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ABSTRACT: Two non-traditional approaches to digital automated training data extraction and analysis were developed
in response to limitations experienced with traditional manual training techniques as applied to the spatially and
spectrally complex digital data available from second generation spaceborne sensing systems (Landsat Thematic Mapper
[TM], SPOT). The first of these was a Semi-Automated Training Field Extraction (SATFE) procedure which used a least­
variance training field growth strategy to extract training data from digital imagery. Data extraction was based only
upon the coordinates of a single seed pixel for each field and several training data extraction parameters associated
with each field. The second was a companion technique developed to conduct Semi-Automated Training Field Analysis
(SATFA). In this procedure, training field data were analyzed and refined for use in image classification. Testing of the
techniques consisted of a comparison of their accuracy and efficiency with that from traditional manual training data
extraction and analysis procedures. Satellite imagery covering four test areas in Wisconsin (two TM, two SPOT) served
as the base for testing. Results indicated that the two techniques were capable of significantly improving efficiency in
the training phase of per-point classification, including reductions in both analyst and digitization time requirements,
without incurring losses in classification accuracy, as compared to traditional procedures.

INTRODUCTION

M OST OF THE AUTOMATED IMAGE classification procedures
in widespread use today can be considered "first gener­

ation approaches" to image classification in that they were de­
veloped primarily for use with Landsat Multispectral Scanner
(MSS) data during the 1970s. Recent research indicates that these
first generation image processing procedures are often incapa­
ble of fully exploiting the information content of the "second
generation data" currently available from the Landsat Thematic
Mapper (TM) and the SPOT High Resolution Visible (HRV) sen­
sors (Hopkins et aI., 1988; Haack et aI., 1987; Parks et aI., 1987,
Williams et aI., 1987; Woodcock and Strahler, 1987; Buchheim
et aI., 1985; Irons et aI., 1985; Latty et aI., 1985; Acevedo et aI.,
1984; Latty, 1984; Markham and Townshend, 1981). This sug­
gests that "traditional" image analysis and classification ap­
proaches must be modified if their application to second
generation data sets is to result in both accurate and efficient
image classification. This paper focuses on two such new meth­
odologies, namely, a technique for Semi-Automated Training
Field Extraction (SATFE) and a companion procedure for per­
forming Semi-Automated Training Field Analysis (SATFA). Used
in combination, these techniques permit the extraction and
analysis (refinement through merger or deletion) of training
field data with a minimum of human intervention. Below, we
describe the nature and function of these techniques and their
accuracy and efficiency when applied to two SPOT and two TM
test images.

SEMI-AUTOMATED TRAINING FIELD EXTRACTION: SATFE

The impetus for the development of a non-traditional ap­
proach to training field extraction grew out of growing evidence
of the inadequacy and inefficiency of traditional training ap­
proaches when applied to second generation data, in general,
and out of dissatisfaction with conventional training proce­
dures, and unsupervised clustering techniques, in particular.
The tremendous spatial and spectral complexity of second gen­
eration data can make it extremely difficult and tedious both to
locate and delineate supervised training fields having statistical
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properties appropriate for maximum likelihood classification.
This is compounded by the need to ensure that all important
sub-classes within the high-variability data have been ade­
quately characterized spectrally, or even sampled at all. Simi­
larly, with many traditional unsupervised techniques, the impact
of increased data complexity may be manifest as a loss of effi­
ciency in the post-classification labeling stage. Furthermore, the
clustering algorithms and parameters of many widely used un­
supervised techniques were designed specifically with MSS data
in mind, and thus are not universally applicable to data with
fundamentally different characteristics. Because of these data­
induced changes, the application of traditional supervised and
unsupervised techniques to second generation digital satellite
imagery often requires a much greater investment of time and
expertise in order to produce accurate and repeatable classifi­
cation results than has typically been the case with coarser, first
generation data.

The new technique (SATFE) was envisioned as a means for
improving both the efficiency and consistency of training field
extraction. It was designed to increase the degree of automation
in training field extraction, thereby significantly reducing ana­
lyst time requirements, while maintaining acceptable levels of
classification accuracy. The procedure is still fundamentally
grounded within a "per-point" (as opposed to "per-field") clas­
sification framework and, therefore, carries with it all the prob­
lems inherent in such an approach (i.e., no spatial, textural, or
contextual information is used in classification). The intended
purpose of the new technique, however, was to provide a tool
whereby the utility of a per-point approach, limited as it may
be for certain second generation data applications, could be
improved. It was also viewed as a potential complement to
other non-traditional image analysis techniques and as a pos­
sible efficient conduit for integration of remotely sensed data
and geographic information systems (GISS).

