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ABSTRACT: An accurate and efficient way to identify channels which will improve accuracy of land-cover classification
from Landsat data has been derived. Results indicate that the Brightness Value Overlapping Index (BVOI) is a good
measure of the degree of overlap in brightness values between cover types. A channel selection process uses this
overlap information for all cover types in each single channel without complex mathematical calculations. The BVOI is
simple to calculate and the concept is easy to understand when applied in land-cover/land-use classification of remote
sensing data.

TABLE 1. MINIMUM AND MAXIMUM MSS BRIGHTNESS VALUES FOR TEN

COVER TYPES.

System. This cover map was prepared on a 1:24,000-scale or­
thophoto base using 1:24,OOO-scale color-infrared aerial photo­
graphs taken in June 1978, supplemented with "manual"
interpretation of color composite images of the MSS scene
(1:153,400 scale) and TM scene (1:85,000 scale).

Ten cover types were selected, and sample data were ex­
tracted from the center of each cover type for both MSS and TM
data. These ten cover types were identified on the cover map
in accordance with the Michigan Land CoverlUse Classification
System (MLUCRC, 1975), and included seven Level I and five
Level II classes:

1 URBAN and BUILT UP
2 AGRICULTURAL LAND
3 RANGELAND
4 FOREST LAND

41 Broadleaved Forest (generally deciduous)
42 Coniferous Forest
43 Mixed Conifer-Broadleaved Forest

5 WATER
6 WETLANDS
7 BARREN

72 Beaches and Riverbanks
73 Sand Other Than Beach

Tables 1 and 2 show the minimum and maximum brightness

INTRODUCTION

CLASSIFICATION WITH MULTI-VARIATE INFORMATION in­
creases the accuracy for land-coverlland-use when multiple

channels are properly selected. In some cases, as the number
of channels is increased when a set of data is classified, the
computing time and cost increase rapidly while the accuracy of
classification may not be improved (Toll, 1984). When analyzing
Landsat data with several spectral bands, a judgement should
be made to determine which channels are most effective, ac­
curate, and economical in discriminating each class from all
others (Wang, 1977; Jensen, 1979; Sheffield, 1985; Ibrahim and
Hassan, 1987).

A subset selection approach using a stepwise discriminant
program was given by James (1985) with a discussion of advan­
tages and disadvantages. The stepwise process would select a
"best subset" of size m from n multispectral channels (m < n).
Using the stepwise discriminant function can be costly if m and
the number of multispectral channels are large. Swain (1978)
recommended a different strategy: "Select the set of features
for which the minimum separability between any pair of classes
is largest." The measurements of separability recommended were
Divergence and J-M distance. Both measures require complex
calculations resulting in relatively high cost. A computer graphic
method was recommended by Jensen (1979) for analyzing the
degree of overlap among classes in training statistics. Because
the method was a simulation of three-dimensional space, he
could not display more than three channels at one time. Thus,
it is desirable to have a method for selecting a subset of the
features with fewer limitations and simply defined criteria
(Carlson et al., 1987).

The range of brightness values (often called digital numbers
or digital counts) for anyone cover type, in anyone channel,
is not unique. Brightness value ranges of different cover types
may overlap. Such overlap makes it difficult to assign to a spe­
cific cover type pixels having brightness values in an overlap
zone. As the amount of overlap increases, more and more pixels
cannot be classified into a correct cover type, and classification
accuracy decreases. In order to have a fast and simple procedure
for selecting the optimum number from the total number of
channels available, a measurement of degree of overlap among
classes was desired.

