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ABSTRACT: The extensive use of GIS for deriving summary values from map analyses has created a need for an expression
of the uncertainty of area estimates. Based on a few assumptions regarding the locational accuracy of point coordinates
in a vector GIS, it is possible to derive the mean and variance of area estimates, and the covariance of area of adjacent
polygons. The expressions obtained can prove useful in understanding and modeling the impacts of spatial errors in
GIS applications.

INTRODUCTION

V IR ALLY ALL SPATIALLY-REFERENCED DATABASES contain locational errors. Several authors have devoted much time and
eff rt to categorizing and describing these spatial errors (Mead, 1982; Walsh et aI., 1987; Burrough, 1986). However, an

assess ent of how these errors affect decisions made using Geographic Information Systems (GIS) is lacking. These decisions are
often b sed on values computed within the GIS, such as area and distance, rather than on the map products themselves. It is
import nt to recognize that these derived values are estimates which contain error; Le., they have an inherent accuracy and
precisi n which is defined by the properties of the data and the method of calculation. Although most sample estimates, such
as publ c opinion surveys or forest inventories, are considered incomplete without some measure of accuracy and precision, area
estimat s are used without the same degree of reservation. GIS have exacerbated these problems to some extent, but they have
also cr ated an environment wherein spatial values, in particular area estimates, can be treated statistically.

The oncentration on summary information from GIS has focused attention on the errors in such measurements. One reason
for the een interest in error analysis is the uncertainty about map overlay products derived from different input sources. In an
early t atment of overlay error, McAlpine and Cook (1971) noted the problem of map overlays which resulted in very large
numbe s of very small polygons which bore little or no agreement with initial map descriptions. MacDougall (1975) reported a
gloom analysis of map overlay accuracy, with which Bailey (1988) concurred. Chrisman (1987) argued for a more positive outlook:
"While map error should not be ignored in map overlay, the estimates of MacDougall should be replaced by empirically derived
test res Its. Combining information from diverse sources can actually strengthen the value of the information, not degrade it."

A m del of map errors which can be used to study overlay uncertainty would be a useful tool in evaluating such concerns.
Such a odel could have numerous other uses, such as examining the relationships between map complexity, source map scale,
polygo shapes, and line generalization. An error model could also be appliedJ:o determine the effects of various map accuracy
standar s on the uncertainty associated with map measures of area, length, and distance.

Seve I authors have examined such models. Bondesson (1986) estimated the variance of areas obtained from traverses of
polygo s, based upon assumptions about errors in bearings and distance measurements. A recent paper by Chrisman and Yandell
(1988) e amined the mean value and variance of area under an assumption of independently and identically distributed coordinate
errors. ur research focuses on the development of an expression for the mean and variance of errors in polygon area under less
restricti e, fairly weak assumptions about point coordinate errors.

MODEL DEVELOPMENT

FUNDA ENTAL ASSUMPTIONS

The ata model used in this study was the common arc-node data structure for vector data. The fundamental feature stored
in an a c-node data structure is the location of a point represented as a cartesian X, Y coordinate. All other features in a map are
constr ted by linking together point locations. A series of points are connected in sequence to form an arc. Arcs are then
connec ed in sequence to form either linear or polygonal features. This data structure has been described in detail by Peuker and
Chrism n (1975). Thus, it is logical that an error model for vector databases begins with the variability of point locations. We
follow he notation of Chrisman and Yandell (1988), with extensions and exceptions as noted. First, we express the recorded
coordi te of a point by X and Y, indexed by the point number. For example, the recorded location of point i in a polygon is
given b

The rec rded coordinate consists of the true coordinate and an error term

X; = x; + E; Y; = Yi + 1); (1)

where x;

E;

1);

x-coordinate of point i,
y-coordinate of point i,
error in location of x-coordinate of point i, and
error in location of y-coordinate of point i.

'Present! with Westvaco Corporation Timberlands Division, P.O. Box 458, Wickliffe, KY 42087.
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As Chrisman and Yandell (1988) suggested, we consider the recorded point location to be an unbiased estimator of the t e point
location2

:

E(X;) =x; E(Y;)=y;

Next, we assume that the errors have equal variance in both directions: i.e.,

Var(E;} = Var(7);} = a7.
In addition, we assume that the X and Y errors at a given point are uncorrelated: i.e.,

E(E;7);) = O.

These assumptions are arguable but, in the absence of convincing evidence to the contrary, we feel that they provide a re sonable
foundation for initial modeling.

Finally, it is reasonable to assume that the errors at points are correlated. Chrisman and Yandell (1988) examined he case
where adjacent points are correlated, and the correlation is negligibly small. Neumyvakin and Panfilovich (1982) acco ted for
coordinate error correlation in their estimates of plot area variance through the use of a dispersion matrix. Our error mod I builds
upon the empirical investigations of Keefer et al. (1988) into the covariance structure of digitizing errors. We will assu e that E;

is correlated with Ek, and that 7); is correlated with 7)k, for k = i ± 1. Let p; indicate the correlation between errors at poi ts i and
i+ 1: Le.,

Thus,

and

We will further assume that the correlation between errors at adjacent points is positive. In summary, for all i, k, as no d:

E(E;} = 0
E(E;€it 1) = Pi(Tjai + 1

E(E;E;) = a7
E(E;Ek) = 0 for IHI > 1
E(ei7)k) = 0 V i, k

E(7);} = 0
E(7);7);, I) = P;U";U";'I

E(7);7);) = a.:;
E(7);7)k) = 0 for Ik-;I > 1

This covariance structure may be simplistic still. Yet as Chrisman and Yandell (1988) imply, a highly refined model of error
covariance may not be required. In addition to the properties described above (mean error, variance, and correlation), normal
distribution for the coordinate errors might reasonably be assumed. The normal distribution is often used to model erro Is which
are the result of a number of independent steps, each resulting in an error. However, for the derivations developed he ein, the
assumption of normally distributed errors is not necessary. We will later discuss some useful results that are obtained if n rmality
is assumed.

