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ABSTRACT: We have developed adaptive box-filtering algorithms to (1) remove random bit errors (pixel values with no 
relation to the image scene) and (2) smooth noisy data (pixels related to the image scene but with an additive or 
multiplicative component of noise). For both procedures, we use the standard deviation (u) of those pixels within a 
local box surrounding each pixel, hence they are adaptive filters. A data point is considered to be a bit error if it deviates 
from the box mean by more than 1.0 to 2.0 U, and it is replaced by the box mean. Even very minor bit errors are 
removed from low-variance areas, but valid data along sharp edges and corners are not replaced (i.e., in high-variance 
areas). A series of two or three filters with decreasing box sizes can be run to clean up extremely noisy images and to 
remove bit errors near sharp edges. Our second filter, for noise smoothing, is identical to the "sigma filter" of Lee 
(1983a) except that we use the local (adaptive) u rather than a fixed u. The filter averages only those pixels within the 
box that have intensities within 1.0 to 2.0 u of the central pixel. This technique effectively reduces speckle in radar 
images without eliminating fine details. 

INTRODUCTION 

I N THIS PAPER we describe adaptive box-filtering algorithms 
for the removal of random noise from digital images. Our 

techniques are simple and rapid, yet they have advantages over 
previously described techniques, especially in terms of preserv- 
ing the full resolution and detail in the data. The highest pos- 
sible image resolution has proven essential for many scientific 
interpretations, and our goal is to preserve the detail of the 
entire scene while removing or reducing the noise. 

We present algorithms for two very different types of random 
noise: (1) single-pixel, random bit errors or "salt-and-pepper" 
noise, for which the pixel values have no relation to the image 
scene; and (2) noisy data, or pixels whose intensity is related 
to the image scene but which have an additive or multiplicative 
component of noise. We use "noisy pixels" or "noisy images" 
with reference to both types of noise, but we use "noisy data" 
only for the second type. In the first case our goal is to eliminate 
the bit errors by replacing the pixel value with the mean value 
of surrounding valid pixels, and in the second case we wish to 
smooth the noisy data. In this paper we concentrate on the first 
problem, but we also present a technique for the second prob- 
lem that minimizes the blurring of scene detail. 

The occurrence of bit errors is especially severe for images 
acquired by some planetary spacecraft missions such as Mariner 
and Viking, because the telemetry occurred over very large dis- 
tances. The bit errors increase with telemetry data rate; a higher 
bit-error rate must be accepted when a high data rate is needed, 
for example, when acquiring as much high-resolution imaging 
as possible during the closest approach to a planet (cf. Danielson 
et al., 1975). About 80 percent of the Mariner 10 images of Mer- 
cury were acquired at a data rate that was high for that mission 
(117.6 kbitls), and more than 10 percent of the values in these 
images consist of bit errors. In addition, data are often "dropped 
or lost in various ways. For example, Viking Orbiter images 
were initially recorded on 7-track magnetic tape recorders on 
the spacecraft, then played back to Earth one track at a time. 
Loss of a track during telemetry results in missing bits at 7-pixel 
intervals across image scan lines. Dropped data are usually re- 
placed by the average of surrounding pixels, but, if the sur- 
rounding pixels contain many bit errors, this procedure is not 
satisfactory. Some of the highest resolution sequences acquired 
over portions of Mars by the Viking Orbiters consist of as much 
as 50 percent bit errors or dropped data, and the "raw" image 

appears unusable (see Figure 2). However, with the techniques 
described here, we can produce images that appear blemish free 
with no apparent loss of resolution. 

Noise is inherent in electrical circuits and is introduced from 
external sources. Noisy data are a combination of signal and 
noise, as distinguished from random bit errors that are entirely 
noise. We are particularly interested in reducing speckle noise 
in synthetic aperture radar (SAR) images because the spacecraft 
Magellan will map Venus with radar and will return more dig- 
ital data than from all previous spacecraft missions to the planets 
(except Earth) combined. We have tested the noise smoothing 
algorithm of Lee (1983a, 1983b) on SAR images, and we have 
found that an adaptive modification to his technique (using the 
local u) produces promising results. 