DESCRIPTION

SATFE is designed to automatically delineate training fields
within an image using only the coordinates of an initial "seed
pixel" for each field and a set of user-specified extraction
parameters associated with each seed pixel. The technique may
function in either a supervised mode, wherein analyst-designated
seeds representing known cover categories are used, or an
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FIG. 1. Illustration of field growth strategies for the semi­
automated training field extractor (SATFE): (a) the linear growth
strategy; (b) the concentric growth strategy.

second criterion is simply an upper limit on the size that a field
may have. The last criterion is a mathematical comparison of
the new field summed variance - the variance of the field
including the most recently extracted pixel - to the old field
variance - the variance of the field prior to the latest pixel
extraction. If this ratio is too large - if the variance of the field
increases too much because of the addition of a single pixel ­
then processing for the field is terminated, regardless of the
magnitude of the summed variance of the field at that point.
Prudent use of this criterion helps to prevent the growth of
fields over object boundaries and to reduce the sensitivity of
field growth termination to the specification of the variance
threshold parameter.

Two additional parameters are implemented to further enable
the analyst to control the training field growth process. A
minimum field size must be specified for each seed pixel. The
method of growth - linear or concentric - must also be specified
for each seed. A slight variation on this either/or choice, however,
allows the analyst to select concentric growth as the initial growth
strategy, with linear growth implemented only in the event that
the field fails to reach minimum size using the concentric strategy.
These two criteria are useful primarily to reduce spatial
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Mto extract

unsupervised mode, in which the cover category of a seed is
unknown at the time of clustering. A training field (supervised
mode) or spectral cluster (unsupervised mode) is "grown" around
each seed pixel based upon the characteristics of neighboring
pixels and the values of the field extraction parameters.

Supervised Mode. In the supervised implementation of SATFE,
an image analyst identifies seed pixels in a manner similar to
that used with traditional manual training field delineation, except
that only one coordinate (that of the seed pixel) per training
field need be identified, and parameters controlling the training
data extraction process for each field must be specified. These
parameters are typically specified uniquely for each seed pixel,
but a common set of parameters may also be used. Supervised
training fields are then grown, sequentially, around the
designated seed pixels according to one of two possible strategies:
"linear" growth or "concentric" growth.

Unsupervised Mode. SATFE is equally amenable to
implementation in an unsupervised mode. In this case, seed
pixels may be located automatically according to a regular,
random, or stratified sampling strategy, or manually through
quasi-random placement of seeds by the image analyst into
spectrally homogeneous objects of initially unknown cover type.
Sampling may be conducted for either the entire image or an
analyst-specified subset of the image. This capability permits
heavier sampling in areas of either greater importance or higher
spectral diversity. Processing from this point on is identical to
that for the supervised mode except that, when seed pixels are
located automatically, all spectral clusters will utilize the same
set of extraction parameters.

Linear Training Field Growth. With the linear growth strategy,
pixels are added to a training field based upon their contribution
to the summed variance for the field. The summed variance for
a field is simply the sum of the variances of the field pixel values
for all bands of imagery used as input. Thus, during training
data extraction, the pixel that is added to a field next is the pixel
which increases the summed variance of the field the least or,
equivalently, decreases the summed variance of the field the
most. Pixels added to a field must be spatially adjacent to a
pixel already included in the field. Diagonal, as well as horizontal
and vertical neighbors are considered spatially adjacent. Choices
among these "candidate" pixels are made based upon the
summed variance that the field would have following the addition
of each candidate pixel. A field grows one pixel at a time along
the path of least summed variance in the imagery, with the
updated composition of the field serving as the basis for growth
decisions and variance calculations during the next pass through
the algorithm. Linear growth is illustrated in Figure 1a.

Concentric Training Field Growth. In concentric growth, pixels
are added to a field, one at a time, in ever widening concentric
circles around the seed pixel, irrespective of their relative impacts
on field summed variance. This method was implemented
primarily to provide a faster field growth procedure for relatively
large, rectilinear, homogeneous fields, and also to reduce
problems with statistical bias in variance estimation that may
result from the linear growth technique and the high positive
spatial autocorrelation that is commonly found in remotely sensed
data (Campbell, 1981) (The potential impact of this bias will be
discussed in greater detail later). Concentric growth is illustrated
in Figure lb.

Training Data Extraction Parameters. Training data extraction is
controlled primarily by means of three criteria which determine
when field growth is terminated: (1) a threshold maximum
absolute summed variance for a field; (2) a maximum size (number
of pixels) for a field; or (3) a maximum relative-variance-increase­
ratio for a field. The first of these, the variance threshold, is a
field homogeneity criterion which uses the same measure that
is used for pixel extraction in the linear growth strategy. The
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autocorrelation bias in variance estimates and, in the
unsupervised mode, to prevent the creation of small,
meaningless, high variance clusters. In the supervised mode,
the analyst should know which growth strategy is most
appropriate for each field based upon the spatial properties of
the object upon which training is being conducted.

A final parameter available to the analyst is an automatic­
variance-increase-value. This value is a percentage by which the
variance threshold for a field should be increased if the field
fails to reach minimum size before the variance threshold is
exceeded. If this parameter is in force - and it need not be ­
the variance threshold for a field is increased automatically by
the specified percentage in cases when field growth is terminated
by the variance threshold criterion prior to the field attaining
minimum size.