ARCS AS COLLECTIONS OF POINTS

The next structure encountered in progressing from points to polygons is an arc which delineates a boundary betw en two
homogeneous regions. Inasmuch as an arc is defined by points, and it is likely that all points in an arc have been imilarly
processed, it is therefore reasonable to assume that all points in an arc will exhibit similar variability. Different arcs y have
different variances, and different degrees of correlation between point errors (cf. Goodchild and Dubuc, 1987). Allow nce for
different variances among arcs is important for the verisimilitude of a model for map overlay errors. Consider a map hich is
derived from overlays of a soils map, a vegetative cover map, and a land ownership boundary map. The individual inp t maps
are apt to have quite different error structures. In the overlay map, each arc can be traced back to one or more arcs in th source
maps, which implies that the error structures of the source maps can be maintained as attributes of arcs in the overlay ap.

A node by definition is the endpoint of an arc, and may belong to two or more connected arcs. Therefore, the variab lity of a
node is difficult to discern. For the purposes of modeling, one possibility is to assign the minimum of the variances of the ncident
arcs. This may be reasonable if an effort has been made in digitizing, editing, and overlaying to maintain the integrit of the
most accurate arcs. For example, some digitizing and editing software allows a user to "snap" an arc being digitized to an existing
(and presumably more accurately located) arc. In such a case, the most logical choice for the variability of the node is the v riability
of the existing, more accurately located, arc. In this derivation, the most general case is considered, in which all points i an arc
may have different variances. In implementation of the variance expression, however, points within an arc may be ass med to
have the same variance.

ARC-SECTORS AS COLLECTIONS OF TRIANGLES

An arc by definition is shared by two polygons. Thus, each arc in an arc-node data set may contribute to the area and viability
of two polygons. We will define an "arc-sector" as the two-dimensional figure composed of an arc and two line s gments
connecting the two nodes to the polygon centroid (Figure 1). Thus, arcs may have two arc-sectors associated with them: one for
each polygon which uses the arc. External boundary arcs obviously are associated with only one arc-sector.

An arc-sector comprises individual triangles. Each triangle is composed of a single line segment of the arc (defined b a pair
of adjacent points), the endpoints of which are connected to the polygon centroid. If there are m + 1 points (including n, des) in
an arc, m triangles will be defined. Each triangle may contribute positively or negatively to polygon area (Figure 2). The reas of
the triangles are easily calculated based upon the coordinates of the three points which define them. It is noted that reas of

2E(e) denotes statistical expectation.
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FIG. 1. E ample of an "arc-sector." An arc-sector is the two-dimensional figure formed by connecting the nodes of an arc to the polygon centroid.

Node

Node

FIG. 2. iagram of triangles within an arc-sector. Note that the area of the shaded triangle is deducted from arc-sector area, while all other triangles
add to t tal area.

adjacen triangles will be correlated, as adjacent triangles share two points in common: the polygon centroid and a point on the
arc.

POLYG S AS COLLECTIONS OF ARC-SECTORS

The xt feature to be considered is the polygon. A polygon is an accumulation of adjacent arcs-sectors. Each arc-sector may
contrib ie positively or negatively to polygon area (like the triangles in Figure 2). As in the case with adjacent triangles, adjacent
arc-sect rs are correlated because they share points. The definition of arc-sectors is not necessary for the computation of the area
varianc for a single polygon. It will, however, be used for assessing total map error.

AS A COLLECTION OF POLYGONS

al consideration in the aggregation of polygons to form a choropleth map is the covariation between polygons. As the
ne polygon increases, the area of at least one of its neighbors must decrease. There is an obvious correlation, then,
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between errors in area of polygons within a map. The final expression of variability of area in a choroplethic map must 'nclude
both variance of, and covariance between, polygons. An example will show why covariance must be considered.

Suppose an overall estimate of some variable is desired from a map. In many cases, per-unit-area values associat d with
individual polygons are multiplied by polygon areas and summed over a map to obtain an overall estimate. Examples may nclude

• Soil erosion rates expressed in tons per hectare per year for terrain units in a map, multiplied by hectares in each unit and summe over a
watershed to obtain total annual soil erosion losses;

• Timber volume per acre multiplied by area of various timber stand polygons, and summed over a given tract to obtain total tract olume;
• Land values in dollars per acre assigned to different parcels and aggregated over a tax district to obtain total assessed value.

The value being sought is a linear combination of per-unit-area values and polygon areas. In cases such as these, if the p r-unit­
area values are assumed to be fixed, the variance of the overall estimate is obtained by

where

Var(Z) L (ZT' var(a;») + 2,L<J" (ZiZj •Cov(ai,a))
polygons

(2)

Z overall estimate,
Zi per-unit-area estimate for polygon i, and
ai area of polygon i.

