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ABSTRACT: Separation of topography-induced illumination effects and spectral information (cover type) in digital scan- 
ner data can be accomplished by projecting measurement vectors onto a hypersphere. The algorithm consists of cal- 
culating the radius R of the measurement vector X and its hyperspherical direction cosines Y for each measurement 

bands In X 
vector R = 1 and Y = -. Machine classification of the data is greatly enhanced because spectral information 

R 
(cover type)homina&s the variance in the transformed data, while topography-induced illumination effects dominate 
original, untransformed data. This also offers significant improvements in visual analysis and possible advantages in 
multitemporal analysis. 

INTRODUCTION 

D ATA GATHERED by digital scanner systems, such as the 
Landsat MSS and TM, and SPOT systems, contains two fur.- 

damental types of information: illumination and surface mate- 
rial reflectance. The brightnesses seen by a sensor are the product 
of the incident illumination (a constant factor for a given surface 
element) and the spectrum of the ground cover. Haze (and 
sensor bias) add a constant to the measurement vector, while 
sensor noise adds a random value. This relationship can be 
expressed mathematically as 

= SSG 

where X is the measurement vector of a data set with i bands, 
p is the cover type of the pixel, s s G  is a sun-slope geometry 
term accounting for illumination, Rip is the reflectance of cover 
type p in a particular band i, Si is the intensity of the irradiating 
sunlight, T,, and ri2 are the atmospheric transmission factors for 
the inbound and outbound paths respectively, Hi is the haze 
level (and sensor bias), and N,  is the sensor noise. Note that 
the illumination term SSG is the same' for all reflected bands for 
a given pixel, while only the reflective term Rip depends on 
cover type. 

It has been shown that the variance of a data set due to 
topographic expression is much greater than the variance due 
to the spectral response (Gillespie et al., 1986). This has led to 
the development of techniques which enhance the spectral re- 
sponse of the data set. Generally, these techniques include (1) 
band ratioing (Rowan et al., 1974; Podwysocki et al., 1983; & 
Gillespie el al., 1987), (2) directed band ratioing (Crippen et al., 

1988), and (3) decorrelation and saturation stretching (Gillespie 
et al., 1986). Notably, these enhancement techniques have been 
developed with the visual interpretation of the data set in mind. 
Hence, the latter two techniques tend to enhance the spectral 
variation and retain the topographically derived variance within 
the data set. 

In digital analysis of a sensor image, such as statistical clas- 
sification based on spectral characteristics, it is often essential 
to separate the topographically induced variations in illumina- 
tion from the spectral variations due to various cover types (an 
example of the effects of not separating topography from spec- 
tral information in the image can be seen in the clustering re- 
sults shown in Plate 2e, where the clusters correspond to 
combinations of slope-aspect and cover type). Band ratioing, 
once the data have been properly adjusted for haze and sensor 
bias offset, removes the topographic expression (Crippen et al., 
1988). However, there are several problems associated with band 
ratioing for digital analysis. First is the loss of band significance 
in the final band ratio due to the division process itself. (For 
example, a high value for T M 6 W  does not indicate whether it 
is due to strong reflectance in TM6 or strong absorption in TM5.) 
Second, the topographic information is not recoverable. Third, 
band ratios tend to saturate quite easily, because band ratios 
can range from 0 to infinity (or 255 if 1 is added to the denom- 
inator). Finally, and perhaps most significantly, the images that 
result from band ratioing seem to be noisier than the original 
data. 

There is a need for a data transformation that separates the 
topographic expression and retains the band significance of the 
spectral reflectance. A hyperspherical direction cosine (HSDC) 
transformation satisfies this need. We examine the conceptual 
background of hyperspherical coordinates with respect to real 
data structure, present a simple algebraic procedure which im- 
plements the transform, and offer examples of the transfor- 
mation on two diierent sensor datasets of two different regions. 

