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ABSTRACT: This research reveals that an important factor which degrades current remote sensing image analysis lies in 
the loss of spectral information during the process of image classification, and the information loss is caused by the 
expressive inadequacy of the traditional method for representing geographical information. 

This paper examines where and how the spectral information is lost in a conventional supervised classification 
process, proposes an alternative method to the traditional representation- the fuzzy representation which may reduce 
the information loss-describes a new classification algorithm which is based on the fuzzy representation, and presents 
the major achievements including higher overall classification accuracy and identification of types and proportions of 
component cover classes in mixed pixels. 

INTRODUCTION or outside it. When the attribute values are used to classify the 

I N CLASSIFYING AND LABELING remote sensing images, infor- 
mation is currently represented in a one-pixel-one-class 

method. In practical situations, a pixel may represent the mea- 
surement of cover class mixture, intermediate conditions, or 
other complex cover patterns which cannot be properly de- 
scribed by a single class. The expressive limitation of this method 
has inevitably caused information loss which has in turn led to 
unsatisfactory image classification accuracy and poor extraction 
of information. 

The current representation method is based on classical set 
theory which is ideally suitable for objects which can be pre- 
cisely described by full membership in a set. Many geographical 
phenomena, however, cannot be accurately described by such 
membership. Impreciseness thus arises when the "one mem- 
bership" method is used to represent geographical information. 
To improve remote sensing image analysis, an alternative rep- 
resentation method is required which allow for partial and mul- 
tiple membership. 

In this research, information loss in the image classification 
process is explored. A fuzzy remote sensing image classification 
technique has been developed. Differing from the previous work 
in applying fuzzy set theory to remote sensing image analysis 
(Cannon et al., 1986; Jeansoulin et al., 1981; Zenzo, 1987; Kent 
and Mardia, 1988) which employed the fuzzy methods in lim- 
ited processing phases, this technique uses fuzzy sets for in- 
formation representation throughout the entire process of image 
classification. Information loss can be largely reduced through 
this representation methods. Encouraging results have been 
achieved in experiments. 

IMPRECISE REPRESENTATION METHOD FOR 
GEOGRAPHICAL INFORMATION 

Geographical information is conventionally represented in 
thematic maps. A thematic map is a specific-purpose map which 
contains information about a single subject of theme. A map is 
a set of points, lines, and areas that are defined both by their 
location in space with reference to a coordinate system and by 
their non-spatial attributes about a theme (Burrough, 1986). 

Currently, the linkages between the spatial entities and their 
attributes are implicitly based on the membership concept of 
classical set theory. According to the theory, a set has a pre- 
cisely defined boundary and an element is either inside the set 
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spatial entities into classes (i-e., each class is characterized by 
an attribute value), an entity either completely belongs to a class 
or not at all. For example, in a land-cover map, a region can be 
described by only one cover type exclusively, such as grass or 
bare soil. Such a representation method has difficulties to deal 
with phenomena which cannot be described by membership in 
a single set. In the following, land-cover class mixture and within- 
class variability are used to reveal the expressive inadequacy of 
the current representation methods. 

A region in a map corresponds to an area on the ground. 
Quite often, such a ground area contains a mixture of surface 
cover classes, for example, grass and underlying soil. In the 
case of a raster map (including remote sensing-derived maps), 
each pixel corresponds to a square cell on the ground. Mixture 
may also take place when the size of the cell is larger than the 
size of the features about which information is desired. Because 
currently only one cover class (usually the major one) can be 
assigned to a region (or a pixel), information about the other 
component classes and deviation of the assignment cannot be 
represented. 

Different conditions may exist within a cover class in practical 
situations. For example, vegetation may be in different condi- 
tions which are caused by such factors as plant health, age, 
water content, and soil mineral content. However, these con- 
ditions cannot be differentiated in a thematic map unless more 
classes are introduced. It is clearly inaccurate to assign the same 
class to fresh grass and half dry grass without specifying their 
differences. 

