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of fields would be

Y,

> Gl

i=1

= 150/0.02 (1)
= 7500 fields

where f is the sampling fraction (f = area sampled/total area =
0.02). The standard deviation of the estimate is discussed in a
later section and was estimated as 2225. Thus, a 95 percent
confidence bound (i.e., 2 standard deviations) would be 7500
+ 60 percent.

This sampling uncertainty would be unacceptably large for
many applications. One way to reduce this uncertainty would
be to acquire a larger sample. Alternatively, text books on sample
survey methodology (e.g., Cochran, 1977) suggest using field
densities as a way of reducing the standard deviation. Thus,
this approach was also examined as discussed below.

AN EsTimaTE Baseno Urpon DENSITIES

Table 1 also shows the density of fields for each frame and
also gives the average density, d, and the standard deviation,
where

"

d= Z d/n
i=1
and

5D? = Z (d, — d¥(n—1).

=1

A second unbiased estimate of the total number of fields in the
region of interest would be

Y, = d x Q
0.0397 x 179,000 (2)
7115 fields.

The estimated variance of Y,, as shown in Cochran (1977), is
given by the equation

Var(Ys) = (1-f) (SD x Q)¥/n 3)

4,534,186

where SD = 0.038, as given in Table 1. The total area, Q, was
179,000 ha and n = 10 as before. The standard deviation for Y,
was 2129, and, hence, the estimated 95 percent confidence bounds
would be 7115 fields = 60 percent. Thus, for this case, the use
of densities did not reduce the overall uncertainty relative to
the total. However, if the population is homogeneously
distributed, the use of densities often results in a more precise
estimate (e.g., Cochran, 1977).

AN EsTiMATE Using WEIGHTS

The survey estimate can be further improved if additional
information is known regarding the spatial correlation of the
fields. Note that the density associated with Frame 1, Table 1,
was 0.040 fields per ha. It was based upon a frame that imaged
only 100 ha. The density for Frame 7, 0.093 fields per ha, was
based upon an area of 800 ha. Of course, the density calculated
using Frame 7 is likely to be more reliable than that associated
with Frame 1. In fact, if each of the eight potential 100 ha
subpatches in Frame 7 were statistically independent of one
another, the variance of the density for Frame 7 would be eight
times smaller than that for Frame 1. However, such independence
is rare. It is more common for spatially distributed features,
such as agricultural fields, to exhibit some degree of spatial
correlation. This correlation will increase the variance of the
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density when compared to the independence case. As a result,
the variance of a density based upon a frame with 800 ha will
be less than one based upon a frame having only 100 ha, but
not eight times less.

H. Fairfield Smith (1938) proposed that the variance of plot
totals will vary as a power law with plot size. If g, is the ground
area associated with a frame [, then the Smith variance model
would imply the variance of the corresponding field counts, C,,
would vary as

Var(C, |g) = Bq? (4)

where | = b = 2 and B is the variance of C, when g, = 1. When
b = 1, the counts are spatially independent. This follows from
the fact that the variance of the sum of independent random
variables is just the sum of the individual variances.

If b = 2, the counts have perfect spatial correlation. This
would imply that a frame with a small ground area was as
useful as a frame with a large ground area. It follows that, given
the small ground area count, one could predict the count of the
surrounding ground area. In practice, one expects to find b
values between 1 and 2. For example, the b parameter was
estimated to be between 1.5 and 1.7 for wheat field yields in
several midwestern states (Hallum and Perry, 1984). This model
remained valid over several orders of magnitude in q. There is
a large body of sample survey design literature on using this
power law; see, for example, Cochran (1977, pp. 243-244). Hansen
et al. (1953, pp. 306-309), and Jessen (1978, pp. 100-107).