THEORETICAL CONCEPTS 
Viewing the data structure is helpful in understanding the 

effects of topography and spectral reflectance; for simplicity, 
two-dimensional bispectral plots are utilized. A spectrally ho- 
mogeneous cover type will plot as a line segment radial to the 
origin as shown in Figure la. Because the relationship between 
spectral bands of the ideal cover type is constant, it is the slope 
of the line that identifies the cover type. The radial translation 
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FIG. 1. Bispectral Plots. (a) Theoretical plot of two different spectrally- 
homogeneous classes. (b) Plot of two actual lithologic classes from the 
Landsat TM dataset. (c) Plot of same classes after haze adjustment. (d) 
Projection of three points (G, H ,  and Q) onto a hypersphere of radius 255 
for two band data. G and H, which have the same reflectances but dif- 
ferent radiances, plot at the same point (G' and H') on the hypersphere. 
Distance from a measurement vector to a class mean is angle O; an 
equivalent measure of distance would be the cartesian distance I between 
the vectors' projections on the hypersphere. 

of a point along the line is due to variation in illumination caused 
by topography (the sun-slope geometry). ,In actual data, the 
cover classes exhibit a less precise form. As can be seen in 
Figure lb, two cover classes sampled from actual data are rep- 
resented by elliptical patches (rather than straight lines) whose 
long axes do not intersect at the origin. The scatter pattern is 
caused by lack of complete uniformity within the cover type as 
well as atmospheric and sensor noise. The offset of the axes 
relative to the origin is caused by atmospheric effects (notably 
"haze") and sensor bias. This offset can be adjusted by various 
methods so that the cover types are again radial to the origin, 
approximating the ideal situation. All the data presented in this 
article have been adjusted using the regression intersection 
method (Crippen, 1987) as shown in Figure lc. 

A common objective of digital image processing is to produce 
a class map from the sensor data. This mapping can be per- 
formed using supervised classification (ancillary data are used 
to statistically characterize user-defined classes; an example would 
be a maximum-likelihood classifer, which relies on training field 
selection) or unsupervised clustering (modes in the multi-di- 
mensional data distribution are sought which define natural 
structure in the data; an example would be a moving means 
clustering program like ISODATA) 

Most clustering criteria, such as maximizing the cluster-means 
distance while minimizing the cluster radius (which is equiva- 
lent to minimizing the sum square error (Swain and Davis, 1978)), 
use Pythagorean distance from cluster means to classify data 
points. Because Pythagorean distance shows no directional 
preference, the resulting clusters are hyperspheres and cluster- 

ing is thus particularly vulnerable to sun-slope geometry effects. 
Judicious training field selection in supervised classification can 
mitigate this problem under favorable circumstances. 

As seen in Figure Id, angular proximity (0 in Figure Id) of a 
measurement vector to a line is a better measure of class type 
than is proximity to a point. The best way to establish this 
proximity (nearness criterion) is to express the measurement 
vector of a pixel as an angular measure in hyperspherical co- 
ordinates. The radius is a measure of the illumination of the 
pixel and is effectively separated from the spectral reflectance 
measure. The implementation of this coordinate transformation 
is a very simple two-step process. 

PROCEDURE 

In hyperspherical coordinates, distance could be defined as 
the angular separation between two points, or the arccosine of 
their dot product. However, the Cartesian distance between 
two points on a hypersphere is an adequate surrogate for their 
angular distance as illustrated in Figure Id. Because the hyper- 
spherical direction cosines (the Cartesian components of a unit 
vector through the data point) are simpler and faster to compute 
than the angular position, and the hyperspherical direction cos- 
ines can be clustered or classified with standard algorithms de- 
signed for cartesian measurement vectors, we chose to implement 
hyperspherical direction cosines rather than hyperspherical an- 
gles. To transform a measurement vector into hyperspherical 
direction cosines, the radius measure is first calculated as 

band, 
1 I2 

R = X.1 

where X, is the pixel's brightness value in the ith band. The 
direction cosines are defined by 

where Yi is the direction cosine measure of the original mea- 
surement vector Xi. Because most remote sensing systems use 
an 8-bit integer for storage, the constant 255 is included in Equa- 
tion 3. The operation described above is equivalent to radially 
projecting each measurement vector onto a hypersphere with 
a radius of 255. (A hypersphere is the n-dimensional equivalent 
of a sphere or circle and can be mathematically defined as the 
locus of all points X, such that IX - CI = r, where C is the center 
of the hypersphere and r is its radius.) 