DESCRIPTION OF DATA

This study was based on Landsat MSS data from 3 June 1976
(image 10: E-2498-15460) and TM data from 18 October 1982
(image 10: E-40094-15554) in northwest lower Michigan. Ref­
erence data were taken from a cover map of the study area
previously prepared for the Michigan Resources Information
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Cover MSS Channels

Type Range 1 2 3 4

Urban Minimum 17 15 39 19
Maximum 32 39 62 31

Agriculture Minimum 16 13 59 30
Maximum 29 38 88 51

Rangeland Minimum 19 19 39 19
Maximum 32 44 59 30

Broadleaved Minimum 16 12 70 38
Maximum 19 15 88 47

Conifer Minimum 15 13 38 18
Maximum 22 20 64 34

Mixed Forests Minimum 15 12 45 23
Maximum 18 15 59 31

Water Minimum 11 8 6 0
Maximum 31 27 12 3

Wetland Minimum 13 13 20 8
Maximum 19 16 62 32

Beach Minimum 19 13 11 4
Maximum 34 39 46 24

Sand Minimum 32 43 34 13
Maxjmum 58 87 98 41
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TABLE 2. MINIMUM AND MAXIMUM TM BRIGHTNESS VALUES FOR TEN COVER TYPES.

where

Ft,

values of samples for the ten cover types selected from MSS and
TM data, respectively, These values were used to determine the
overlap among the cover types in the analysis of the MSS and
TM data for each single channeL

CALCULATION OF BVOI ALGORITHM

To obtain a quantitative measure of the amount of overlap,
the range of brightness values within each cover type was com­
pared with the histogram for all cover types within the data set
used for classification. The result provided a Brightness Value
Overlap Index (BVOI) which was calculated in the following
manner:

A. For each channel:
(1) Determine the minimum and maximum brightness values

of each cover type from sample data of each spectral chanel.
(2) From the histograms of the whole data set, determine the

accumulative percentages of all pixels having brightness val­
ues ranging from the minimum to maximum for each cover
type.

(3) Repeat A(l) through A(2) for each cover type in each chan­
nel (Tables 4 and 5).

B. To compute the BVOI:

(1) Determine the average of the accumulative percentages of
all channels for each target (sum values across table pre­
pared in step A(3) and divide by the number of channels).

(2) Sum the accumulative percentage for all targets in each
channel, and sum the averages of all channels for each target
(vertically down the table prepared in step A(3)).

(3) Divide the total accumulative percentages for anyone chan­
nel by the sum of averages of all channels for each target.
This value is the BVOI for that channel.

(4) Divide the sum of the averages of all channels for each target
by the number of targets. This value is then the BVOI for the
given data set.

The mathematical description is as follows:

Fj•k = ~ !(Xi,k)
i-1

TM Channels
2 3 4 5 6 7
19 26 12 7 100 4
34 58 54 44 104 21
23 19 53 57 100 17
27 26 74 63 102 23
21 21 35 38 100 14
31 38 42 76 106 45
20 18 46 32 102 9
25 25 57 49 104 18
18 13 34 17 102 4
21 18 44 27 106 11
20 17 31 24 96 9
23 22 50 44 103 16
16 12 7 4 100 1
25 16 9 8 103 6
17 14 14 13 100 4
21 23 35 53 106 22
21 20 31 44 100 23
39 45 47 75 102 47
25 25 26 48 100 24
53 70 71 121 102 74

Xi,k (i)th brightness value within a class of channel (k),
!(Xi,k) number of pixels with brightness value Xw
Nj,k the range of brightness values within class (j) of

channel (k),
Fj,k accumulative frequency for class (j) of channel (k),
M number of spectral channels,
Faj average accumulative frequency over all channels

of class (j),
N number of classes in the data set, and
F, total average accumulative frequency over all

a classes,

Fo was defined as the accumulative frequency for the whole
data set of a single channel, which always equalled 100 percent,
and Ftk was defined as the total accumulative frequencies over
all classes of channel (k).

If overlap does not exist among any classes of channel (k),
then

The degree of the overlap among classes was determined as

BVOI F,/F'a for channel (k), and

BVOI Ft/N for the data set.