The filter programs described here are part of the PIGS (Pla- 
netary Image Cartography System) software package developed 
at the U. S. Geological Survey in Flagstaff, Arizona. PICS is 
available to the NASA-funded planetary research community. 
The software runs on a VAX or MicrovAX with the vMS operating 
system. PICS emphasizes cartographic aspects of image process- 
ing (Batson, 1987; Edwards, 1987), but it includes a wide range 
of image-processing algorithms. 

"Box" filters consider the values within a rectangular box 
centered on each pixel, and have been in use since the early 
1970s at the Jet Propulsion Laboratory, Pasadena, and at the U. 
S. Geological Survey, Flagstaff (Soha et al., 1975; Eliason and Sod- 
erblom, 1977). The box-filtering algorithm has been described in 
detail by Seidman (1972), McDomeN (1981), and Schowengerdt 
(1983). The main advantage of box-filtering is its speed. It requires 
only four add/subtracts to compute the sums for each box, and 
the speed is nearly independent of box size. The box-filtering 
algorithm is -10 times faster than "direct filtering' (summing 
each value in each box) with a 5 by 5 box, and -4000 times faster 
than direct filtering with a 101 by 101 box. Furthermore, box- 
filtering is -15 times faster than the fast Fourier transform (FFT) 
for a 1024 by 1024 image, and it does not have the disk and main 
memory storage requirements of the FFT. 

REMOVAL OF BIT ERRORS 

Bit-error noise consists of discrete isolated pixel variations or 
"spikes" and gives an image a "salt-and-pepper" appearance. 
A bit-error pixel often has an intensity markedly different from 
its neighbors, and a simple "out-of-range" noise-removal method 
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is most commonly used (e-g., Soha et al., 1975; Chavez, 1980; 
Schowengerdt, 1983). In this technique, each pixel is compared 
with the average of the surrounding box, and, if the difference 
exceeds a specific threshold value, the pixel is replaced by the 
average of neighboring pixels. This technique is very effective for 
widely-scattered bit-error pixels in a relatively low contrast scene. 
However, if the bit errors are very dense, the box average is likely 
to be influenced by the bad values, which has two effects: (1) the 
bit errors are less likely to be identified as such and (2) the average 
may not be an appropriate value for replacing a bit error. Another 
problem with this technique is that valid pixels along high-con- 
trast boundaries may be erroneously classified as bit errors and 
replaced by the average, resulting in degradation of the edges and 
elimination of thin lines and sharp comers. These problems may 
be eliminated by increasing the threshold value, but this leaves 
many bit errors uncorrected. Uncorrected bit errors may be es- 
pecially annoying during later stages of image processing because 
they are made more prominent by edge-enhancement filters, color 
ratios, and other processing. 

We have solved the problems associated with the standard 
noise-removal algorithm by using an "adaptive" filter that uses 
the local statistics (mean and standard deviation, a) within each 
box to determine whether a pixel is classified as valid or invalid 
data. Adaptive filters have been previously described for 
smoothing noisy data (e.g., Frost et al., 1981, 1983; Lee, 1980, 
1981a, 1981b; Tom, 1985), but we wish to completely remove 
bit errors rather than to smooth the noise. An adaptive filter 
has also been described for edge enhancements (high-pass fil- 
ters) that avoids the "ringing" artifact (Torres et al., 1988). 

Our bit-error removal technique is similar to the threshold 
method described above, except that the threshold value is de- 
fined as some multiple, C, (usually from 1 to 2) of the a of each 
box. In low-variance regions the threshold value is small and 
even very low level bit errors are recognized, whereas in high- 
variance regions the threshold value is large so that valid data 
are not replaced. Only the most extreme bit errors are replaced 
in high-contrast areas. However, we can replace bit errors near 
sharp edges by running a series of filters with decreasing box 
sizes. The box-filtering algorithm allows several filters to be run 
in a reasonable period of time (about 43 seconds for each filter 
of a 512 by 512 image on a MicroVAX-11). 