TWO EXAMPLES OF THE HSDC TRANSFORMATION 

To test the hyperspherical direction cosines transform, two 
data sets were used: the first, MSS data of a vegetated moun- 
tainous area; and the second, TM data of an arid mountainous 
area of exposed rock. The transformation's ability to enhance 
the discrimination of vegetation and lithology was shown as 
well as its ability to mitigate illumination effects on classifica- 
tion. 

Prior to performing the transformation, the data sets were 
adjusted for haze and sensor bias as described previously. The 
HSDC transformation was applied to both data sets on an IBM- 
AT using the ERDAS program ALGEBRA. The original datasets 
and the transformed datasets (excluding the radial measure) 
were classified with an ERDAS-compatible moving-means clus- 
tering algorithm (written by G. Pouch, copyright 1989 by the 
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Purdue Research Foundation; contact the author for availability) 
using a number of classes for each area determined from the 
groundtruth class maps. 

For the Santa Rita area (Plate I), Richardson et al. (1979) stated 
that there are four distinct vegetation associations controlled by 
elevation and soil development. The original MSS dataset was 
collected in February, 1973 over the Santa Rita Mountains south 
of Tucson, Arizona, and a subscene of 150 by 150 pixels ex- 
tracted from the original data set is shown as Plate la. A general 
elevation map constructed for use as the groundtruth map with 
which the resulting cluster classification maps are to be com- 
pared is shown as Plate lb. The lowest elevations, shown in 
red and blue in Plate lb, support a shrub-dominated plant com- 
munity; the foothills and low mountains, shown in green, are 
forested; and the highest elevations, shown in orange and bright 
red, are above the treeline and also have a shrub-dominated 
plant community. . Plate lc  is the radius band for the Santa Rita MSS, whereas 
Plate Id shows the hyperspherical direction cosines for MSS7, 
MSSS, and MSS4. Plates l e  and If show the clustering results 
based on the original data and the HSDC transformed data (ex- 
clusive of radius) for the Santa Rita Mountains. Visual exami- 
nation of the cluster map of the original data (Plate le) shows 
strong illumination effects in the clustering. In particular, note 
that the shadowed areas in the mountains (western half of sub- 
scene) are classified into a separate class (dark green). In contrast, 
the clustering based on the H S ~  data showed no such effect. 

The TM dataset was collected in April, 1984 over the Lake 
Mead area of southern Nevada. Plate 2a is a subscene of 150 by 
150 pixels extracted over Pinto Ridge, a simple anticlinal struc- 
ture faulted along its northwestern boundary. The area is arid 
and nearly devoid of vegetation. Plate 2b is a class map based 
on field mapping; the geologic units were grouped into tele- 
geologic units of similar spectral character based on laboratory 
spectra of hand samples. (Laboratory spectra were obtained with 
a Barnes radiometer with channels equivalent to TM.) In plate 
2b, cherty limestone is blue, limestone-gypsum is green, redbeds 
are light red, volcanics (andesite) are intense red, alluvium with 
volcanic fragments is yellow-brown, and all other materials are 
shown in brown. In the clustering, two extra classes were added 
to account for the possibility of unsampled units (e-g., soils). 

