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ABSTRACT: The problem of data compression is very important in digital photogrammetry, computer assisted cartog- 
raphy, and GISLIS. In addition, it is also applicable in many other fields such as computer vision, image processing, 
pattern recognition, and artificial intelligence. Consequently, there are many algorithms available to solve this problem 
but none of them are considered to be satisfactory. In this paper, a new method of finding critical points in a digitized 
curve is explained. This technique, based on the normalized symmetric scattered matrix, is good for both critical points 
detection and data compression. In addition, the critical points detected by this algorithm are compared with those by 
zero-crossings. 

INTRODUCTION 

T HE ADVENT OF COMPUTERS has had a great impact on map- 
ping sciences in general and digital photogrammetry and 

cartography in particular. Nowadays more and more existing 
maps are being digitized, and attempts have been made to make 
maps automatically using computers. Moreover, once we have 
the map data in digital form, we can make maps for different 
purposes very quickly and easily. Usually, the digitizers tend 
to digitize more data than is required to adequately represent 
the feature. Therefore, there is a need for data compression 
without destroying the character of the feature. This can be 
achieved by the process of data compression. In this paper, a 
new method of data compression is described which is efficient 
and has a sound theoretical basis as it uses the eigenvalues of 
the Normalized Symmetric Scattered ( N ~ s )  matrix derived from 
the digitized data. 

THE NATURE OF SCATTER MATRICES AND THEIR 
EIGENVALUES 

Consider the geometry of the quadratic form associated with 
a sample covariance matrix. Suppose P = (p,, p, ... , p,) be a 
finite data set in R2 and P is a sample of n independently and 
identically distributed observations drawn from real two di- 
mensional population. 

Let (p, I) denote the population mean vector and variance 
matrix and let (v, v,) be the corresponding sample mean vector 
and sample covariance matrix. These are then given by Uotila 
(1986) as follows: 

v, = S pin; V, = 8 (pi - v,) (pi - vp). (1) 
Multiply both sides of the equation for v, by (n - 1) and denote 
the right hand side by S,, i.e., 

The matrices S, and V are both 2 x 2 symmetric and positive 
semi-definite. Because tRese matrices are multiples of each other, 
they share identical eigen-spaces. 

According to Anderson and Bezdek (1983) one can use the 
eigenvalue and eigenvector structure of S, to extract the shape 
information of the data set it represents. This is because the 
shape of the data set is supposed to mimic the level shape of 
the probability density function f(x) of x. For example, if the 
data set is bivariate normal, S, has two real, non-negative ei- 
genvalues. Let these eigenvalues be A, and A,. Then the follow- 
ing possibilities exist (Anderson and Bezdek, 1983): 

If both A, and A, = 0, then the data set P is degenerate, and S, 
is invertible and there exist with probability 1, constants a, b, and 
c such the ax + by + c = 0. In this case the sample data in P lie 
on a straight line. 
If A, > A, > 0, then the data set represents an elliptical shape. 

If A, = A, > 0, then the sample data set in P represents a circle. 

EIGENVALUES OF THE NORMALIZED SYMMETRIC 
SCATTER MATRIX (NSS) 

Supposing that one has the following data: 

P = (PI, P2 . . . ,P") 

where Pi = (xi, yi). 
Then the normalized scattered matrix A is defined as 

For the above data set, A is given by the following: 
Let Deno = S ((xi - x,), + (yi - y,),), 

a,, = l/Deno 8 (xi - x,), 
a,, = 1Deno 2 (xi - x,) (y, - y,) 
a,, = l/Deno 8 (xi - x,) (y, - y,) 
a,, = 1Deno 8 (y, - Y,)~ 

where vx = (x,, y,) is the mean vector defined as 

x, = 8 xjn, and y, = X yjn. 