Table 3 illustrates the relationships among variables. The fol­
lowing examples may help the reader better understand the
procedure~

In order to determine the accumulative frequency for water
in MSS channell, the minimum and maximum brightness val­
ues were selected from the redundant sample data, in this case,
11 and 31 (Table 1). The accumulative frequencies were then
determined from the total number of pixels in the range from
minimum value of 11 to a maximum brightness value of 31 for
water. The accumulated frequency from 11 to 31 was 88 percent.
Therefore, 88 percent of the pixels in the data set have bright­
ness values which could be classed as water, based on these
data. This is the value shown for water under channell of the
MSS data in Table 4.

N

Ftk = 2: Fj,k = Fa = 100 percent.
j~1

If overlap exists among any classes of channel (k), then
N

F'k = 2: Fj •k > Fo = 100 percent.
j~1

Cover
Type Range 1

Urban Minimum 16
Maximum 75

Agriculture Minimum 54
Maximum 62

Rangeland Minimum 56
Maximum 70

Broadleaved Minimum 52
Maximum 58

Conifer Minimum 49
Maximum 56

Mixed Forests Minimum 51
Maximum 59

Water Minimum 49
Maximum 69

Wetland Minimum 51
Maximum 58

Beach Minimum 56
Maximum 80

Sand Minimum 61
Maximum 107
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TABLE 3. ILLUSTRATION OF RELATIONSHIPS AMONG VARIABLES OF BVOI.

Accumulative Percentage of
Brightness Value Distribution

Target Channell Channel 2 Channel 3 Channel 4 Average

1 Urban F,., F'.2 Fl.3 F, .• Fa
2 Agriculture F2., F2.2 F2.3 F2.4 F'a2
3 Rangeland F3., F3•2 F3•3 F3•• F,
4 Broadleaved F•. 1 F•.2 F•.3 F•.4 F

3'.Conifer F5• 1 F5•2 F5•3 F5•• Fa
Mixed Forests F6• 1 F6•2 F6•3 F6 .4 F

5

a65 Water F7• 1 F7•2 F7•3 F7.4 Fa
6 Wetland F8• 1 F8•2 F8•3 FSA

F 7
aB

7 Beach F9• 1 F9 ,2 F9•3 F9•• Fa
Sand FlO., FIO•2 FIO,3 FlO.• F 9

{1,1O

Total F
fl F'2 Ff3 F,. Ff,

BVor F,IF, F,jF'a F/F'a F,IF'a F,j10I ,

TABLE 4. BVOI VALUES FOR MSS DATA OF TEN COVER TYPES.

Accumulative Percentage of
Brightness Value Distribution

MSS Channel
Target 1 2 3 4 Average

1 Urban 68 58 52 51 57
2 Agriculture 80 79 27 38 56
3 Rangeland 45 39 48 48 45
4 Broadleaved 44 35 19 19 29

Conifer 58 51 55 56 55
Mixed Forests 39 35 41 40 38

5 Water 88 80 12 11 47
6 Wetland 48 38 56 57 49
7 Beach 46 80 22 29 44

Sand 12 12 83 72 44
Total 528 507 415 421 464
BVO! 1.14 1.09 0.89 0.91 46.40

TABLE 5. BVOI VALUES FOR TM DATA OF TEN COVER TYPES.

Accumulative Percentage of
Brightness Value Distribution

TM Channel
Target 1 2 3 4 5 6 7 Average

1 Urban 91 83 28 74 48 86 70 68
2 Agriculture 51 24 41 21 12 59 21 32
3 Rangeland 47 57 38 32 41 98 41 50
4 Broadleaved 51 56 44 21 26 43 40 40

Conifer 41 41 28 39 18 55 37 37
Mixed Forest 59 45 42 51 34 80 35 49

5 Water 78 73 20 11 11 78 16 41
6 Wetland 53 42 63 20 58 98 72 58
7 Beach 55 64 52 47 36 59 16 47

Sand 31 31 32 80 38 59 22 41
Total 557 516 388 396 322 715 370 463
BVO! 1.20 1.11 0.84 0.86 0.70 1.54 0.80 46.30

The minimum and maximum brightness values of the conifer
sample data were found to be 15 and 22. To get the accumulated
percentage of the brightness values associated with conifers,
the frequency values from 15 to 22 at channel 1 were added.
This provided the accumulative frequencies of 58 shown for
conifer under channel 1 of the MSS data in Table 4. The same
procedure was used for other cover types and channels. The
BVO! values for each channel can be calculated after all of the
accumulated percentages have been determined.