Plates 2e and 2f show the classification results for the Pinto 
Ridge area using both the original and transformed datasets, 
respectively. Inspection of the TM image of Pinto Ridge (Plate 
2a) and the clustering of the original TM data (Plate 2e) shows 
that the latter is strongly affected by slope. Notice that the 
brightly-lit patches near the southeast limb of the anticline in 
the limestone-gypsum unit and the southeastern area of redbeds 
near the alluvial fan are both clustered together using the orig- 
inal data (blue in Plate 2e), but that no such effect is present in 
the HSDC-transformed clustering results. A similar effect can 
be seen for the dimly-lit portions of the above areas where shad- 
owed areas were clustered together (shown in black in Plate 2e) 
in the original data whereas they show no particular pattern in 
the transformed image. Table 1 shows the number of points in 
each cluster in each lithologic class for the clustering of the 
original TM data, whereas Table 2 shows these values for the 
HSDC transformed clustering. While not as striking as the visual 
presentation of the data, Table 1 shows that clustering of the 
original data results in lithologic classes splitting into several 
similarly-sized clusters which contain several different litholo- 
gies, especially redbeds, limestone, limestone-gypsum, and 
volcanics, all of which tend to form rugged topography. In con- 
trast, Table 2 shows that clustering of the HSDC transformed 
data results in the lithologic classes occupying fewer clusters 
and the clusters tending to be dominated by one or two lith- 
ologies. 

Consideration of the clusterings based on the original data 
(Plates l e  and 2e) shows that they exhibit better correlations to 
the radius bands (Plates lc and 2c) of the transformed images 
than to the class maps. On the other hand, the classification 
maps of the hyperspherical direction cosines (Plates If and 2f) 
show a strong correlation to the previously defined class maps 
and thus are controlled more by cover type than by sun-slope 
geometry. 

DISCUSSION 
As developed in the preceding theoretical arguments and 

demonstrated in the applied examples, the HSDC transform is 
successful in separating the variations in illumination due to 
topography from the spectral reflectance measure. Because al- 
bedo is defined as band independent reflectance (Swain and 
Davis, 1978), it is logically equivalent to illumination. Thus, 
albedo is aliased into the radius band and is not separated from 
the illumination. 

The significant advantages of thi separation of the two basic 
information types are numerous, and a few are mentioned be- 
low. As was shown, the HSDC transform allows more accurate 
separation of spectral classes using unsupervised statistical clas- 
sification. Because numerical algorithms are sensitive to the nu- 
merical variance, the use of computationally simpler and faster 
supervised classification algorithms, such -as a parallelepiped 
classifier, mav be possible alternatives to the more commonly 
used and timi con'suming maximum-likelihood algorithms. 

The hyperspherical direction cosines in a transformed image 
retain the band significance of the original measurement vector. 
To illustrate this, an arbitrary pixel was selected from the TM 
subset, and the digital numbers from the original and trans- 
formed data sets are compared in Figure 2. Retaining band sig- 
nificance allows a spectral interpretation of image color and 
should decrease illumination effects in commonly utilized trans- 
formations such as the tasseled cap or the normalized vegeta- 
tion difference. 

Another aspect of the transformation is the ability to reduce 
differences in multitemporal images arising from differences in 
the sun's position. The HSDC transform estimates the incident 
illumination from the remote sensing dataset, thus correcting 
for varying illumination without the use of ancillary datasets 
such as digital elevation models. The sun angle effects will sim- 
ply be stored as the radial measure in the HSDC transformation. 

The topographic expression is also an important data source 
in interpretation. The HSDC transformation retains this infor- 
mation in a separate band which is available for various anal- 
yses (e.g., drainage, landform). 

The traditional band ratio method is equivalent to finding a 
direction tangent in a series of projection planes, while the mw 
transform finds the direction cosines in n-space. Because the 
cosine's derivative is bounded by 1 and - 1, while the tangent 
has an unbounded derivative, we believe the HSDC is more 
stable in the presence of noise. 