A different bit error removal technique was described by Ro- 
senfeld and Kak (1982, p. 252). In their method, a pixel is de- 
fined as a bit error if it differs by more than a specific threshold 
value from a certain number ("most of') its neighbors. This 
method reduces the likelihood that valid points on edges or 
lines will be confused with bit errors. However, Lee (1983a, p. 
265) presented a method that is identical with that of Rosenfeld 
and ~ a k  (1982, p. 252) and he demonstrated that on very noisy 
images not all of the bit errors can be removed without destroy- 
ing thin lines and blurring edges. 

Another method commonly used to remove noise spikes 
without blurring edges is the median filter, in which each pixel 
is replaced by the box median value (e-g., Rosenfeld and Kak, 
1982, p. 261). Although the median filter works well on a one- 
dimensional string of data, the two-dimensional median filter 
destroys thin lines and "clips" comers. 

Our method avoids the problem of destroying thin lines and 
sharp comers when the threshold value is at least 1.5 a. Con- 
sider a line or corner with a uniform gray level. In a normal 
distribution, 32 percent of the data differs from the mean by 
more than 1.0 a, so no more than two pixels in a 3 by 3 box 
can be considered noise. A thin line or comer that passes through 
the central pixel of a 3 by 3 box must have at least three mem- 
bers in the box, so the line or comer will not be replaced unless 
C is less than 1.0. Likewise, a thin line or corner in a 5 by 5 box 
must occupy at least five pixels (1.3 a), or seven pixels (1.5 a )  

in a 7 by 7 box. We have encountered no problems with re- 
placing valid data when using C of 1.5 or larger with box sizes 
up to 7 by 7, even with very high contrast scenes with sharp 
edges and comers (see Figure 1). A threshold of less than these 
limiting values (C < 1.5) may be used without replacing valid 
data if each box contains at least one bit error (which increases 
the computed a compared with a of the valid data) or if very 
sharp corners or lines are not present (see Figures 2 and 3). 

All of the bit-error removal methods described above rely upon 
an assumption of spatial coherence in the image. It is assumed 
that the intensities of neighboring pixels are not completely in- 
dependent and that a pixel is likely to have at least two neighbors 
with similar values. If the actual scene has a salt-and-pepper ap- 
pearance with bright or dark features of only one to two pixels in 
size, these methods may eliminate these valid data points. 

ADAPTIVE ALGORITHM FOR REMOVAL OF BIT ERRORS 
Let P(i,j) represent an integer sample of an image array P. 

Centered on P(i,j) is a rectangular box of dimension (2K+ 1) by 
(2L + I), where K and L are integers. Further, let the valid data 
in the array be in the range MIN to MAX. The MIN and MAX 
parameters allow a delta function, D, to be defined: 

D(i,j) = 0 if P(i,j) < MIN, or P(i,j) > MAX 
D(i,j] = 1 if MIN I P(i,j) 5 MAX 

The delta function is used in the equations shown below to 
discriminate between valid and invalid pixel values. Typically 
for 8-bit integer images MIN = 1 and MAX =255; zero indicates 
an invalid or empty pixel in the array. Invalid pixels can result 
from missing image data due to data dropouts or points that 
have been identified as bit errors and set to zero on output by 
the bit-error removal algorithm. In addition, MIN greater than 
1 or MAX less than 255 may be used to exclude the most extreme 
noise from the box statistics, provided that all valid data values 
fall within the range defined by MIN-MAX. 

Three sums must be computed for each box. The sum of valid 
points, S(i,]], the number of valid points, N(i,]], and the sum 
of the square of the valid points, SS(i,j) are given by Equations 
2, 3, and 4: 

The low-pass filter, LPF(i,j), is defined as the mean value of 
the box excluding invalid values. The replacement value, R(i,]], 
is defined as the mean value of the box excluding invalid values 
and the central pixel: 

LPF(i, j) = S(i,j)lN(i, j) (5) 

R(i,j) = [S(i,]] - D(i,]]P(i,j)I/[N(i,]] - D(i,j)l (6) 
When P(i,j) is classified as a bit error, we use R(i,j) rather than 
LPF(i,]] as the replacement value because the average does not 
contain the erroneous value of P(i,j). 