RESULTS AND DISCUSSION

The BVO! values shown in Tables 4 and 5 were found to be
closely related to classification accuracy. When the BVO! value of
a single channel was larger than 1, the overlap between classes
was relatively large. If the BVOI value was less than 1, a relatively
small overlap was found. Classification based on the channels
with small values of BVO] should give a higher accuracy.

For each single channel, Tables 4 and 5 show not only the
BVO] values, but also reveal the primary cover types which in­
fluence classification accuracy. In analysis of multiple spectral
channels, the BVO] value will be helpful in deciding which chan­
nels can be used to obtain high classification accuracies and
which channels should be put aside as less useful. Especially
when a single channel is used to produce a classified image,
the relationship of classification accuracy to the BVO! value should
prove helpful.

The values shown in Tables 4 and 5 are also useful for analysis
of cover types. The large value for water in MSS channel 1 and
TM channell indicates a large variance which resulted from the
high water penetration and bottom reflectance of visible light in
shallower water. Water has smaller values in MSS channels 3 and
4 (10, 10 on Table 4) and in TM channels 4, 5, and 7 (11, 11, and
16 on Table 5). These results indicate that water may be well
separated from other cover types when these channels are to be
used for land-coverlland-use classification (Trolier and Philipson,
1986). While this example is a simple one, the same principle and
analysis can be applied for other cover types and used for selection
of channels to obtain better accuracy of classification.

Because channels with smaller BVO] will experience less over­
lap, they could be selected and combined for an efficient clas­
sification. It is necessary to consider correlation between channels
and avoid combinations in which both channels have small BVO]
and high correlation. The problem is particularly acute when
large numbers of correlated spectral channels are used. Highly
correlated channels may be removed while minimizing infor­
mation loss (Toll, 1984). Channels with smaller BVO] should not
be combined if highly correlated with each other because they
carry similar information for all classes.

Tables 6 and 7 show the correlation coefficients for both MSS
and TM data. For MS5 data, channels 1 and 2 and channels 3
and 4 were highly correlated. The correlation coefficients for
visible channels and infrared channels are 0.9659 and 0.9593,
respectively. Thus, there are only two groups of channels which
give different information (Crist and Cicone, 1983).

For TM data, the inter-channel correlation coefficients ranged
from - 0.3502 to +0.9470. Correlation between channel 6 (ther­
mal channel) and all other channels (reflective channels) except
channel 4 was negative and low. The highest correlation was

TABLE 6. CORRELATION MATRIX FOR FOUR CHANNELS OF MSS DATA.

Channel 1 2 3 4
1 1.0000
2 0.9659 1.0000
3 0.3636 0.4344 1.0000
4 0.1274 0.2001 0.9593 1.0000

TABLE 7. CORRELATION MATRIX FOR SEVEN CHANNELS OF TM DATA.

Channel 1 2 3 4 5 6 7
1 1.0000
2 0.8022 1.0000
3 0.2267 0.7344 1.0000
4 0.0981 0.3246 0.3363 1.0000
5 0.6018 0.7952 0.6417 0.6749 1.0000
6 -0.3502 -0.3418 -0.1053 0.0395 -0.1128 1.0000
7 0.6992 0.8803 0.7145 0.4603 0.9470 -0.19631.0000
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between TM channels 5 and 7; both channels are middle infrared
bands. There is at least one more dimension of TM data than
MSS data, as discussed by Bartolucci et al. (1983).