This last parameter was implemented to further reduce the
sensitivity of the extraction technique to the specification of the
variance threshold criterion and to allow the analyst greater
flexibility in regulating field growth. An analyst can choose to
rely heavily on accurate specification of the variance threshold,
if knowledge of that entity is abundant or the analyst is very
comfortable with its use. Alternatively, the analyst can place
more emphasis on field size parameters during growth, using
the automatic-variance-increase value as a means for achieving
a spectrally homogeneous field of appropriate size.

Parameter specification is often a problem with automated
image analysis and classification techniques. In many cases, the
parameters are sufficiently arcane measurement entities so as
to make their specification difficult when substantial previous
experience with their use is lacking. In the case of SATFE, a
conscious effort was made to ensure that the necessary field
extraction parameters were familiar, intuitive, or easily calculated
entities.

INPUTS AND OUTPUTS SUMMARY

Inputs to the SATFE procedure are simply the multispectral
image data upon which the training is to be conducted, the
coordinates of the seed pixels for each training field, and the
associated extraction parameters for each training field.

Outputs from the procedure are a digital file containing the
raw training field data extracted during the processing for each
field and a separate output image data file which can be used
to record and display the locations of the individual training
field pixels generated by the process.

SEMI-AUTOMATED TRAINING FIELD ANALYSIS: SATFA

The process of moving from a group of initial training fields
to a set of refined summary statistics suitable for use in classi­
fication (herein referred to as "training field analysis") has his­
torically been a difficult one. The process typically involves more
art than science in terms of the reasoning behind the merger
and deletion decisions required to develop final training statis­
tics. The task has also typically involved a significant invest­
ment of expert analyst time to conduct because the decisions
made during the process have not lent themselves to automa­
tion or delegation to untrained personnel.

Experience has suggested that these training field analysis
problems may be even more acute in the case of the more spec­
trally complex second generation data analyses - so much so
that the problems may become a severe impediment to the op­
erational utilization of second generation data for automated,
per-point classification. As a result, a procedure for automating
this labor intensive task of training field merging and deleting
was developed. The procedure, SATFA, was designed specifi­
cally as a companion program for SATFE in the hope that it
would increase the consistency of training field analysis pro­
cedures and further increase the automation of the training phase

of per-point classification. It was also envisioned as a means for
creating a capability for analyzing the large number of training
fields which may be required to adequately spectrally charac­
terize second generation imagery (and which can very easily be
produced as output from SATFE, particularly in its unsupervised
implementation). The process of analyzing large numbers of
training fields is time-consuming and tedious under any cir­
cumstances, but it is acutely so when the informational rela­
tionships of the fields are not known a priori (i.e., in analysis
of unsupervised clusters).

Training field analysis generally involves two types of deci­
sions: whether or not to merge the data from two or more train­
ing fields if they are similar spectrally, and whether or not to
delete a training field if its characteristics are sub-optimal in the
context of the classification algorithm that will ultimately be
based on the training data. In SATFA, two parameters have been
developed to facilitate automated training field merging, and
two procedures have been implemented to aid in training field
deletion.

MERGING PARAMETERS

Merging decisions with SATFA are based upon two user­
specified transformed divergence criteria which attempt to mimic
the procedures employed in previous manual training data
analyses. Transformed divergence is a familiar concept in remote
sensing whose use as a measure of spectral similarity is well
documented elsewhere (e.g., Horler and Ahern, 1986; Swain,
1978).

The first of the merging criteria is a maximum pairwise
transformed divergence value. Fields having pairwise divergences
greater than this value are discounted as candidates for merger.
When divergences are less than this value, a training field is
merged with another (candidate) training field provided that (1)
the merger represents the best available "match" for the current
field - the field has its lowest transformed divergence (greatest
spectral similarity) with the candidate field - or (2) the two
fields are compatible in terms of their similarity relationships
with all other fields - the fields which satisfy the maximum
divergence threshold with the current field are identical to those
meeting the threshold for the candidate field.

The second criterion is a minimum divergence value below
which two fields are merged regardless of their relationships
with other fields. Using this second criterion, a field is merged
with all currently unmerged fields which satisfy this threshold.
In cases of confusion where a non-transitive spectral similarity
relationship exists among fields (Le., field 1 is similar to field
2, field 2 is similar to field 3, but field 3 is not similar to field
1), priority is given to field pairs with the lowest transformed
divergence (greatest spectral similarity).

We believe the use of these two criteria and their associated
compatibility evaluations and "best-match" determinations
produces a more globally correct merging result than is often
the case with other field merging approaches such as those
embedded in many unsupervised clustering procedures. In many
such approaches, mergers are done "on-the-fly," before all
clusters have been identified, creating an order-dependence in
the merging process. The merging procedures designed herein
are neither affected by the order in which the fields are identified
in the imagery nor the order in which they are stored in the
digital training field data file.