The variance of the box, V(i,j), is given by Equation 7: 

V(i,j) = [SS(i,j)lN(i,j)l - [S(i,j)2/N(i,j)2] (7) 
and the standard deviation, u(i,]] is the square root of V(i,l]. 

The bit error removal algorithm determines whether P(i,j) is 
a bit error by comparing it with the statistics of the box. If P(i,]] 
is considered a valid point, it will remain unchanged. If P(i,]] 
is marked as a bit error, the algorithm will either zero the pixel 



REMOVAL OF RANDOM NOISE FROM DIGITAL IMAGES 

FIG. 1. Portion of Viking Orbiter image 7651425 of Mars' north polar ice cap. lmage area with 100 lines and 
100 samples. (A) Raw data. (6) Result of a 5 by 5 non-adaptive noise filter with a threshold value of 25. 
(C) Result of a 3 by 3 adaptive noise filter with a threshold value of 1.5 U; note that two apparently noisy 
pixels that lie directly on an edge were not replaced. 

FIG. 2. Portion of Viking Orbiter image 927A04 of a chain of collapse pits called Tithonia 
Catena at latitude -5.5", longitude 86". lmage area has 512 lines and 250 samples. 
Illumination is from the bottom left. (A) Raw data. (B) Result of three adaptive noise 
filters. The reseau marks, circular dark spots spaced about 120 pixels apart in (A) have 
been replaced by interpolation in (6). 

or replace the pixel value with R(i,j). The option to zero the 1P(i, j) - LPF(~,~) 1 > Ca(i,j) and IP(i,j) - LPF(~,])~ > TOL (8) 
data point is called the STDZ filter, and the option to replace the 
data point with the box-window average is called the STD filter. where C is a constant (usually from 1 to 2, as described above) 
The STDZ option, described below, allows multiple applications and the constant TOL is a minimum threshold value that must 
of the bit-error removal algorithm for extremely noisy images. be exceeded. Both C and TOL are selected as inputs to the pro- 

P(i,]) is classified as a bit error if the conditions in Equation gram. The parameter C represents the multiple of u that IP(i,j) 
8 are met: - ~PF(i,j)l must exceed before P(i,j) can be considered a bit-error 
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seen (see Figure 1). However, in areas of high contrast such as 
along topographic and albedo boundaries, it becomes more dif- 
ficultto disiinguish a noise spike from the high-contrast bound- 
aries. When the box window is centered over one of these high- 
contrast boundaries, a(i,j) increases so that a larger value of 
IP(i,j) - LPF(~,])~ is required before P(i,j) will be classified as a bit 
error. Thus, pixels that make up the high contrast boundary 
will not be classified as invalid data. 

The STDZ option (to zero bit errors rather than to replace the 
pixel with the box mean) was created for two reasons. First, we 
do not wish to include bit errors (within a box but not the central 
pixel) in the mean used to replace invalid pixels. Second, larger 
boxes result in more successful classification of bit errors when 
other bit errors are present in the box, because of the improved 
statistics.   ow ever; the smaller boxes are best for replacing the 
invalid data with R(i,l). Therefore, the solution to these prob- 
lems is first to run the STDZ option with a relatively large box 
size, followed by the STD option with a smaller box. The stan- 
dard sequence used in PIGS for Viking Orbiter images is a 7 by 
7 box STDZ filter followed by a 5 by 5 STD filter. 