Table 8 shows the results of several classifications using dif­
ferent combinations of three channels for both MSS and TM data
with smaller or larger avo!.

For the MSS data, channel 1 had the highest and channel 4
the lowest BVO!. Classification accuracies varied by only 3 per­
cent between a low of 70 percent when channels 1, 2, and 3
were used and a high of 73 percent when channels 2, 3, and 4
were used. Using all four MSS channels yielded a classification
accuracy of 72 percent. Thus, there was no advantage in using
all four channels rather than using only channels 2, 3, and 4.
Comparison of those classification accuracies indicated that the
combination of channels with different BVOI for MSS data give
only 3 percent difference in accuracy. The phenomenon can be
explained by the correlation coefficients between channels. From
Table 6, MSS channel 1 is highly correlated with channel 2, and
channel 3 highly correlated with channel 4, and there are only
two independent data channels.

For the TM data, channels 1 and 2 had higher BVOls than
channels 3, 4, and 5. Classification accuracy increased from 71
percent when channels 1, 2, and 3 were used, to 81 percent
when channels 3,4, and 5 were used. Using all seven channels
did not result in higher classification accuracy than was achieved
with only channels 3, 4, and 5 at lower computation cost. From
Table 7, the correlation between TM channels is lower than with
MSS channels. The gain in classification accuracy when channels
with high BVOI are dropped from the analysis is seen to be
greater when correlation between channels is lower.

These results show that high correlation between remote
sensing channels decreases the dimensionality of the data and
has an influence on optimum channel combination. Hence, se­
lection of channels with BVOI must involve considerations of
correlation between channels.

The histogram used for calculation of accumulative percent­
age of each cover type in a single channel may be derived from

TABLE 8. CLASSIFICATION ACCURACY FOR MSS AND TM DATA AFTER

ApPLYING BVOI FOR CHANNEL SELECTION.

Accuracy
(%)

MSS or Target
TM Channel BVOI Overall Average

1 1.18
MSS 2 1.13 70.0 73.2

3 0.87
2 1.13

MSS 3 0.87 73.0 74.2
4 0.86

MSS 1 234 46.4 72.0 74.0
1 1.20

TM2 1.11 71.0 70.6
3 0.84
3 0.84

TM4 0.86 81.0 80.2
5 0.70

TM1234567 46.3 79.0 80.0

either the entire subscene or all of the sample data. If the fre­
quency values in the table prepared in step A(3) change slightly,
the resulting BVOI will not be significantly different. The BVO!
value may change when a different number of channels from
the same data source are used. Whatever the decision, the more
remote sensing channels employed, the greater is the value of
the BVOI method of channel selection.

CONCLUSION

Knowledge of the degree of overlap in a data set is meaning­
ful for land-cover/land-use classification with remote sensing
data. Particularly in the case where many data channels are
available, classification may be more accurate and efficient using
BVOI for selection of channel combinations. The BVOI is useful
for feature selection of channels and may also be helpful for
examination of data quality in each channel.
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pc ARC/INFO Advanced Course
9-10 November 1989

An advanced pc ARC/INFO short course will be offered by the Center for Remote Sensing and Mapping Science (CRMS) for pc
ARC/INFO users who have previously taken the CRMS Starter Course or have already acquired a good working knowledge of the
software. Lectures and hands-on exercises will cover advanced features of pc ARCPLOT, pc ARCEDIT and PC INFO such as the use of
the Simple Macro Language (SML) and ARCSHELL menus for automating modeling procedures. Specific tasks will include ASCII file
transfer for tabular input to PC INFO, map joining/splitting with edge matching, and customizing display shade patterns. Integration
of raster/vector data for combined image processing and GIS operations using ERDAS, Desktop Mapping System (OMS) and pc
ARC/INFO software will be features.
For further information on these courses please contact: Dr. Roy Welch, Director, Center for Remote Sensing and Mapping Science,

Department of Geography, University of Georgia, Athens, GA 30602; 404-542-2359