Because density is calculated as counts divided by area (i.e.,
C/q), Model 4 implies that the variance of the density is

Var(d) = Bgr2. (5)

Now assume that each frame was a random sample from a
super population where d, = p, + € and the €, were independent
with zero mean and variance given by Equatmn 5. Further,
consider the class of linear weighted estimators of p, of the form

}lui = Z u,fdr‘ (6,)

[t has been shown (Cochran, 1977, p. 160) that if the d, are
independent, and have a variance given by Equation 5, then
the best linear unbiased estimate (BLUE) of u, has weights that
sum to 1.0 which are given by

w, = g2/ 21 ", 7)
The variance of 4, is
E w? Var(d)
_5/ 3 47 ®

Var(g,) =

An estimate of B would be (Press, 1972, p. 199)

3 = 3 (d, - @) g/ -

So an estimate of the variance of j, would be

Var(i) = 3 wid, = o/ -, ©)
The assumption that the d, are independent is not acutally correct.
The spatial correlations implied by Model 4 persist over long
distances. See Harrington (1988) for details concerning the
correlations implied by the Smith Power law. However, if sample
image frames were sufficiently distant from one another, they
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would be nearly independent. For this case, the variance
estimated by Equation 9 will be approximately correct. The theory
can be extended to include correlated d,, but it requires
substantially greater mathematical development, and so it will
not be treated here.

Given an estimate of f,, the estimated total becomes

Y, = 4,Q (10)
and the variance of Y, is estimated as
Var(Y,) = Q* Var(j,) (11

as calculated in Equation 9. When b = 2 (i.e., perfect correlation),
the weights reduce to w, = 1/n. For this case, u, = d and Y, in
Equation 10 reduces to Y, (Equation 2) discussed earlier. When
b = 1.0 (i.e., independence), the weights become

w, = !]Il f 'il i
sa/30

Ly

Thus, Y, reduces to Y, (Equation 1). Using Equation 11, then,
the associated variance of Y, was calculated to be 2225 as stated
earlier. Hence, this weighted estimate includes both Y, and Y,
when b = 1 and 2, respectively. If this correlation can be
characterized (or estimated) by a value of b between 1 and 2,
then the spatial correlation can be factored into the analysis
explicitly.

Figure 1(a) presents the estimated total using Equation 10 and
the data from Table 1, as a function of b. Note that the estimated
total was greatest when b = 1 (7500 fields), and was minimum
when b = 1.8 (7101 fields). Figure 1(b) presents the standard
deviation as a function of b, Equation 11. It was monotonically
decreasing from 2225 to 2129. The important point is that spatial
correlation, if known, can be incorporated into the estimate to
compensate for the varying ground area. If not known, then
the researcher must assume a value of b (typically either 1.0 or
2.0) with unknown consequences.

For the example, the range of values exhibited by both the
total estimated number of fields and the associated standard
deviation, as shown in Figure 1, is relatively small. Thus, the
weighted estimate provided only a modest correction for varying
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frame size. This need not be the case if the variation in density
was larger than that assumed in Table 1. It is quite easy to
generate examples where both the estimated total and the
associated standard deviation vary much more, as b varies
between 1 and 2. To demonstrate this phenomenon, the data
in Table 1 were adjusted so that the number of fields in Frame
1 was increased from 4 to 28, while the number of fields in
Frame 7 was decreased a corresponding amount from 74 to 50.
These two adjustments preserve the total number of fields
detected, and the estimate Y, (7500 fields) did not change.
However, as b increases from 1 to 2, frames with smaller area
are given weights that are more nearly equal to those given the
largest frames. As a result, the large density newly associated
with Frame 1 (0.28 = 28/100) pulled up the estimated total as
shown in Figure 2(a). When b = 2, the estimated total (Y>)
increased to 10,874 fields, a 45 percent increase. The standard
deviation, Figure 2(b), increased by nearly 60 percent over the
same interval. This example showed the importance of the spatial
correlation effect when there is considerable variation in the
frame size or cell-to-cell density.