Thus, to evaluate Equation 2, the covariance of area for adjacent polygons is necessary. Ignoring a positive covariance wi I result
in a serious underestimate of total variance, and ignoring a negative covariance will result in overestimation of total v riance.
The proposed model uses covariance between areas of triangles on opposite sides of arcs to obtain polygon covariances.

STATISTICAL DERIVATION

PRELIMINARIES

Because the coordinates of a polygon boundary are random variables, polygon area is a function of random variables. B taking
expected values and variances of sums and products of random variables, the variance of area is obtained. First, the va ance of
area of a triangle will be determined. Second, the covariance of area between adjacent triangles will be derived. By s mming
triangle variances and covariances, the polygon variance is obtained. To obtain covariance between polygons, the cov riances
between triangles in adjacent polygons will first be determined, and then summed along the arc which separates two po ygons.

As we consider a single polygon first, we can subtract the coordinates of the polygon centroid from all points compri~ing the
polygon. This effectively "centers" the polygon at the coordinate origin, but does not change the polygon area. In addition to
Simplifying subsequent algebra, it)s _helpful in a computer implementation by allowing greater precision in computa '6n. We
represent centered coordinates as X, Y: then

and

Yi = Yi - Yc

Yi = Yi - Yc

where (X<,Yc) is the centroid coordinate. Using centered coordinates in this manner introduces an additional depende cy: the
variance estimate depends upon the location of the centroid. This problem will be addressed in a later section.

INDIVIDUAL POLYGON AREA VARIANCE

The first component of a polygon that we consider is the triangle formed by two points in an arc and the centroid. T e area
of the triangle formed by points Xi' Yi and Xi + U Yi+U and the centroid (Xc, YC> is given by

Ai = ~ • (Xi - XC)(Yi+1 - Yc) - (Xi+ 1 - XC>(Yi - Yc) )

1 - - --
= 2:' (XiYi + 1 - Xi + 1Y i).

Using Equation 1, this can be written as

Ai =~. (iei + Ei)(Yi+1 + 'l)i+1) - (Xi+1 + Ei+1)(Yi + 'I);»)

= ~. (X;Ji+1 - Xi+,yi) + (Xi'l)i+1 + Yi+1 Ei - Xi+1 '1)i - YiEi+1) +(Ei'l)i+1 - Ei+1'1))).

Now, note that the nominal area of the triangle (assuming no errors) is equal to the first two terms in Equation 3: i.e.,

(3)
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We de one the remaining six terms in Equation 3 as follows:

1 1 _ 1
t1 = 2:(X;7);>I) tz = 2:(y;, ,1:";) t3 = - 2:(x;+ 17);)

1 1 1
t4 -2(9';1:";+1) ts = 2(1:";7);+1) t6 = -2(1:";, 17);)

1605

And w note: 1
= 2x;E(7); >1) 0

1
-i;+IE(7);) = 0

1
= 2E(I:";7);+l) = 0

1
= 2Yi+]E(I:";) = 0

1
-2:y;E(I:";+I) = 0

1
-2:E(I:";+I7);) = 0

Thus, king the expectation of Equation 3 yields

Eviden ly, the mean area of a triangle with coordinate errors coincides with its nominal area. If we are willing to assume that
coordi ate errors are zero, on average, then the estimated area equals the true area, on average. However, an individual area
estimat will deviate from the true area, and so it is important to assess the precision of area estimates.

The ariance of A; is

where

Var(A;)
6

2: Var(t;) + 2 • 2: Cov(ti,t)
;=1 i<j

(4)

and

1
Var(tz) = 4Y~+]07

1
Var(ts) = 40707, 1

1
Var(t3) = 4xf'l07

1
Var(t6 ) = 407+107

(5)

COV(t1,t3)

Cov(tz,t4 )

Cov(ts,t6)

(6)

and all ther covariances are zero. Substituting Equations 5 and 6 into Equation 4 yields:

Var(A;) = ~ * (r f07' , + rf+l07 - 2(x;x;<l + 9/j;'I)u;(J;+lP; + 2(1-0)0707,1) (7)

where rf = xf + yf and

The ea of a polygon is the sum of n individual triangular areas: Le.,

1 ~ -- --
A = 2*;~ (X;Y;,] - X;IIY;)

where e sum is "circular," Le., X'''1 X, and Y"+1 = YI. This expression yields a positive area when the coordinates are
indexe in a counter-clockwise direction. Individual triangles may be positive or negative in area, but the sum should be positive.
The me n polygon area should be

which i the nominal polygon area. Because errors in area of adjacent triangles are not independent, covariance terms will be
require for adjacent triangles in order to derive the variance of A. The variance of A can be expressed as the variance of a sum:
Le.,

where " " = A].