APPLICATION TO VIKING ORBITER IMAGES OF MARS 

Our techniques are illustrated with two examples, both Vi- 
king Orbiter images of Mars. The first image is a part of the 

1 nogh polar residual ice car, [Figure 1). The contrast 2 verv high . . "  
betwein the bright white ice and the dark, ice-free lanes. T K ~  
standard [nonada~tive) threshold bit-error filter re~laces ~ ixe ls  

FIG. 3. Enlargement of 100 by 100 pixel area from central portion of 
image shown in Figure 2. (A) Raw data. (B) Result of 7 by 7 STDZ filter 
(see text). (C) Result of additional 5 by 5 STD filter to image in (B). (D) 
Result of additional 3 by 3 STD filter to image in (C). 

candidate. (In practice we square both sides of the equations in 
Equation 8, which is more efficient for the computer than taking 
the square root.) The TOL parameter, typically in the range of 
2 to 10 for 8-bit data, is used to avoid changing potentially valid 
data points in areas of very low variance or in areas where a 
pixel-scale roughness with brightness variations less than TOL 
might be considered valid data. In many cases TOL may be set 
to zero. 

By using u(i,j), the filter becomes adaptive to the local scene 
contrast. Low-contrast areas of a scene will have a smaller stan- 
dard deviation than high-contrast areas. Thus, according to 
Equation 8, a pixel value may be classified as a bit error with a 
relatively small value of IP(i,j) - L~F(i,j)l in a low-contrast area. 
As the local contrast increases, the discrimination of bit errors 
from real data becomes more difficult both visually and nu- 
merically. In an area of low contrast such as an area with little 
or no topographic or albedo variations, a noise spike is readily 

along the 'sharp ehges and degrades the image reshution' (Fig- 
ure lb). If the threshold value is increased, most of the noise is 
not removed. In contrast, the adaptive filter (3 by 3 box, C 
= 1.5) replaces nearly all of the bit errors without degrading 
the valid data (Figure lc). 

The second example is an image that is very noisy and con- 
tains a great deal of dropped (zero) data (Figures 2 and 3). Only 
about 50 percent of the pixels contain valid data. A series of 
three adaptive filters is needed to clean up this image. We can- 
not begin with an interpolation filter to replace the missing data, 
because the box averages are strongly affected by the bit errors. 
Not only would the interpolated data appear unsatisfactory, but 
the nearby noisy pixels would be more difficult to recognize 
and remove by a subsequent bit-error filter because they would 
be correlated with the interpolated data. We also do not wish 
to replace the noisy pixels with the box mean during the first 
pass, for the same reason. We therefore used three filters: the 
first filter was a 7 by 7 STDZ to zero the noisiest pixels (Figure 
3b), followed by a 5 by 5 STD to replace second-order noise and 
to interpolate the zeroed pixels (Figure 3c), and finally a 3 by 3 
STD to remove third-order noise and noisy, pixels near edges 
(Figure 3d). A threshold value of 1.0 u was used for all three 
filters. 

FIG. 4. Portion of Arecibo radar image of Venus. Image area with 1 14 lines by 128 samples. (A) Original image. 
(B) Result of 5 by 5 sigma filter with 1 u threshold. (C) Result of 5 by 5 adaptive sigma filter with 1 u threshold. 
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SMOOTHING NOISY DATA 

Many techniques have been described for smoothing noisy 
data (see reviews by Pratt (1978) and Rosenfeld and Kak (1983)). 
The obvious disadvantage of a simple low-pass filter is that 
image sharpness and detail are reduced along with the noise. 
The use of a bit-error removal algorithm on noisy data is in- 
appropriate because valid data would be eliminated. For ex- 
ample, speckle noise in SAR images is multiplicative (i.e., its u 
increases with signal intensity; see Lee (1981b)), so bright areas 
are especially noisy, and use of a bit-error removal algorithm 
on SAR images tends to break up the continuity of bright thin 
lines and to c6rrode bright edges. Instead, we wish to smooth 
the noisy data to improve interpretability without degrading or 
eliminating valid data. 