DELETION PROCEDURES

Automated handling of training field deletions proved to be
a much more difficult process. As implemented for the
evaluations described herein, SATFA relies heavily on manual
input concerning fields which should be deleted - the analyst
may pre-specify fields for deletion. The only other procedure
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for deletion is a "similarity percentage" value. This value is a
measure of the number of fields that a given field is "similar
to," based upon the maximum transformed divergence criterion.
Samples similar to more than a user-specificed percentage of
the total number of fields are deleted. This is a less than ideal
approach to automated field deletion, but it is useful at least in
deleting fields which, because of inordinately large variances,
are spectrally similar to a relatively large proportion of the total
number of training fields.

With SATFA, a conscious effort was again made to use
parameters which are familiar to image analysts (transformed
divergence) or easily understood and calculated (deletion
percentage). Also, to allow greater flexibility and control in
merging decisions, a merging constraint option was included
in the procedure. This option allows an analyst to constrain
training field mergers to within or among a particular group (or
groups) of training fields. Thus, an analyst may use logic and
informational relationships derived from a supervised approach
to restrict mergers to spectral sub-classes within the same
information class, thereby avoiding the problematic possibility
of producing a training field consisting of samples from different
information classes. Similarly, an analyst may specify, during
either a supervised or unsupervised approach, that certain high
quality training fields not be "contaminated" by merger with
other, presumably less suitable, sets of fields.

TESTING METHODOLOGY

The foundation for testing the SATFE and SATFA algorithms
was a direct comparison of conducting training field extraction,
training field analysis, and image classification using the new
procedures versus execution of the same tasks using conven­
tional methods. Specifically, the potential utility of the semi­
automated procedures was assessed by evaluating the compar­
ative accuracy and efficiency of the two approaches, traditional
and non-traditional.

ACCURACY

The accuracy of the two approaches was compared primarily
using the KHAT classification accuracy measure and its associated
tests for statistical significance (Lathrop et aI., 1987; Rosenfield
and Fitzpatrick-Lins, 1986; Congalton et aI., 1983; Fleiss et aI.,
1969; Cohen, 1960). Ground reference information was derived
from field visits, aerial photography, and available maps.
Accuracy values were determined for a random sample of points
(pixels), rather than fields, located in the test imagery. Because
of problems with expense, accessibility, and registration of
samples, however, two restrictions were placed on the location
of these "random" samples within the test imagery: (1) samples
were taken only in areas for which ground information was
available, and (2) samples were limited to field interior (non­
edge) pixels. A minimum sample size of 50 pixels per class was
taken, when possible.

The Null Hypothesis of this aspect of the testing was that no
significant differences in accuracy would be observed between
the two approaches. The hope was that this hypothesis would
not be rejected - that the use of a more automated approach
to training field extraction and analysis would not result in a
loss in classification accuracy as compared to more traditional,
manual procedures.

EFFICIENCY

The comparative efficiency of the semi-automated versus the
manual approaches was determined by measuring the time
required to complete each approach (both analyst time and
processing time) and by qualitatively evaluating the relative ease
of implementation of each approach. The number of coordinates
digitized during training field delineation was also recorded.

As with the accuracy tests, the Null Hypothesis for this aspect of
the study was that no difference in the efficiency of the two
procedures would be detected. In this case, however, the hope
was that the new procedures would be noticeably more efficient
than the traditional, manual procedures.

ADDITIONAL TESTING

Two additional tests were conducted specifically on the SATFA
procedure. First, the two growth strategies, linear and concentric,
were evaluated using image output for several example training
fields. Second, the summed variance of training field data
produced by the two approaches was compared for several test
fields.

ANALYSIS AND CLASSIFICATION METHODS

Study Sites. Testing of the new procedures was accomplished
using SPOT and TM data from four test sites in Wisconsin (Figure
2). The sites were chosen to represent a range of physiographic
conditions and land-use practices, and to allow direct comparison
of the possible differential effects of the procedures on SPOT
and TM data.

Study site #1 was an agricultural area covering a portion of
south central Wisconsin including the villages of Lone Rock and
Spring Green. A subset of 26 August 1984 Landsat-TM image
was extracted for use in this area. Study site #2 consisted of an
urbanized area in northern Dane County, Wisconsin including
a portion of the Madison metropolitan area. SPOT multispectral
data from 3 June 1986 were used for this study site. The third
study site was a heavily forested area located in northwestern
Wisconsin near the city of Minong. Data for study site #3 were
extracted from a 29 July 1986 TM image. Study site #4 was
selected to cover approximately the same area as that for site
#3 - Minong and vicinity. For this site, however, SPOT
multispectral data from a 9 August 1986 overpass were used.

a 25 50 miles
scale 1-1~---~--',

a 40 80 km

FIG. 2. Map depicting the four study sites used for testing SATFE and SATFA
(study sites 3 and 4 consisted of TM and SPOT data, respectively, covering
approximately the same area).
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ACCURACY

RESULTS

iterations of a full supervised approach were not conducted so
as to limit the amount of subjectivity involved in the testing
procedures. Thus, the results do not indicate the maximum
classification accuracy possible with either approach. Rather, they
indicate the classification accuracy attained with each approach
using the same source of training data .