Var(A)
11 tI+ 1

2: Var(A;) + 2 * 2: Cov(Ai_I,A;)
;""'1 ;=2

(8)
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The variance of A; is given by Equation 7. To derive Cov(A;_I,A;), we begin by noting that

COV(A;_I,A;) = E(AHA;) - E(A;_I) * E(A;) = E(A;_IA;) - aHa;

and

A;_JA; = ~ * (0<-1Y; - X,)';_I) * (X;Y;, I - X;tS;))

= ~ * (X;-I X;YiY;'1 - X;_1X;'IY~ - Xfy;-Sill + XiX;'IY;_IY}

It can be shown that

1
= - *

4 (x- x- aa: P + y- y- a: ap + a,"_la," Za:'"I"IP,"_IP," - X,"-1 X;tlif,;-1 ; ; i' 1 ; ; ; 'I ;-1 ; i-I

(9)

Substituting Equations 7 and 9 into Equation 8 obtains

1 "( )Var(A) = - * L r~if" 1 + r~"if, - 2(x;x; 11 + y;)r;, I)a;a;+ IP; + 2(1- M)if,if,'l
4 ;sl

1 111-1

+-*L2 ;~Z

To simplify this expression, define

w; = X;X;'1 + y;y;, 1

z; = Xi-IX;, 1 + Y;-J5';+1

s; = ujait IPi

(11)

Substituting into Equation 10 obtains

1 "(Var(A) = - * '" rZe?-
4 LJ I "-1

;=1

Using the fact that this sum is "circular," we can rewrite this as

Var(A) = ! * i (r~(if,-1 + if,+I) + 2W;(S;_1 - Si + S;'I) + 2if,if,'1 - 2s~ + 4S;_IS; - 2Z;if,).
4 ;-1

(12)

Note that this expression for variance of area of a polygon, in terms of the coordinates, the point variances (o-,'s), nd the
correlations between errors (p/s), does not explicitly include representation of the arcs which comprise the polygon. nstead,
individual points which made the polygon boundary are used. The identification of arcs (or arc-sectors) is not necessary; h wever,
in a computer implementation of this formulation, some efficiencies will be noted if arcs are considered.

DEFINITION OF THE CENTROID

We have stated that the location of the centroid used to center the coordinates prior to variance calculations affects t e value
of the variance obtained. Therefore, it is reasonable to select the centroid location which minimizes variance, and, gi en the
foregoing assumptions, minimizes mean square error. To determine the location of the "minimum-variance centroid" (Mile), the
formula for polygon variance is written as a function of the variances of the coordinates (us), the correlations associa d with
the arcs (p's), the point coordinates (X/s and Y/s), and the centroid coordinates (Xc and YJ (see Appendix). Differential alculus
then yields the centroid coordinates Xc, Yc which minimize variance: i.e.,

"
LX;(Ui-ZO"i-lPi-Z + U i + 10"i+2Pit,)

Xc = ;~1 "

L(2 a;ai + 1P;)
;=1

"L Y;(a;-Za;-IP;-Z + a;+l ai+2P;+I)
Y

c
= :.::i~:...cl --,,, _

L (2a;a;, lP;)
;=1

:;RAM$123Z 10-11-89 10-49-06tls galIeylx
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(13)

The m nimum-variance centroid coordinate for a polygon is a weighted average of the polygon coordinates, in which the weights
are th products of us and p's associated with adjacent coordinates.

CavA ANCE BETWEEN POLYGONS

Up this point, we have been concerned with characteristics of individual polygons. However, often our interest is in an
aggre tion of polygons. In other words, what are the mean and variance of a linear combination of area estimates? It follows
simply that the sum of unbiased estimates is itself unbiased, which makes summarized area estimates unbiased under the
assum tions used here. However, variance of a total is more complex. Equation 2 indicates that total map variance is not only
depen ent on the variance of individual polygons, but on their covariance as well. Thus, some expression for the covariance
betwe adjacent polygons must be developed.

First consider polygon A as a polygon with centroid (X", Y a). It shares an arc with polygon B, whose centroid is at (XI>' YI»
(Figur 3). We consider the triangles involved in a sequence of four points on the arc: (Xi_" Yi- I ), (Xi' Yi), (Xi II' Yi II)' (Xi I 2' Yi12)'

Becaus the sequence of indexing depends on the direction (relative to a centroid), assume the direction of indexing is that which
will yi ld positive areas for polygon A (note direction of arrows in Figure 3). Thus, for polygon A, triangle i, the area is

Ai = ~ • ((Xi - Xa)(Y i 11 - Yn) - (Xi+! - Xa)(Y i - y a)).

This i plies that, for polygon B, the direction is reversed; i.e., for polygon B, triangle i, the area is

derived an expression for each of these three cases, but have shown only the first here. The remaining two follow along
Har lines3

•

and Cov(Ai,BiII)'Cov(Ai,BJ,

There e three cases to consider: these involve the covariance between triangle i in A and the three triangles in B with which
there i a dependency: triangles i + 1, i, and i -1. Thus, we will need expressions for

DERIVA ION OF Cov(Ai,Bi_ l )

By d finition, Cov(Ai,Bi_1) = E(AiBi_1) - E(Ai)E(Bi_1).

From E uation 3 et seq, we obtain Ai = ai + C1 and

where i' bi_1 are the true polygon areas, and where

cI =~. (Xi7Jill + Yi+1 Ei + Ei7Ji+l

3Derivati ns are available from the authors on request.