It may be noted that, because an accurate estimate of the 
scene illumination allows separation of spectral information, the 
addition of a panchromatic brightness band, with consequent 
very high signal-to-noise ratio, would be a useful addition to 
future digitai scanners. 

Finally, the implementation of the transform is extremely 
simple and fast. The only major preparation step is obtaining a 
reasonably accurate estimate of the numerical offset due to haze 
and sensor bias. 

SUMMARY 
The hyperspherical direction cosine transform successfully 

separates topography-controlled illumination effects and cover- 
controlled spectral effects in digital scanner data by projecting 
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TABLE 1. CLASSIFICATION RESULTS FOR ORIGINAL TM DATA 
ENTRIES REPRESENT THE NUMBER OF PIXELS BELONGING TO THE CLUSTER SPECIFIED BY COLUMN AND THE LITHOLOGY SPECJFIED BY ROW. NOTE THE 

TENDENCY OF LITHOLOGIC CLASSES TO BREAK INTO SEVERAL SIMILARLY SIZED CLASSES, ESPECIALLY THE VOLCANICS, LIMESTONES, AND REDEEDS, WHICH 
ARE RIDGE-FORMERS, AND OF CLUSTERS TO CONTAIN SEVERAL LITHOLOGIES. REFER TO PLATES 2 8  AND 2E FOR VISUAL COMPARISON. 

Cluster Number 
Lithology 1 2 3 4 5 6 7 8 Lithology Total 
QAL 615 2559 21 1900 48 411 1980 116 7650 
Redbeds 177 575 48 749 310 519 800 384 3562 
Limestone and Gypsum 1284 501 855 278 344 256 360 209 4087 
Cherty Limestone 425 699 446 322 '1287 304 414 289 4186 
Andesite Volcanics 52 33 25 351 3 609 155 625 1853 
Alluvial Fan 0 5 0 352 0 783 22 0 1162 
Cluster Totals 2553 4372 1395 3952 1992 2882 3731 1623 22500 

TABLE 2. CLUSTERING RESULTS FOR HSDC-TRANSFORMED TM DATA OF PINTO RIDGE 
ENTRIES REPRESENT THE NUMBER OF PIXELS BELONGING TO THE CLUSTER SPECIFIED BY COLUMN AND THE LITHOLOGY SPECIFIED BY ROW. NOTE THE 
TENDENCY FOR LITHOLOGIC CLASSES TO OCCUPY RELATIVELY FEWER CLUSTERS, AND THE TENDENCY FOR CLUSTERS TO CONTAIN ONLY ONE OR TWO 

LITHOLOGIES. REFER TO PLATES 2 8  AND 2F FOR VISUAL COMPARISON. 

Cluster 
Lithology 1 2 3 4 5 6 7 8 Lithology Total 
Q AL 2789 639 501 2620 525 6 179 391 7650 
Redbeds 636 256 66 783 444 19 358 1000 3562 
Limestone and Gypsum 394 2258 487 644 106 20 142 36 4087 
Cherty Limestone 490 305 37 1885 27 0 1426 16 4186 
Andesite Volcanics 44 152 829 82 2 680 64 0 1853 
Alluvial Fan 122 16 934 17 56 0 6 11 1162 
Cluster Totals 4475 3626 2854 6031 1160 725 2175 1454 22500 

TM BANDS 

FIG. 2. Bar graph showing relationship between 
original brightness values and the HSDC trans- 
formed values. Spectral peaks in the HSDC vec- 
tor correspond t o  peaks in the measurement 
vector. 
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Erratum 
In the article, "A System for Digital Stereo Image Matching" by Marsha Jo Hannah, which appeared on pages 1765-1770 of the 

December issue of PE&W, the photographs for Figures 3 through 5 were installed in the wrong order, i.e., the caption for Figure 3 
i s  accompanied by the photo intended for Figure 5, the caption for Figure 4 was paired with photo 3, and the caption for Figure 5 is 
with photo 4. 