Note that the denominator in Equation 3 will vanish only when 
all the points under consideration are identical. Clearly matrix 
'A' is symmetric because matrix S, is symmetric. The character- 
istic equation of A is given by 

\ A  - AI(=O 0 
which may be written as (for 2 x 2 matrix) 

A2 - trace(A) A + Det (A) = 0 (8) 
where Det(A) = Determinant of A. It follows from Equations 4 
and 5 that the trace of the matrix A, trace(A), = 1, because 
trace(A) = a,, + a,, = 1. Hence, the characteristics equation of 
A reduces to 

The roots of this equation are the eigenvalues and are given by 

A, = [I + gl-4*Det(A)J/2 and (101 

For convenience put Dx = dl - 4* Det(A); then 
A, = (1 + DJ/2 

A, = (1 - Dx)/2 

Now A, and A, satisfy the following two conditions: 
A, + A, = 1 
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Because the sum of the roots of an equation of the form ax2  + 
b x + c = O a r e A ,  + A , =  -bla. 

Subtracting Equation 12 from Equation 11, one obtains 

Because the eigenvalues A, and A, satisfy Equations 13 and 14, 
the three cases discussed previously reduce to the following 
form (Anderson and Bezdek, 1983): 

The data set represents a straight line if and only if D, = 1. 
The data set represents an elliptical shape if and only if 0 5 D, I 
1. 
The data set represents a circular shape if D, = 0. 

ALGORITHM TO DETECT CRITICAL POINTS USING NSS 
MATRIX 

The analysis of the eigenvalues of the NSS matrix can be used 
to extract the shape of the curve represented by the data set. 
Hence, this characteristic may be exploited to detect critical points 
in the digital curve. Assuming that the data are gross error free, 
and devoid of excessive noise, one can outline the algorithm to 
detect critical points in the following steps: 

(1) First, take three points from the data set. 
(2) Compute the N ~ S  matrix and, hence, its eigenvalues. 
(3) If D, is greater than a certain tolerance (e.g., 0.95), add one more 

point to the data and repeat step 2. If D, is less than the toler- 
ance, point 2 is a critical point. 

(4) Retain point 2 and repeat the process from step 1 with point two 
as the new starting point. 

(5) Repeat the process until the end of the data set is reached. 

The algorithm discussed in the previous section is useful in 
detecting the critical points in vector data. The only parameter 
involved in this technique is D, which was defined earlier. By 
varying the value of D, between say 0.9 to 1.05, one can get a 
varying amount of detail in a curve. Figure 1 shows the selected 
critical points for D, = 0.96. 

There are 50 points selected in Figure 1. It is clear from Figure 
1 that this method will be very useful for compression of digi- 
tized data because it retains the overall shape of the curve with- 
out retaining the unnecessary points. 

COMPARISON OF RESULTS OBTAINED BY ZERO- 
CROSSINGS ALGORITHM AND NSS MATRIX METHOD 

The zero-crossings algorithm for line generalization and data 
compression in raster data was devised by Thapa (1987,1988a). 
In this approach, the raster data are *first converted to chain 
codes. These chain codes (Freeman, 1978) are then modified to 
take care of the discontinuity and scale problem (Eccles et al., 
1977; Pavlidis, 1978). The modified chain codes are then con- 
voluted with the mask obtained from the second derivative of 
the Gaussian for a particular value of sigma (sigma is the pa- 
rameter of the Gaussian function). The zero-crossings in the 
convoluted values are then identified. The raster data points 
which correspond with the zero-crossings provide the points 
which are sufficient to preserve the shape of the line. 

The NSS matrix method of data compression also has only 
one parameter D,. By varying the value of D, between 0.9 and 
1.05, one can achieve various levels of data compression. 

Note that there were 1324 pixels of size 0.25 mm in the curve 
which have been reduced to 78 points. A comparison of Figures 
1 and 2 shows that for sigma = 4 the zero-crossings algorithm 
retained more detail in the line than the NSS matrix method. 
However, as shown in Thapa (1988b), one can vary the number 
of points retained by zero-crossings algorithm by changing the 
value of sigma. The lower the value of sigma, the more detail 
of the line will be retained. 

CONCLUSIONS 

The analysis of the eigenvalues of the normalized symmetric scat- 
tered matrix provides a useful way of detecting critical points in 
digitized curves. Consequently, this technique may be used for 
data compression for digitized curves. 
The NSS matrix algorithm for data compression can retain the 
same points as the zero-crossings algorithm. 
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