Elaborate algorithms have been developed to attempt simul- 
taneous suppression of noise and preservation of fine image 
detail. However, Lee (1983a) concluded that a very simple method 
that he called the "sigma filter" is at least as effective and much 
more rapid than the more elaborate methods. The basic idea of 
the sigma filter is to replace each pixel value by the average of 
only those neighboring pixels that have an intensity within a 
fixed u range of the center pixel. As a result, only those values 
that can be thought of as belonging to the same population are 
averaged. The sigma filter is identical to a low-pass filter with 
a limited valid intensity range (set by MIN and MAX), except that 
the valid intensity range varies with the intensity of the center 
pixel. Sigma is computed for the entire image, and the valid 
intensity range is defined by the value of the central pixel plus 
or minus a multiple (usually 1 to 2)  of a. Although this is a very 
simpIe modification of a commonly used filter, the improve- 
ment in the results is surprising. Lee (1983a) noted its advan- 
tages over a low-pass filter with a fixed MIN-MAX range: 

IISE FROM DIGITAL IMAGES 

"(1) noise near edge areas will be smoothed without blurring the 
edge because only pixels on one side of the edge are included in the 
average; (2) subtle details of several pixel clusters and linear features 
of one to three pixels in width will be preserved since only those 
pixels and not the background are included in the average: (3) it will 
not create artifacts and will retain shapes, because no directional 
masks are used, unlike the algorithms of Nagao and Matsuyama 
(1979) and Lee (1981a); (4) it is computationally efficient, since only 
simple compare and fixed point add instructions are involved." 

Lee (1983a) compared the computational efficiency of the sigma 
filter to several other algorithms. Compared with 1 unit of com- 
putation time for a sigma filter, the median filter requires 1.5 
units of time, the gradient inverse filter (Wang et  al., 1981) re- 
quires 4 units of time, and the filter of Nagao and Matsuyama 
(1979) requires 11 units of time. However, the sigma filter is 
much slower than filters that can use the rapid box-filtering 
algorithm (Seidman, 1972; McDonnell, 1981). Because of the 
need to compare the value of the central pixel with the values 
of all other pixels in the box, it is not possible to use just 4 add/ 
subtracts per summation. The computation time comparisons 
given above were for a 7 by 7 sigma filter, which was apparently 
done by "direct filtering," and a 7 by 7 low-pass filter using the 
rapid box-filtering technique would be about 20 times faster 
(McDonnell, 1981). 

Lee (1983a, 1983b) discussed the application of the sigma filter 
to signal-dependent noise of speckles that occur in synthetic 
aperture radar (SAR) images (Goodman, 1976). He concluded 
that in many cases the sigma filter performs better and requires 
much Iess computational time than an earlier adaptive method 
(Lee, 1981b). We tested the sigma filter on a portion of an Are- 
cibo image of Venus (Campbell et  al., 1976; see Figure 4). The 
speckle is greatly reduced and prominent edges and linear fea- 
tures have not been degraded. However, some of the low con- 
trast edges and linear features have been degraded. The reason 

for this is easy to understand: all of the intensities in a relatively 
low contrast area are within 1.0 of the value of the central pixel, 
and these areas are gven a simple low-pass filter. 

In order to solve the problem of degrading fine detail in rel- 
atively low-contrast areas, we have modified Lee's sigma filter 
into an adaptive filter. We simply use u(i,j), computed for each 
box, rather than u for the entire image. Previous adaptive filters 
for smoothing noisy data (Frost et  al., 1981, 1983; Lee, 1980, 
1981a, 1981b; Tom, 1985) are adaptive in the sense that they 
apply greater smoothing to low-variance areas. These filtering 
methods are different from our method, and in fact they worsen 
the problem of degrading fine detail in low-contrast areas of 
the image. Our adaptive sigma filter (Figure 4c) preserves fine 
detail even in low-contrast areas, but it nevertheless reduces 
the speckle noise significantly. For scientific studies in which 
the fine detail may be important, we consider this adaptive 
sigma filter to be preferable to the standard sigma filter. How- 
ever, it requires about 1.7 times more computation time. 

CONCLUSIONS 
We have presented two conceptually simple and relatively 

rapid adaptive filters for removing random noise from digital 
images. The first filter is designed to replace random bit errors, 
and the second is designed to smooth noisy data. The two filters 
can be combined into a single program for processing images 
with both random bit errors and noisy data. These filters are 
more successful than previous efforts for removing noise with- 
out degrading the fine image detail. 
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