In the above situations, introducing more classes will lead to 
higher analysis costs and, no matter how finely the classes are 
defined, class mixture and within-class variability may exist. 
Using the existing method to represent geographical informa- 
tion inevitably leads to expressive limitations. In remote sensing 
image analysis, the expressive limitations lead to loss of valu- 
able spectral information. 

EXPRESSIVE LIMITATIONS AND INFORMATION LOSS 

Probably because a primary objective of many remote sensing 
applications is the classification of images to generate thematic 
maps and the ground truth information required for classifier 
training is derived from thematic maps (which may not exist 
physically), information representation in remote sensing image 
analysis basically follows the conventional method. Each pixel 
can only be associated with one cover class. Such a method 
cannot properly represent class mixture and intermediate con- 
ditions which occur in most remote sensing images. 
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A ground cover class has spectral characteristics which depend 
upon the interaction mechanism between electromagnetic 
radiation and the material of that cover class. In a given 
radiometric band, a pixel value of a remote sensing image is a 
measure of the spectral characteristics of the corresponding 
ground cell. When the cell contains a single cover class, the 
vixel records spectral characteristics of that class, and when the 
cell contains a mixture of cover classes, the pixel value is a 
function of the reflectance from a mixture of component classes 
(Fung and Ulaby, 1983; Jensen, 1986; Thomas et al., 1987). As 
the mixture proportions change from pixel to pixel, the reflectance 
value changes. Usually, the more of a cover class a pixel contains, 
the more spectral characteristics of that class it has. Thus, a 
mixed or heterogeneous pixel has its spectral characteristics which 
differ from those of a homogeneous pixel. Similarly, changes 
in conditions within a given cover class also cause variation in 
spectral characteristics. 

Pixel measurement vectors are often considered as points in 
a spectral space. Pixels with similar spectral characteristics form 
groups which correspond to various ground-cover classes that 
the analyst defines. The groups of pixels are referred to as spectral 
classes while the cover classes are referred to as information classes. 
To classlfy pixels into groups, the spectral space is partitioned 
into regions, each of which corresponds to one of the information 
classes defined. As discussed before, traditionally the information 
classes are implicitly represented as classical sets. Thus, a partition 
of spectral space is based on the same principles. Decision surfaces 
are defined precisely by some decision rules to separate the 
regions. Pixels inside a region are associated with the 
corresponding information class. Such a partition is usually called 
a hard partition. 

If X is a finite set {x,, x,, ..., xJ ,  a hard k-partition of X is a 
family {A, : 1 s i s  k}C P(X) which satisfies 

+CA,  CX,  1 1 i r . c  

where P(X) is the power set of X. 
Formally, a hard k-partition space for X can be represented 

as 

where V,, is a set of real k x n matrices, and U = [u,.] is referred 
to as a hard partition matrix. 

A serious drawback of a hard partition of spectral space is 
that a great quantity of spectral information is lost in determining 
and using pixel membership. In the following, the maximum 
likelihood classifier is taken as an example to illustrate this point. 

The maximum likelihood classifier (MLC) is one of the most widely 
used methods for supervised classification. The decision rule 
applied to each unknown measurement vector, x, is (Anuta, 
1977): Decide x is in class c if and only if 

where i = 1,2,3, ..., m possible classes, and if the classes are 
Gaussianly distributed, then, 

where p, is mean vector of class i,C, is covariance matrix of class 
i, and N is dimension of the measurement vector x. P, (x) is the 
conditional probability of the measurement vector x given that 
the class i is known. 

By taking logarithm and assuming that the covariance matrices 
for all classes are equa1,the decision rule is simplified to assigning 
the measurement vector x to class c, minimizing the square of 
Mahalanobis distance 

between x and IL,. Equation 5 precisely defines surfaces for a 
hard partiton. 