Xa, Ya
(Centroid of pOlygon A)

L
A i+l

FIG. 3. iagram of triangles in adjacent arc-sectors. Points on the arc are indexed in the direction which makes the area of polygon A positive.
Triangle 8i_ 1 , 8" and 8i + 1 will have non-zero covariance with triangle Ai'
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As shown earlier, E(c,) = E(c2) = a and, consequently,

E(Ai ) = a i

E(B i _ l ) = b i - l

E(AiBi_l) = aibi_I + E(c,c2 )

Thus,

Cov(Ai,Bi_l) = E(C1C2)

= ~. E( (XiTJi' I + Yi' lEi + EiTJi+1 - YaEi - XaTJi'l - Xil,TJi - YiEi+l - Ei'l TJi + YaEi>l + XaTJ;)

• (XiTJi-1 + Yi-l Ei + EiTJi-l - YbEi - XbTJi-1 - Xi_l TJi - YiEi-1 - Ei_, TJi + YbEi- l + XbTJi))

= ~ • (-Xi-1XiE(TJiTJi') + XbxiE(TJiTJi'l) + Yi-IYi"E(Ef) - Y/JYi'lE(Ef) - YiYi'IE(Ei-1Ei) + YUYi'IE(EHEi)

- E(Ei-IEiTJiTJi, ,) - YaYi-IE(Ef) + YaY/,E(Ef) + YaYiE(EiEi-l) - YaY/,E(Ei_IE;) + XaXi-IE(TJiTJi, I)

- XaXbE(TJiTJi, I) - XiXi'1 E(TJi-ITJi) + XV'i'l E(TJi-1TJi) + Xi_IXi+1 E(TJf) - X/,xi,l E(TJf)

- Yi-IYi E(EiEi'l) + YbYiE(EiEi+l) - E(EiEi,ITJi-ITJi) + YaYi_IE(EiEi,l) - YaY/,E(EiEi'l)

+ XzxiE(TJiTJi-') - XaXbE(TJi-ITJi) - XaXi_IE(TJf) + XaXuE(TJf))

+ YUYi'IUi-IUiPi-1 - Ui-loTUi'lPi-IPi - YaYi-,oT + YaY/>oT + YaYiUi-1UiPi-1

- Ya Y/>Ui-,UiPi-l + XaXi-1UiUi+1Pi - XaXbUiUi , IPi - XiXi ' IUi-IUiPi-1

+ X/,xi, IUi-IUiPi-l + Xi_lXi, loT - XbXi'loT - Yi-1YiUiUi, IPi + Y/,YiUiUi'lPi

- Ui-loTUi,IPi-1Pi + YaYi-IUiUi , ,Pi - YaY/>UiUi,lPi + XaXiUi_IUiPi_1 - XaXbUi-1UiPi_l

- XaXi-1oT + XaXboT)

=~. (oT(Yi-1Yi'1 - YbYi,1 - YaYi-1 + YaYb) + oT(Xi-IXi,1 - XV'i'l - XaXi- l + XaX/,)

- Ui-IUiPi-I(YiYill - Y/>Yi'l - YaYi + YaYu) - Ui-IUiPi-I(XiXi'l - XV'i'l - XaXi + XaXb)

- UiUi, IPi(Xi-1Xi - X/>Xi - XaXi- l + XaX/» - UiUi , IPi(Yi- IYi - Y/>Yi - YaYi-1 + YaY/,)

- 2Ui- loTUi'lPi-1Pi)

= ~. (oT ((Yi'l - Ya)(Yi-1 - Y b) + (Xi'l - Xa)(Xi- 1 - Xb)) - Ui-1UiPi-I((Yi'1 - Ya)(Yi - Y b)

The derivation of Cov(Ai,Bi) follows similarly, yielding

Cov(Ai,Bi) = ~ • ( - 0:;( (Yi 'I - Yb)(Yi , I - Y a) + (Xi' I - X/» (Xi " - Xa))

oT'l ((Xi - X/»(Xi - Xa) + (Yi - Yb)(Yi - Ya)) + UiUi , IPi( (Xi - Xa)(Xi , I - Xb) + (Xi - Xb)(Xi , I - Xa))

+ UiUi , lPi( (Yi - Yb)(Yi, I - Y a) + (Y" 1 - Y/,)(Yi - Ya)) - 2oT" oT(l - pf)).
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Cov(Ai, Bi• I) = ~ • ( aT. I ((Xi - X")(x i•Z - Xb) + (Yi - Y")(Yi. Z - Yb))

- aiai+1Pi( (Yill - Y")(Yi+Z - Yb) + (XiII - X")(x i•Z - Xb))

-ai+1 ai.ZPi+l((Xi - X")(Xi•, - Xb) + (Yi - Y")(Yi.1 - Yb))

- 2aiaT.]ai.ZPiPi.I)).
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SUMMI G TRIANGLES IN AN ARC

We ave developed expressions for the three cases of covariance between a triangle in one polygon and the triangles in an
adjace. t polygon which touch it. The next step is to sum the covariances for all traingles formed by an arc. Assume that an arc
which eparates polygons A and B has 111 + 1 points. There will be 111 triangles in the arc-sector in polygon A (Ai' i = 1 ... 111) and
111 tria gles in the arc-sector in polygon B (Bi , j = 1 ... 111). The covariance between polygons A and B is the sum of the triangle
covari nces: i.e.,

Co (A,B) = Cov(A
"

B]) + Cov(AuBz) + Cov(Az,B]) + Cov(Az,Bz) + Cov(Az,B3) + Cov(A3,Bz) + Cov(A3,B3) + Cov(A3,B4)

+ ... ... Cov(Ai,Bi_l ) + Cov(Ai,B;) + Cov(A;,Bi, I) +... ... Cov(A",_uB",_z) + COV(A",_I,B"'_l) + Cov(A",_"B",)
+ Cov(A""B",_, + Cov(A""B",).

