( 'IX) = (F; /Fi)Fi(X)P(i)
1 L(Fj /Fi)Fj(X)P(j)

New Sustaining Member
PCI Remote Sensing Corp.

2300 M Street, NW, Suite 130, Washington, DC 20037
Telephone 202-785-8281; fax 202-785-8278

PCI REMOTE SENSING CORP. develops and supports image analysis software and provides integrated computer workstations.
Hundreds of PCI systems are used around the world to more effectively monitor and map crops, terrain, forests, oceans, and the

atmosphere.
PCI's software, called EASI/PACE, converts remotely-sensed imagery and digitized aerial photography into vivid, color-enhanced

images, allowing users to readily analyze and extract meaningful information. It's one of the most comprehensive and best-supported
image analysis systems; users benefit from the flexibility of the software, as it was designed for easy networking and operates on a
wide variety of hardware. The benefits of EASI/PACE continue to be discovered for use in resource management and conservation;
exploration; teaching and research; mapping, charting, and geodesy (MC&G); and for intelligence data fusion.

The company was established in 1982 and is driven by one of Canada's leading founders of remote sensing, Dr. Murray Strome.
Dr. Strome assisted in the design and implementation of the country's first Landsat processing system and now presides as Chairman
of the Board.

The PCI team includes professionals with strong education and experience. One team member is a geologist with ten years' service
with a large mining company; another member spent six years as a researcher and manager of a remote sensing research project with
the Canadian Forestry Service. Others have university degrees in geophysics, geography, and engineering; several have backgrounds
in computers and business. Because of the team's collective strengths, PCI is able to provide extensive education, system support, and
consulting services.

EASI/PACE continues to be upgraded with new ideas and technology; this emphasis on software enhancements has contributed to
the company's success, both at home and abroad. PCI's head office is located in Toronto, Canada; a network of representatives and dis­
tributors are located outside North America to help build PCI's leading reputation.
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