In MLC, Mahalanobis distance measures the distance of a pixel 
vector from the mean position of a class which represents the 
spectral characteristics of that class. The shorter the Mahalanobis 
distance, the more similar the pixel is to a predefined class in 
terms of the spectral characteristics. The decison rule can thus 
be explained as classifying the unkown measurement vector x 
to class c whose mean is closest to x in the spectral space. 

For each pixel, more information could be derived by retaining 
the Mahalanobis distances for all classes instead of picking the 
maximally likely single class. Fist of all, the distances can provide 
information for differentiating between mixed pixels and 
homogeneous pixels: the vector of a homogeneous pixel must 
be very close to a class mean while the vector of a mixed pixel 
must be far from any class mean. Second, by comparing the 
distances, it is possible to identify cover-class components of a 
mixed pixel and estimate their propotions. Roughly, the more 
a pixel contains a cover class, the more similar is the pixel's 
measurement to the mean of that class in terms of spectral 
characteristics, and thus the smaller the distance to its mean in 
the spectral space. Third, the fact that a pixel measurement 
vector is half way between means of two classes in a spectral 
space may imply an intermediate condition. Furthermore, when 
a pixel is assigned a class in the conventional classification, the 
distances could be used to estimate the accuracy of the 
assignment. If the distance of the pixel to the mean of the class 
assigned is very small compared with the distances to the means 
of the other classes, the deviation of the assignment might be 
small with respect to spectral characteristics recorded. Although 
the above information is not always directly required by users, 
it might be significant for certain digital anaylses, especially for 
knowledge-based analysis. 

However, the information contained in the Mahalanobis 
distance is not fully exploited in conventional classifiers. Let us 
examine how the information is lost in determining the pixel 
membership by using the simplified maximum likelihood 
classification. For each pixel, its Mahalanobis distances to all 
the class means are calculated and then compared. The closest 
class is assigned to the pixel. Once membership of the pixel is decided, 
the distances are immediately discarded. The assignment implies full 
membership in the class and no membership in other classes. 
The possibility that a pixel may partially belong to a class and 
simultaneously belong to more than one class is excluded. Final 
output of the classification is represented in a one-pixel-one-class 
image. A great deal of valuable information which has been 
derived when calculating the Mahalanobis distances has to be 
discarded because it is difficult to be represented in such a 
framework of classical set theory. This is an important reason 
for the current poor extraction of spectral information. 

In Gaussian cases, class means ps and covariance matrixes 
Zs play a critical part in MLC decision-making. A mean and 
covariance matrix describe a classes: the mean is the 
representative element and the determinant of the covariance 
matrix describes the volume of the equidistance contour. In 
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determining membership of a pixel measurement vector, the two membership grades indicating the extents to which it is 
classifier decides in favor of the class with shorter distance to associated with the two classes. 
the pixel (i.e., the more likely class), and the class with smaller 
IXI (i.e., the denser class). How accurate the classification is A CLASSIFICATION ALGORITHM BASED ON FUZZY 
largely depends upon how accurate the estimates are. REPRESENTATION 

& dassiiymg re&ote sensing images, an important factor which 
reduces the estimate accuracy has not been paid deserved A fuzzy supervised classification algorithm has been devel- 
attention: the current methods for estimating the parameters oped based on the fuzzy information representation.   his al- 
cannot deal with class mixture and intermediate conditions gorithm consists of two major steps: estimate of fuzzy parameters 

properly. from fuzzy training data and a fuzzy partition of spectral space. 
* 

FS a& Xs are estimated from a set of sample pixels in classifier 
training. The following are conventional definitions of sample 
mean and sample covariance matrix for class c: 

where n is the number of sample pixel vectors and x, is a sample 
pixel vector ( l s i s n )  which is known a priori in cover class c. 
Currently, the training data, i.e., the sample pixels, are 
represented in the conventional one-pixel-one-class method. 
Equations 6 and 7 imply that, for a sample pixel, only one value 
in one band in one training class can be used to yield the statistical 
parameters. No matter how much a pixel actually belongs to 
the class, it makes a full contribution. The spectral information 
from other possible cover types are all contributors to parameters 
of the class assigned to it. The existence of other cover classes 
is ignored. Although training sites are usually selected in relatively 
homogeneous areas, class mixture or intermediate conditions is 
inevitable. The statistical parameters estimated in this way must 
vary more or less from the "real" ones. A classification based 
on those parameters may thus contain mistakes. 