Results from the accuracy comparisons of the traditional ver­
sus the non-traditional training procedures are presented in Ta­
ble 2. For the supervised approach, no significant differences
in classification accuracy (as measured by KHAT) were observed
for study sites #2, 3, and 4: standardized Z-scores for the KHAT
comparisons were 0.90, 0.35, and 0.77, respectively. For study
site #1, however, KHAT for the non-traditional procedures was
actually significantly greater than that for the traditional pro­
cedures (Z = -2.91).

Comparisons of the non-traditional unsupervised procedure
with the traditional supervised procedure again showed no sig­
nificant difference in classification accuracy (Z = 0.19). Of in­
terest, however, is the fact that the respective accuracies of the
supervised and unsupervised procedures for the non-tradi­
tional approach were significantly different (Z = 3.06). A de­
tailed evaluation of results from the unsupervised procedure
indicated that, while it functioned relatively well in terms of
overall classification accuracy (at least in comparison to the tra­
ditional supervised approach), it failed to accurately discrimi­
nate classes occurring infrequently in the imagery, presumably
because of its sampling approach to cluster extraction. Thus,
the average by-class accuracy of the unsupervised approach was
noticeably lower that that of either supervised procedure.

Because of this sampling problem, a hybrid supervised-un­
supervised approach was examined. In this hybrid approach,
12 supervised training fields (out of a total of more than 75)
representing infrequently occurring classes were imported from
the supervised procedure, combined with the unsupervised
clusters, and used in image classification. Accuracy for the aug­
mented classes increased, as did overall accuracy - to the point
that it was no longer significantly different from that obtained
with the non-traditional supervised procedure (Z = 0.00).

EFFICIENCY

Results from the efficiency comparisons of the two procedures
are presented in Table 3. The number of points digitized during
training field delineation and the time requirements for the

CLASSES:

wetland, water, jack pine, red pine,
seedlings, swamp conifer, hardwoods,
agriculture, urban

barren, urban/commercial,
urban/residential, upland forest,
wetland, water, continuous cover
agriculture, bare soil

urban, corn, continuous cover
agriculture, bare soil, upland hardwood,
red pine, jack pine, wetland, lowland
hardwood, water, barren

same as study site #3

LIST OF THE INFORMATION CLASSES USED IN THE

CLASSIFICATION OF EACH STUDY SITE.

TABLE 1.

#1

#2

#3

#4

STUDY SITE:

For each study site, approximately a 500- by SOD-pixel subset of
the appropriate data set was extracted for use in analysis
(approximately 225 km2 for the TM scenes and 100 km2 for the
SPOT scenes). Comparisons between the two approaches were
conducted for all four study sites using a supervised approach
to classification. Testing of SATFE's unsupervised mode was less
extensive and rigorous, consisting of a comparison of its results
to those of the supervised approaches solely for study site #1.

ApPROACHES TO TRAINING DATA EXTRACTION AND ANALYSIS

. For the traditional approach, training areas for each study
site were delIneated manually using a Gould OeAnza (model
F05000) color graphics display. An iterative procedure was
utilized to develop the final set of summary statistics used as
in~ut to the classifier. It involved the creation, analysis, and
refmement of these statistics using a variety of statistical and
grap.h.ica~ analyses (transformed divergence, training area
classlftcatlon accuracy assessment, histograms, and scatter plots
of training field data).

Training field extraction using SATFE consisted of manual
delineation, on the same display hardware, of a single seed
coordinate for each training field and the specification of extraction
parameters for each seed. Specifications of the parameters for
each seed were based upon various combinations of the following
sources of information:

• general knowledge of the spectral variability of the cover type
bemg represented, the spectral variability of the image data used
for training, and the spectral bands used for training;

• ~isual assessment of the size, shape, and orientation of the object
m whIch the seed was placed and assessment of the homogeneity
of the Image data for that object; and

• preliminary calculation of the summed variance for objects in a
small number of evaluation areas.

The number and location of the initial set of training fields for
each study site were identical for both the traditional and non­
traditional procedures (the seed pixel for a field in the non­
traditional approach was contained within the multi-coordinate
polygon for that field in the traditional approach). Additionally,
m order to reduce the possibility of order- or analyst-related
bias in the testing methodology, the order of training field
delineation - traditional first or semi-automated first - was
altered as each of the four study areas was processed, and the
same image analyst was employed in training data extraction
and analysis procedures for all four study sites.

Analysis of the raw training field data produced by SATFE
was carried out using the SATFA procedure. Here again, the
entire analysis scenario was an iterative one, with SATFA executed
repetitively until a satisfactory set of summary statistics was
produced.

The summary statistics produced as output for both approaches
for each study site were used as input to a modified maximum
~ikelihood classifier (patterned after Addington (1975»)
Implemented on an IBM-AT microcomputer available at the
University of Wisconsin-Madison's Environmental Remote
Sensing Center (ERSC). With the two SPOT scenes, all three
multispectral bands were used in training data extraction and
image classification. For the TM data, on the other hand,
processing was limited to bands 1, 3, 4, 5, and 7 in an attempt
~o reduce. data dimensionality without significantly impacting
mfo~~at~on content. The level of detail extracted during
class~ftcation of each test image was based upon scene-specific
phYSIOgraphy and cover type differentiability. The information
classes utilized for each site are listed in Table 1.