Or, if e define Cov(AuBo) oand Cov(A""B",.,) = 0, we can use the summation

Cov(A,B) = i~ ( Cov(Ai,Bi_l ) + Cov(Ai,B;) + COV(Ai,Bi•,)). (14)

Now, efine
Xai- 1 = Xi- 1 - Xa

xu; = Xi - Xa

Yai-l = Yi-I - Ya
Yai = Yi - Ya

Xbi - I

xb;

Ybi-I
Ybi

= Xi_I - Xb

= Xi - Xb

= Yi-l - Y b

= Yi - Yb

etc. ..

Then, ubstituting the individual covariance terms into Equation 14 and rearranging yields

- 2ai-,aTai.,PiPi. I)
-(a2i(Xai + IXlJil I + Yail lYbil I) + aT,-\(XaiX lJi + YaiYlli)- Uj(JirlPi(XaiXbi+l + YniYbill)

aiai.,p;(XaiIIXbi + Yai+1Ybi) + 2aTaT" (1 - pn) + (aT,,(XaiXbi.z + YaiYbi,Z)

ajait IP;(Xail!Xbi+2 + Ya;)'bi-tZ) - ail l(Ji+2Pil I (XaiXbi I I + Ya;)'bill) - 2uia7tl(Ji I ZPiPill»)

where i is as in Equation 11. While this expression is rather imposing, considerable simplification has been obtained through
the us of matrix notation, the development of which is beyond the scope of this paper, but which is available from the authors
on req est.

DISCUSSION

POTEN IAL ApPLICATIONS

Som mention of potential applications of the variance expression may help to encourage further research in this area. Analysis
of the arianee of polygon areas may provide answers to such questions as

• W at is the effect of digitizing technique (point versus stream mode) on polygon area variance?
• W at is the relationship between polygon complexity or shape and polygon area variance?
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• What effect does a reduction in positional accuracy of points have on polygon area variation?
• How does the degree of area variation in a map compare to the degree of attribute variation? In other words, which would best mprove

the accuracy of a cartographic modeling application: improved sampling for more precise attributes or improvements in mapping r more
precise boundaries?

As stated earlier, one of the most important uses of a model of polygon variance may be to further study the propag tion of
errors in overlay analysis. Sensitivity studies can be performed, which assign values of u based upon source map scale i order
to assess the effect of overlaying maps of varying scale and precision. Knowledge of area variance alone may be informat ve and
helpful to the cartographic modeler. For instance, suppose a number of sites are being analyzed for recreational devel pment
potential, and they are compared on the basis of a score resulting from a cartographic model. The variance of the score c uld be
calculated as in Equation 2. If two sites have very similar scores, it would appear that an arbitrary choice of one or th other
could be made. However, if one site were to have a considerably lower variance associated with its score, it may be more
desirable choice because of the reduction in uncertainty.

DETERMINING MODEL PARAMETERS

The expressions for polygon variance and covariance depend upon the coordinates and the us and p's which indic te the
variability and correlation of points in an arc. Several possibilities exist for selecting values of u. In Chrisman's (1982) ork in
this area, close examination of the steps involved in producing a map provided deductive estimates of individual error comp nents,
which were propagated to arrive at an overall estimate of positional accuracy. Such an approach has been suggested in the Digital
Cartographic Data Standard (Morrison, 1988). Another technique is possible for maps with an accuracy standard stated i terms
of an error distance and probability (e.g., 90 percent of tested points fall within 1/20 inch at map scale). If a normal distr bution
is assumed for points, then the probability and distance will imply a standard deviation for points (Keefer et aI., 1988). more
costly but more reliable procedure would involve comparison of features on the map with phenomena in the field. Such veri ication
is usually restricted to testing well-defined points, which may exhibit different error structures from poorly-defined featu es.

The choice of the correlation coefficient, p, may be more difficult. In an analysis of digitizing error, Keefer et aI., (198 ) used
time series analysis to detect serial correlation of errors. Similar techniques may be used to evaluate correlation of overall coo dinate
errors. One advantage of an algorithm for calculating polygon variance is the capacity for performing sensitivity analyses i order
to determine the impact of correlation on the resulting variance.

In some cases, a single u and p may suffice for all arcs in a map. In other cases, knowledge about the ability to locate arious
boundaries may suggest the use of different parameters for different arcs. For example, in maps derived from interpret tion of
color-infrared photographs, some boundaries (such as those between water and land) may be discernible with much greater
precision than other boundaries (such as those between vegetation types with similar spectral signatures). In these in tances,
assumption of different us for the different arcs may be justified. In any case, it is logical to consider the values for u a d p to
be attributes of an arc, and to be maintained as such when overlaying polygons. Then, the values may be made avai able to
computer programs which could calculate polygon variances for the resulting overlay map.