Other existing classifiers, for example Bayes classifier, the 
minimum distance classifier for supervised classification, hierarchical 
classifier, and K-means classifier for unsupervised classification, 
are all based on the same information representation method 
and share the same problems with the maximum likelihood 
classifier. (Classifier training is not needed for unsupervised 
classification.) To improve the analysis of impercise data, a better 
representation method is required. The fuzzy s ~ t  theory provides 
useful tools for dealing with the impreciseness. 

FUZZY REPRESENTATION OF GEOGRAPHICAL 
INFORMATION 

Let X be a universe of discourse, whose generic elements are 
denoted x: X = {x}. Membership in a classical set A of X is often 
viewed as a characteristic function X ,  from X to {O,l) such that 
&(x) = 1 if and only if x E A. A fuzzy set (Zadel, 1965) B in X 
is characterized by a membershipfunction f ,  which associates with 
each x a real number in [0,1]. f,(x) represents the "grade of 
membership" of x in B. The closer the value off, ( x )  is to 1, the 
more x belongs to B. A fuzzy set does not have sharply defined 
boundaries and an element may have partial and multiple mem- 
bership. 

Fuzzy set theory can provide a better representation for geo- 
graphical phenomena, many of which cannot be described 
properly by a single attribute. In a fuzzy representation, land- 
cover classes can be defined as fuzzy sets and pixels as set 
elements. Each pixel has attached to it a group of membership 
grades to indicate the extent to which the pixel belongs to cer- 
tain classes. Pixels with class mixture or in intermediate con- 
ditions can now be desbribed. For example, if a ground cell 
contains two cover types "soil" and "vegetation," it may have 

Fuzzy representation of geographical information enables a 
new method for spectral space partition. When information 
classes are represented as fuzzy sets, so can the corresponding 
spectral classes be represented. Thus, a spectral space is not 
partitioned by sharp surfaces. A pixel may belong to a class to 
some extent and meanwhile belong to another class to another 
extent. Such a partition is referred to as a fuzzy partition of spectral 
space (Wang, 1989b). Figure 1 illustrates membership grades of 
a pixel in a fuzzy partition. 

Let X = {x,,x,, ..., x,} form a spectral space, a fuzzy k-partition 
space for X can be formally represented as 

where V,,, k, and n are as same as in Equation 2, and U E M, 
is referred to as a fuzzy partition matrix which records a fuzzy k- 
partition. 

A fuzzy k-partition of spectral space is a family of fuzzy set 
F,,  F,, . . ., F,. u,, (an element of U) is the membership grade 
of x, in fuzzy set Fit i-e., uij = f ,  (x,). A hard partition matrix 
can be derived from the fuzzy paftition matrix by changing the 
maximum value in each column into "1" and others into "0." 
A "hardened classification image can be generated by assigning 
the label of the row with value "1" of each column to the 
corresponding pixel. 

A fuzzy k-partition of spectral space conforms to real situations 
better. It allows more spectral information to be extracted and 
utilized in subsequent analysis. Another advantage of the fuzzy 
partition in cluster analysis is that stray pixels and pixels isolated 
between classes may be classified as such. 

band 

class mean 0 pixel vector 

FIG. 1. Membership grades of a pixel in a fuuy partition of spectral space. 