Constraints on the Classification Comparisons. It should be
emphasized that comparisons of the results of the two approaches
were conducted with only the original sets of training data
available for use in classification. Re-training and the multiple
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TABLE 2. SUMMARY OF THE STATISTICAL DIFFERENCES IN ACCURACIES OF THE TRADITIONAL AND NON-TRADITIONAL (SAFTE/SATFA) ApPROACHES

FOR EACH STUDY SITE (SPV: SUPERVISED; UNS: UNSUPERVISED; HYB: HYBRID).

Study
Site/
Approach

#1/SPV
#2/SPV
#3/SPV
#4ISPV
#l/UNS
#l/HYB

Traditional Non-
(K,) Traditional (K2 )

% Correct KHAT % Correct KHAT Z-Score l) KHAT'

70 0.66 77 0.74 - 2.91" ±0.052
75 0.71 73 0.68 0.90 ±0.060
84 0.81 83 0.80 0.35 ±0.047
76 0.72 74 0.70 0.77 ±0.054
70 0.66 71 0.65 0.19 ±0.054
70 0.66 77 0.73 -2.91" ±0.052

'KHAT difference (K, - K2) necessary to indicate significance at the 95 percent level of confidence
"indicates a significant difference at the 95 percent level of confidence (Z-scores greater than 1.96 or less than -1.96 indicate significant differ­
ences at this level of confidence)

TABLE 3. COMPARISONS OF THE EFFICIENCY OF THE TRADITIONAL AND NON-TRADITIONAL (SATFNSATFE) SUPERVISED TRAINING DATA EXTRACTION

AND ANALYSIS ApPROACHES FOR ALL STUDY SITES.

Study
Site

#1
#2
#3
#4

Traditional: Non-Traditional:

# Points Training Analysis # Points Training Analysis
Digitized Time Time Digitized Time Time

506 60 min. 75 min. 77 30 min. 45 min.
562 60 min. 75 min. 71 30 min. 45 min.
531 45 min. 90 min. 81 30 min. 30 min.
676 135 min. 75 min. 90 45 min. 60 min.

training data extraction and analysis phases of the procedures
were markedly reduced with the non-traditional approach for
all four study sites. Ratios of the number of points digitized in
the two procedures were on the order of 6:1 in favor of SATFE,
while time savings of from 20 to 60 percent were achieved with
the SATFE/SATFA approach as a whole. The relative simplicity of
implementing the non-traditional approach was a further
advantage in this context. Use of the new procedures was
straightforward, requiring very little prior knowledge of the
techniques for parameter specification and permitting substantial
reductions in the number of repetitive decisions required of the
analyst.

ADDITIONAL TESTING

Figures 3a and 3b are "before" and "after" images, respectively,
illustrating image output for the linear and concentric training
field growth strategies for several training fields in study site
#1. Training data extraction ranging from intricate linear objects
to large homogeneous objects was accomplished using these
two growth strategies.

Concerns about the possible bias due to spatial autocorrelation
in the semi-automated field growth strategies motivated the
comparison presented in Table 4. Listed herein are the summed
variances (in Digital Number [ON] units) for several traditionally
and non-traditionally derived training fields from study site #1.
In almost every case, the SATFE-derived summed variances are
lower. This indicates the presence of additional autocorrelation
bias in the SATFE-derived fields, the presence of multiple spectral
sub-classes in the traditionally derived fields, or a combination
of both.

DISCUSSION

ADVANTAGES

By virtue of its design and implementation, the non-tradi­
tional procedures have the potential to solve several of the prob­
lems encountered with the use of the traditional forms of

supervised and unsupervised image analysis with second gen­
eration satellite imagery:

• Because only one pixel must be located in the image, SATFE re­
duces the potential for ground-to-image misregistration and may
produce dramatic reductions in the amount of analyst time re­
quired for training field delineation (the program, rather than the
analyst, delineates the fields); thus, SATFE, used in conjunction
with SATFA, may eliminate much of the complexity involved in
training on spectrally and spatially complex imagery.

• Actual image data values for each field or cluster are retained in
the output from SATFE, not just their statistical summary, so the
statistical properties of the fields can be examined and their spec­
tral homogeneity ensured.

• In contrast to the algorithms in many traditional unsupervised
procedures which cluster using rectangular windows of image
data, cluster extraction using SATFE'S linear growth strategy is not
biased toward the exclusion of objects of a particular shape or
orientation: fields or clusters may grow out along linear features
as easily as within rectangular features; the importance of ade­
quately characterizing such features spectrally has increased with
the improved spatial resolution of second generation data.

• In the supervised mode, and, if desired, in the unsupervised mode,
each seed pixel specified in SATFE may possess a unique variance
threshold (and other extraction parameters) such that, during
training data extraction, the procedure can be sensitive to differ­
ences in within-class variation in spectral response that are often
observed among cover types (e.g., water versus urban) in re­
motely sensed data.