DISTRIBUTION ASSUMPTIONS

Until now, we have not suggested a statistical distribution for polygon area; derivations of variance and covariance ha e been
made without assuming any specific distribution for point location errors. However, knowledge about variance of polyg n area
could be more useful if the distribution is known. Then, the probability of certain events occurring may be inferred. For e ample,
"sliver" polygons which arise from overlay and intersection of similar arcs present a problem in interpretation. Do such p lygons
represent significant features on the ground, or are they artifacts of the map overlay process? Generally, such polygons a e small
in size. In fact, some software modules provide for the arbitrary elimination of polygons smaller than some threshold a ea, on
the assumption that they must be insignificant. If the distribution of polygon area were known, a p-value could be 0 tained
which would indicate the probability of getting a sliver of the observed size when, in fact, none exists. Such a stateme t could
be useful in the determination of which sliver polygons to eliminate.

An assumption of normal errors in point location has been suggested by Chrisman (1982), and seems quite reasona
could express this as

Then,
and

E; - N(0,u7)
X; - N(x;,u7)
(X; - XJ - N(X;,U7)

7); - N(0,U7)·
Y; - N(y;,u7)
(Y; - YJ - N(y;,U7).

Now, the formula for area of a triangle (Equation 13) can be rewritten as a function of a random determinant: i.e.,

(X'+1 - Xa)I
(Y"1 Y a)

If we assume that adjacent coordinates are independent and normally distributed, we can apply the findings of Nicholso
and Nyquist et al. (1954), who reported on the mean and variance of random determinants, and noted that they c
apprOXimated by a normal distribution. Indeed, if p=O, our expression for variance of triangle area in Equation 7 agrees ith the
variance of a 2 by 2 random normal determinant described by Nicholson (1958). Thus, in the absence of correlation b tween
coordinate errors, triangle areas are approximately normally distributed and the polygon area is the sum of n near-normal ndom
variables. Because these triangles are certainly not independent, even if the coordinate errors are, the Central Limit The rem is
not strictly applicable. However, we propose that a normal distribution may be a reasonable approximation. In fact, preli inary
simulations of errors in polygon boundaries have resulted in distributions of area that are statistically indistinguishable fr m the
normal. Caution is needed when making such assumptions about the distribution of polygon area; it is possible that p lygons
composed of only a few points (as most sliver polygons are) may be poorly modeled by the normal distribution. Further eva uation
of the distribution of area through simulation is being conducted.
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SUMMARY
Anal sis of the errors in GIS systems has been a high research priority in recent years. The desire for a means of characterizing

the un rtainty of estimates derived from GIS analyses has been expressed by a number of authors (Bennett, 1977; Aronoff, 1982;
Chrism n, 1984). While positional accuracy statements have been discussed at length, statements regarding the uncertainty of
area es mates have been rare.

The bjective of this work has been to characterize the mean and variance of polygon areas computed in a vector GIS. These
values re vital if GIS are to continue to be used in everyday decision-making. The arc-node data structure was chosen as a
frame rk due to its current popularity and topological orientation, which allows locational precision to be stored as an arc
attribut . Based on a few fundamental assumptions regarding the positional accuracy of point locations, it has been possible to
derive xpressions for variance of polygon area as a function of random variables. Because choroplethic maps involve a number
of cont' uous polygons, total map variance requires an expression for covariance of area of adjacent polygons. Because both of
these e pressions required the use of a polygon centroid, a consistent means of locating a centroid location which minimizes the
varianc of polygon area was described. A centroid-insensitive expression would be appealing; however, it may be more difficult
to deve op covariance expressions in the absence of such reference points. The undesirability of a centroid-oriented expression
may be itigated by evidence that it reliably predicts the variability of area observed in simulations of error-influenced polygons.

The ailability of expressions for the variance of polygon area presents an opportunity for considerable further research in GIS
errors d their implications for decision-making. Some examples include investigations into error propagation in map overlay;
effect 0 polygon size, shape, and complexity on area errors; evaluation of map accuracy standards; and sensitivity analysis for
determ' ing the impact of individual map error components.

Addi 'onal work is needed to properly apply the expressions developed herein. The equations require the specification of point
variabil y and the correlation between coordinate errors at adjacent points. More study is needed to evaluate the sensitivity of
these a umptions. Methods for determining reasonable values for a and p will need to be examined. Finally, before the expression
of poly on variance can be widely used, software must be developed to incorporate accuracy assumptions as arc attributes, and
calculat and report polygon variances and covariances in a useful form.

Whil the expression for polygon variance may be useful to those concerned with the reliability of GIS analyses, additional
express ons are needed. Statistical characterization of errors in distances (between points and between a point and an arc) and
lengths re being developed using the techniques reported here. However, as with most developments in information processing,
the ben ficial application of these techniques will require users who are aware of, and concerned about, the quality of information
being u ed and produced by geographic information systems.

REFERENCES

Aronoff, S., 1982. Classification accuracy: a user approach. Photogrammetric Engineering and Remote Sensing 48(8):1309-1312.
Bailey, bert G., 1988. Problems with using overlay mapping for planning and their implications for geographic information systems. Environ-

men I Management 12(1):11-17.

Bennett, .c., 1977. The cartographic data base-reliability or chaos? Proceedings of American Congress on Surveying and Mapping, pp. 675-680.
Bondess n, Lennart, 1986. Estimation of Standard Errors of Area Estimates of Forest Compartments Obtained by Traversing. Swedish University of

Agri ultural Sciences, Section of Forest Biometry, S-901 83 Umea, Sweden, Report 24, 49 p.