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1990 

Fuzm PARAMETERS FOR IMAGE CLASSIFICATION expertiments is 300 by 300 pixels in size. Seven cover classes 

Fuzzy representation of geographical information makes it are defined for the classification. They are water body, indus- 

possible to calculate statistical parameters which are closer to trial or commercial area, residential area, forests or woods, grass 

the ones. This can be achieved by means of the or crop land, pasture or other vegetation. and bare soil. Seven 

measures of fuzzy events (Zadeh, 1968). membership grades are assigned to each pixel. Results of the 

In probability theory, an event, A, is a member of a a-field, classification are recorded in a 300 by 300 by 7 fuzzy partition 

d,  of subsets of a sample space 0. When A is a fuzzy event, matrix. 

i-e., a fuzzy set of points in 0, a probability measure of A can -rHE F ~ ~ ~ ~ , ~ ~  
be defined in the Lebesque-Stieltjes integral as 

A fuzzy set is characterized by its membership function. To 
P(A) = .fnf~(x) dP (9) perform a fuzzy partition on a spectral space, a membership 

where f, is the membership function of A(Osf,(x)sl). Equation 
function must be defined for each class. In this work, the 

9 is a generalization of the conventional definition of probability membership functions are defined based on maximum likelihood 

measure of A. Partial membership of a point x in A can be taken classification algorithm with fuzzy mean p* and fuzzy covariance 

into consideration in calculating P(A). matrix 2" replacing the conventional mean and covariance matrix. 

Similarly, mean and variance of fuzzy event A relative to a The following is the definition of membership function for cover 
class c: probability measure P can be expressed as 

1 P:(x) 
P; = - xfA(') dp L.(x) = 7 

P(A) C PI ( 4  
, = I  

and 
where 

1 *=- p(A) I* (x - f,(x) dlJ. (11) 

The mean and variance calculated in this way are called a fuzzy 
mean and fuzzy variance. From Equation 10 and 11, the discreie is the pixel vector dimension, rn is number of predefined 
type of sample mean and sample covariance matrix, the classes, and I s i s m .  
multivariate analog of variance, can be obtained for a land-cover The membership grades of a pixel vector depend on 
'lass which is as a set. The mean can position in the spectral space. fc(x) increases exponentially with 
be expressed as the decrease of (x - &)TZ:-l(~ - &+), i.e., the distance between 

m 

x and p:. 2 P:(x) serves as a normalizing factor. 
. . * - ,=I  I = ,  

PC - - When the membership function of class c is applied to a pixel 
C fc (xt) vector, the membership grade of the pixel in class c is calculated 
* = I  for each pixel, seven membership grades can be obtained which 

where n is total number of sample pixel vectors, f, is membership form a column in the fuzzy partition matrix- 
function of class c, and x, is a sample pixel measurement vector 
( l l i sn ) .  IMPROVEMENT IN OVERALL CLASSIFICATION ACCURACY 

The fuzzy covariance matrix can be similarly expressed as 

The fuzzy mean and fuzzy covariance matrix can be considered 
as extensions of the conventional mean and covariance matrix. 
When f,(x) = 0 or 1, Equations 12 and 13 become definitions of 
the conventional mean and covariance matrix. The fuzzy 
representation permits that how much a pixel belongs to a class 
determines how much it contributes to the mean and covariance 
matrix of that class. When training data are presented in a fuzzy 
partition matrix, Equations 12 and 13 are applied to each row 
to generate a fuzzy mean and fuzzy covariance matrix for each 
class. 

EXPERIMENTS AND RESULTS 

The fuzzy supervised classification algorithm has been ap- 
plied to Landsat MSS and TM data. Encouraging results have 
been achieved in identify~ng types and proportions of compo- 
nent land covers in mixed pixels, and improving overall clas- 
sification accuracy. In this section, results of classifying an MSS 
image are presented. 