• The actual geographic locations of the spectral clusters selected
during unsupervised processing can be identified within the re­
motely sensed data by means of the output image data file; this
is of particular importance during the process of post-classification
labeling.

• SATFA may be used very effectively to analyze the large numbers
of training fields which may be required to adequately character­
ize the spectral variability of second generation satellite data; man­
ual analysis of such data can be exceedingly tedious.

DISADVANTAGES

The semi-automated procedures also have several potential
limitations:
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FIG. 3. Illustration of the two growth strategies for the semi-automated training field extractor (SATFE) showing actual image output for example fields
for each strategy: (a) TM band-4 for a portion of study site #1 without training field locations; (b) same image as in (a) with training fields overlayed
as white onto the original imagery.

SPATIAL AUTOCORRELATION

TABLE 4. COMPARISON OF THE SUMMED VARIANCES FOR SEVERAL TEST

FIELDS EXTRACTED FROM STUDY SITE #1 USING THE TRADITIONAL AND

NON-TRADITIONAL APPROACHES (ON UNITS).

The latter disadvantage is potentially the most serious technical
problem with the SATFE procedure. Underestimation of field
variance may result from the fact that contiguous, non­
independent (positively autocorrelated) pixels are used for
estimation (Campbell, 1981; Cliff and Ord, 1981; Basu and Odell,
1974). Further, depending upon the size and shape of the object
(and the specified maximum field size), only the most similar

• Even when implemented in the unsupervised mode, SATFE does
not provide for complete sampling of an image; thus, some
potentially important spectral information may be overlooked
during processing; however, this is a limitation of traditional
supervised approaches, as well.

• The data merging criteria implemented in SATFA, while generally
applicable to training data analysis, may not constitute the best
possible data analysis approach in every situation.

• The per-point framework of the entire approach limits its ability
to fully exploit the additional spatial and contextual information
that is available from second generation satellite imagery.

• Because of the nature of the pixel extraction techniques in SATFE,
the variance of a field or cluster may be underestimated, particularly
with rectangularly shaped objects.

OVERALL ASSESSMENT OF ADDED UTILITY

The improved spatial resolution of second generation imagery
has increased the need for extracting representative training
data for many small, linear, or irregularly shaped objects which
were not even detected by earlier, first generation satellite sensors.
Even relatively large objects, such as certain agricultural fields,
can no longer necessarily be considered as spectrally uniform
for purposes of training field delineation. The spectral sub­
components of these objects may be resolved and may contain
meaningful spectral information which might only serve to
confuse any attempt at spectral characterization of the object as
a whole. With SATFE, extraction of such detailed information
may be less prone to error because extraction is driven by the
data, according to its contribution to a field's variance, rather
than by the error-prone digitization of an analyst.

Thus, with second generation imagery, it may no longer be

of those contiguous pixels may be used for estimation (in the
linear growth case). Within linearly or irregularly shaped objects,
the bias introduced as a result of using this approach is probably
not much different from that associated with traditional
contiguous supervised training because the procedure would
likely select nearly the same pixels that an image analyst would
select (given sufficient time and patience to do so). With
rectangular or other regularly shaped objects, however, this
approach may introduce additional bias into the variance
estimation process because only the most similar pixels within
an object might be included in the field.

Knowledge of this potential source of bias is important for
appropriate and judicious use of the SATFE procedure.
Quantitative compensation for this bias, however, is not necessary
in order for the procedure to be useful. Acceptably accurate
results can be obtained with the new procedure, consistently
and repeatedly. Hence, the bias in variance estimation appears
to be of little or no consequence relative to the dramatic
improvements in overall classification efficiency realized. The
success of the non-traditional approach in three relatively diverse
areas (an agricultural area, an urban area, and a forested area)
and using data from two sensors (SPOT and TM) supports this
contention.
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possible to simply "blindly" digitize training fields in digital
imagery based upon specifications of the ground coordinates
for those fields. Depending upon the cover categories involved
and the physiography of the area under study, these areas may
in fact contain several of the resolved spectral sub-components
of the identified ground categories, and thus might not provide
an appropriate spectral characterization of the object as originally
identified. SATFE is useful under these circumstances, both for
improving the homogeneity of training data (because field growth
is restricted to the spectral sub-class in which a seed pixel is
located) and for reducing geometric registration problems
between ground and image coordinates (because only one
coordinate needs to be registered).

Training field delineation with the traditional approach was
also a much more tedious and time-consuming process than
with the SATFE-based approach. This was particularly the case
for intricate, linear or irregularly shaped objects. Parameter
specification within SATFE required some time and thought;
however, the flexibility built into the algorithm's parameterization
process reduced the importance of the specification of any single
parameter. Had the procedure been heavily reliant on the accurate
specification of a single, complex parameter, much of the
efficiency of the technique would undoubtedly have been lost.
Furthermore, systematic testing of the sensitivity of SATFE to
changes in field extraction parameters indicated that judicious
use of the relative-variance-increase ratio and the automatic­
variance-increase-value permit fairly consistent results to be
obtained even while varying the variance threshold and maximum
field size parameters (Buchheim, 1988).