Burroug , P.A., 1986. Principles of Geographical Information Systems for Land Resources Assessment. Oxford University Press, New York, 193 p.
Chrisma , Nicholas R., 1982. Methods of Spatial Analysis Based on Error in Categorical Maps. PhD dissertation, University of Bristol.
--, 984. The role of quality information in the long-term functioning of a geographiC information system. Cartographica 21:79-87.
--, 987. The accuracy of map overlays: a reassessment. Landscape and Urban Planning 14:427-439.

Chrisma , Nicholas R., and Brian S. Yandell, 1988. Effects of point error on area calculations: a statistical model. Surveying and Mapping 48(4):241­
246.

Goodchi d, Michael, and Odette Dubuc, 1987. A model of error for choroplethic maps, with applications to geographic information systems. Auto
Cart 8, pp. 165-174.

Keefer, renton J., James L. Smith, and Timothy G. Gregoire, 1988. Simulating manual digitizing error with statistical models. GiS/LIS '88
Proc edings, pp. 475-483.

MacDou all, E.B., 1975. The accuracy of map overlays. Landscape Planning 2:23-30.

McAlpin, J.R., and B.G. Cook, 1971. Data reliability from map overlay, Proceedings of the 43rd Congress of the Australian and New Zealand Association
for t e Advancement of Science, Brisbane, Australia.

Mead, A., 1982. Assessing data quality in geographiC information systems, Remote Sensing for Resource Management Oohannsen and Sanders,
ed.) Soil Conservation Society of America, pp. 51-62.

Morriso Joel, ed., 1988. The proposed standard for digital cartographic data. The American Cartographer 15(1).

Neumyv kin, Yu. K., and A.I. Panfilovich, 1982. Specific features of using large-scale mapping data in planning construction and land farming.
Proc dings AUTO·CARTO 5, pp. 733-738.

Nicholso , W.L., 1958. On the distribution of 2 x 2 random normal determinants. Annals of Mathematical Statistics, 29:575-580.
Nyquist, H., S.O. Rice, and J. Riordan, 1954. The distribution of random determinants. Quarterly of Applied Mathematics 12(2):97-104.
Peuker, ., and N. Chrisman, 1975. Cartographic data structures. The American Cartographer 2(1):55-69.
Walsh, S ephen J., D.R. Lightfoot, and David Butler, 1987. Recognition and assessment of error in geographic information systems. Photogrammetric

Engi eering and Remote Sensing 53(10):1423-1430.



1612 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1989

APPENDIX

The derivation of the minimum-variance centroid begins with an expression for polygon area variance as a function of coor­
dinates, as and p's. Rewriting the formula for the variance of a polygon of n points (Equation 12) yields

where

4>x oT+, (Xt - 2XiXc + X~) + oT(Xt" - 2Xi+, Xc + Xn - 2UiUi+ ,Pi(XiXi+, - XiXc - Xi.,Xc + Xn

+ 2UiUi+,P;(Xi_,Xi - XiXc - Xi_,Xc + X~) + 2ui_,UiPi_,(XiXi'l - XiXc - Xi' ,Xc + X~)

- 2oT(Xi-,Xi" - Xi-1XC - Xi HXc + X~)

4>y = oT.,(Yt - 2YiYc + Y~) + oT(Yt" - 2Yi+ 1Yc + Y~) - 2UiUi+1Pi(YiY;+' - YiYc - Yi"Yc + Y~)

+ 2UiUi+1P;(Y;_,Yi - YiYc - Yi-IYc + Y~) + 2Ui_1U;P;_,(Y;Yi" - YiYc - Y;"Yc + Y~)

- 2oT(Yi-,Y;., - Yi-,Yc - Y;"Yc + 1';)
c/> = 2oToT,,(1 - pt) + 4Ui- I oTUi+,Pi-1Pi·

The derivative with respect to Xc is

(15)

av ac/> 1 "
axc = ax: =.2' i~ (-oT.,Xi + oT.,Xc + oTXi-' - oTXc + UiUi+lPiXi.1

- UiUi+,PiXi_' - Ui-,UiPi-,Xi - Ui-IUiPi-,Xi+1 + 2ui_, iPi-'Xc)·

Setting the derivative to zero and rearranging yields

1
= - *

2
"I X;( - oT, 1 - Ui_,UPi_')

i-I

By making the following substitutions:

11 11

I Xi-loT = I XioT,,;
;=1 ;=1

n 11

LXi_10"jO"j lIP,. = 2:xjO"j I 1 U'i + 2Pi; + 1;
;=1 ;=1

"2:X i -t- 10"iO"i+lPi
;=1

11 II

IXiUi-,UPi-'; Ix; HUj -lUiPi-l
;=1 ;=1

"
IX;Ui-ZU;-,Pi-Z
;""1

Thus, we have "LXi (0";-2 0",.-1 Pi-2 + 0";+10";+2 Pi+l)
Xc = i-I"

I (2Ui Ui' 1 p;)
;=1

The procedure for <!>y follows similarly, yielding

"
2:Y;(Ui - ZO"i-lPi-2 + a j 110"i+2Pi 11)

Y
c

= c::i =:..!.' ,, _

I(2uiUi.,Pi)
;=1

To verify that this is a minimum, we can take the second partial derivative of Equation 15: i.e.,

The fact that this expression (and the similar one for :~~ ) is positive (for P; > 0) indicates that the solution obtained is a mi imum.
c