The study area is southwest of Hamilton City, Ontario, Can- 
ada. The image was taken in July, 1978. The image for the 

Improvement in overall classification accuracy has been 
achieved using the fuzzy mean and fuzzy covariance matrix. 
For comparison, the conventional maximum likelihood 
classification was also performed on the same data sets. The 
fuzzy training data were "hardened" for training the conventional 
classification algorithm. The statistical parameters generated by 
the fuzzy and conventional algorithms are somewhat different 
(Wang, 1989a). 

Overall accuracy of the fuzzy classification was assessed using 
the traditional error matrix method with reference to aerial 
photographs taken in the same year. For accuracy assessment, 
a hard partition matrix was derived by hardening the fuzzy 
partition matrix and then a "hardened" (one-pixel-one-value) 
classification image was generated from the hard matrix. Six 
hundred and sixty sample pixels were selected by a random 
number generator. The labels of the sample pixels in both the 
"harden& image and the image generat& b? the conventional 
algorithm were identified. The identification results were recorded 
inutwo error matrixes (see Table 1). The values along the diagonal 
represent the numbers of correctly classified pixels of each class 
and the values along a given row indicate how misclassified 
pixels are distributed among the classes. 

From the error matrixes, a 91.21 percent overall accuracy was 
estimated for the fuzzy classification, and an 86.06 percent overall 
accuracy for the conventional classification. It can be asserted 
with probability 0.99 that the magnitude of the error of the 
estimate is less than 3.5 percent (Freund, 1988). An improvement 
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TABLE 1. ERROR MATRIXES FOR THE IMAGE IN FIGURE 2. 

Water Industrial Residential Forest Crop Soil Pasture 

Water 32 2 0 0 0 0  0 
Industrial 3 62 3 0 0 2  1 
Residential 0 
Forest 0 
Crop 0 
soil' 0 4 0 0 0 42 2 
Pasture 0 0 2 2 6 2 74 

Sum of diagonals = 602. Sum of entries = 660. Overall accuracy = 

6021660 = 0.9121. 

Water Industrial Residential Forest Crop Soil Pasture I 
Water 30 4 0 0 0 0  0 
Industrial 5 57 6 0 0 2  1 
Residential 0 8 158 1 3 0  4 
Forest 0 0 0 65 12 0 0 
Crop 0 0 2 10 151 0 7 
Soil 0 6 0 0 0 39 4 
Pasture 0 0 2 2 9 5  68 

FIG. 2. A subimage in the study area. 

Sum of diagonals = 568. Sum of entries = 660. Overall accuracy = 
5681660 = 0.8606. 

of 5.15 percent has been achieved. Similar accuracy levels and 
improvements were measured from the results of classifying 
1974, 1981, and 1984 MSS images of the same study area and 
TM images of another study area. 

More information about land cover has been derived by using 
the fuzzy classification. It has been verified that a membership 
grade calculated from Equation 14 is proportional to the 
percentage to which the pixel contains a given type of land 
cover. Figure 2 shows a subimage in which eight pixels are 
selected to illustrate this fact. Figure 3 shows an aerial photograph 
of the same area which was taken 20 days later than the satellite 
image. In the photograph, approximate locations of the pixels 
selected are indicated by labeled arrows. Membership grades 
of the eight pixels are recorded in the fuzzy partition matrix in 
Table 2. 

Homoeeneous and mixed vixels can be differentiated bv 
analyzini the membership grahes. From Table 2, C, F, G, and 
H can be identified as mixed pixels because each of them contains 
more than one cover class and each of the component classes 

I 
is not negligible, while A, B, D, and E as relativeli homogeneous FIG. 3. A" aerial photograph of the  same area as in Figure 2. 
pixels. 