The potential improvements in processing efficiency with the
non-traditional approach thus appear to be substantial. However,
processing beyond the level conducted herein would likely be
required to maximize the accuracy of the entire per-point image
classification process. This would involve additional training
field delineation and training field analysis. The advantage of
the non-traditional approach for such a complete analysis and
classification procedure, however, would likely only be increased
because additional analyst and processing time savings would
accrue with each iteration.

Depending on the nature of the study area and the application,
the number of spectral classes required to adequately characterize
the spectral variability of a second generation satellite data set
may be substantially greater than was ever necessary previously
(MaWa, 1985; Price, 1984). In such situations, the non-traditional
approach described herein, which allows both relatively quick
and easy extraction of training data and simple and efficient
analysis of these data, provides a substantial advantage in utility
compared to traditional, more manual approaches.

Improved consistency and repeatability in training data
extraction and analysis is yet another issue of relevance. SATFE
potentially can provide a more objective, consistent, and thereby
repeatable means for extracting training data. With SATFE'S linear
growth ·strategy, training sample extraction is based upon a
pixel's spatial location and contribution to field variance (and
other relatively objective measures). An analyst's subjective
determination of a pixel's class identity, which may be based
entirely upon evaluation of a particular band subset or image
enhancement, need no longer serve as the basis for training
field extraction decisions. With the new approach, there is
certainly still some"art" involved in locating seed pixels and
specifying extraction parameters; however, it is potentially a
much less subjective procedure than that currently in use.

Several of the charcteristics of SATFE's unsupervised mode
render it expecially useful for clustering second generation image
data. No rectangular structure is imposed onto the clustering
process in SATFE. Seeds located near object boundaries generally
produce spectral information for the object in which they are

located, rather than information representing some unknown
combination of spectral responses from objects on either side
of the boundary. In addition, maintenance of the raw data
comprising each cluster aids in determining cluster spectral
homogeneity. Examination of the spatial locations of the clusters
by means of the output image data file is also an extremely
useful characteristic - the tedium of post-classification labeling
is greatly reduced as a result.

FUTURE DIRECTIONS

Although not specifically demonstrated in this research, one
of the biggest advantages of SATFE may be its potential for in­
tegration with existing GIS processing capabilities and data­
bases. Seed pixel coordinates, and conceivably even certain
training data extraction parameters, could be derived from ex­
isting GIS data layers (e.g., the sizes and broad cover categories
of potential training areas could be extracted from GIS data and
used to set the maximum field size and variance threshold pa­
rameters for SATFE). Using this GIS input, SATFE could be used
either for general land-cover classification for an entire region
or to statistically characterize spectral information at specific
locations within a region for change detection studies or special
purpose land-cover inventories.

The SATFE and SATFA procedures can also be thought of as a
step toward the establishment of an expert system for training
data extraction and analysis. They certainly were not designed
as such and have no capability for maintenance of any form of
knowledge base, yet the principles upon which they were de­
signed may be sufficiently fundamental (in terms of their global
applicability to training data extraction and analysis) that they
may represent a useful step in this direction. They certainly
demonstrated an ability to increase automation, improve con­
sistency, and decrease analyst time demands for these proce­
dures.
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pc ARC/INFO Starter Course
6-8 November 1989

A pc ARC/INFO Starter Course will be offered by the Center for Remote Sensing and Mapping Science (CRMS) working in
cooperation with the Environmental Systems Research Institute (ESRI), Redlands, California. This course is designed for participants
who already own, or are planning to purchase pc ARC/INFO. The format of the course is a series of lectures and exercises intended to
familiarize participants with data capture and editing, use of the new ARCSHELL menu interface, map coverage analysis, modeling,
and map composition. Techniques for integrating remote sensing data with pc ARC/INFO will be introduced. Environmental monitor­
ing, resource management, and urban planning applications are emphasized.

pc ARC/INFO Advanced Course
9-10 November 1989

An advanced pc ARC/INFO short course will be offered by the Center for Remote Sensing and Mapping Science (CRMS) for pc
ARC/INFO users who have previously taken the CRMS Starter Course or have already acquired a good working knowledge of the
software. Lectures and hands-on exercises will cover advanced features of pc ARCPLOT, pc ARCEDIT and PC INFO such as the use of
the Simple Macro Language (SML) and ARCSHELL menus for automating modeling procedures. Specific tasks will include ASCII file
transfer for tabular input to PC INFO, map joining/splitting with edge matching, and customizing display shade patterns. Integration
of raster/vector data for combined image processing and GIS operations using ERDAS, Desktop Mapping System (DMS) and pc
ARC/INFO software will be features.
For further information on these courses please contact: Dr. Roy Welch, Director, Center for Remote Sensing and Mapping Science,

Department of Geography, University of Georgia, Athens, GA 30602; 404-542-2359
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