Provortions of comvonent cover classes in a wixel can be 
estimated from the membership grades. For instance, it can be 
estimated that A contains almost 100 percent of forests/woods, 
B contains about three fourths forests/woods and one fourth 
grasslcrop land, C contains about one half forests/woods and 
one half grasslcrop land, and D contains about 90 percent of 
grass/crop land. This estimation conforms to the real land covers 
well. In this way, intermediate conditions between the two classes 
have been well identified and represented by the fuzzy method. 
Figure 4 illustrates approximate positions of the pixel vectors of 
A, B, C, and D, as well as class means of forests/woods and 
grasslcrop land in a spectral space of bands 4, 5, and 7. It can 
be observed that the percentage of a cover type in a pixel is 
roughly inversely proportional to the distance between the pixel 
vector and the mean of that class. The fuzzy classification allows 
more information contained in the positions to be extracted and 
utilized in the subsequent analysis, whereas a conventional 
classification simply classifies A, B, and C into forests/woods 

pixel 

water 
industrial 
residential 
forest 
grass 
pasture 
bare soil 

A B C D E F G H  

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 u.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.99 0.64 0.48 0.24 
0.99 0.77 0.54 0.00 0.00 0.13 0.00 0.00 
0.00 0.23 0.45 0.87 0.00 0.22 0.17 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 
0.00 0.00 0.00 0.12 0.00 0.00 0.35 0.62 

and D into grasdcrop land and is unable to specify the differences 
between A, B, and C. 

Similarly, the land cover of E, F, and G can be estimated from 
their membership grades: E contains almost 100 percent of 
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band 4 

class mean 0 pixel vector 

FIG. 4. A spectral space of bands 4, 5, and 7. 

residential area, F contains two thirds of residential area and 
one third vegetation, and G contains about one half residential 
area and one third bare soil. The major cover type of the three 
pixels is residential area. However, the three pixels are in different 
situations. E is in a completed residential area, and has no other 
cover type. F is at a fringe of a residential area, thus containing 
some vegetation. G is under construction and, thus, contains 
bare soil and other cover types. Their differences can be well 
understood by analyzing the membership grades. 

The identification of pixel component cover classes has been 
successfully applied in a land-cover change detection expert 
system (Wang, 1989b) to facilitate automated image analysis. 
When determining a change type, if only one cover class is 
available for each date, it is sometimes difficult for an expert 
system to identify the type of change which took place between 
the two dates. However, more cover classes may provide 
important information. For example, assuming cover type of H 
at the first date was vegetation, if only one cover class, "bare 
soil," is known for the second date, it is difficult to determine 
that this change is a crop rotation, an urban development, or 
something else. However, the identification of the residential 
area component for the second date, even though in a small 
percentage, makes the decision-making much easier. 

In addition, if a hard partition (conventional classification 
output) is required from the fuzzy parition, the membership 
grades enable assessing classification accuracy for individual pixels. 
For example, if class "forests/woods" is assigned to pixels A, B, 
and C when the fuzzy partition is hardened, it can be inferred 
from their membership grades of 0.99, 0.77, and 0.54 in that 
class that deviation with the assignment to pixel A is very small, 
the deviation with pixel B is bigger, and the deviation with pixel 
C is even bigger. Accuracv assessment for individual pixels may 
contribute G t h e  integration of remote sensing image analysis 
systems and geographical information systems. The current 
accuracy assessment methods used in remote sensing cannot 
provide local accuracy levels of a data set which are usually 
required by the error models of geographical information systems. 
The incompatibility between the accuracy assessment methods 
has been considered as one of the major hindrances to 
incorporating remote sensing inputs into geographical 
information systems. The fuzzy techniques may help bridge this 
gap (Wang, 1989a). 

CONCLUSION 

The major achievements include increasing overall classification 
accuracy, differentiating mixed and homogeneous pixels, iden- 
tifying types and proportions of component cover classes in 
mixed pixels, and assessing classification accuracy for individ- 
ual pixels. This research has broken up a pixel which is consid- 
ered as the atomic unit in the conventional anaylsis. Much more 
information has been extracted; thus, we can make fuller use 
of the valuable remotely sensed data. The techniques developed 
in this research may also largely facilitate knowledge-based re- 
mote sensing image analysis and integration of remote sensing 
and geographical information systems. 
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