AN ALTERNATIVE WEIGHTED ESTIMATE

Under the super population model, the total number of fields
in the region of interest was a random variable, with a mean
value of p,Q. The sample survey was based upon a particular
realization of this random variable. In many circumstances,
however, u,Q is of less interest than the particular realization
Y where

N

> dg,

Il

= “-JQ W E fi'rf;
i=1

-.<
II

Because the d’s would be known for the sample, Y can be

optimally estimated as
Y, = Q- n) b+ 3 d
where fi, is calculated as in Equation 6 and 7. The first term

estimates only those image frames missing from the sample.
This term is then added to the observed counts. The variance
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Fic. 1. (a) Estimated number of fields and (b) standard deviation as a function of b.
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FiG. 2. (a) Estimated number of fields and (b) standard deviation using adjusted sample data.

of Y, — Yis

Var(Y, — Y) = Var [(Q—ur}jﬁ,, - ZJ d‘q,:l

(Q—nq)* Var(a,) + Var (E da,)

From Equations 8 and 4, this becomes

Var(y, - v) = @B | g gy
z (L:.r.

f=]

(12)

Note that the variance given by Equation 12 goes to zero as the
sample size increases. Thus, the variance of estimator Y, behaves
similar to variances obtained under more classical assumptions
that utilize a finite population correction term, (1-f), as in Equation
3 (e.g., Cochran, 1977). When b = 1, the above equation reduces
to

Var(Y, - Y) = B(Q - nq)Q/mq

This equation was derived under slightly different assumptions
in Cochran (1977, p. 159).

ESTIMATION OF b

To use these weighted estimates, the value of b must be known
or estimated. One approach is to estimate the variance of C for
at least two values of g, say ¢, and q,, where g, > g,. Then, from
Equation 4, using the method of moments,

_ In(Var(C |g,)) — In(Var(C, |g.))

d In (7,) — In (q2)

Such variance estimates can be acquired in a pilot survey, or
directly from the survey itself, by subdividing frames of size g,
into subframes of size ¢,. Estimation of b is discussed in more
detail in Proctor (1980), Proctor (1985), and Hatheway and Wil-
liams (1958).

DISCUSSION

Aerial sample surveys typically estimate a regional total either
by extrapolating the sample total (Estimate Y; b = 1) or by
extrapolating the average density (Estimate Y,; b = 2). If the
ground areas associated with each frame in the survey are of
equal size, then these two estimates are equivalent. However,
if the ground area imaged varies due to changes in the aircraft’s
altitude, cloud cover, etc, then these two estimates will differ,
and they implicitly make different assumptions about the spa-
tial correlation. Y, is optimal only if the fields are spatially un-
correlated while Y, is optimal only if the fields are perfectly
correlated. In practice, most survey data will fall in between
these two extremes.

As a first step, it is appropriate to calculate both Y, and Y,
and their associated variances. This will determine the sensitiv-
ity of the survey to the two extreme spatial correlation assump-
tions. If the two estimates are similar, then there is little to be
gained by undertaking a more detailed analysis. It has been our
experience that, if the frame size, g, does not vary by more
than a factor of 2 from smallest to largest in moderate sized
sample surveys, then Y, and Y, will be similar.

If the two estimates do differ significantly, then the additional
effort needed to estimate b is justified. Again there are two
choices. Estimate Y, Equation 9, estimates the super population
mean, p,Q, while Y,, Equation 11, estimates the particular re-
alization of the total Y. Which is more appropriate depends
upon the particular survey objectives. One way to resolve this
issue is to ask whether it is desirable for the estimate to have
zero uncertainty if the entire population is sampled. If so, then
estimate Y, is the correct choice.

SUMMARY

Aerial sample surveys often must rely on the use of image
frames that vary in ground area. In such cases, assumptions
are required concerning the spatial correlation of the objects of
interest in order to obtain appropriate estimates of the popu-
lation totals. The estimates, although unbiased, will be partic-
ularly sensitive to these assumptions if the variation in frame
sizes is significant. This paper discussed two weighted esti-
mates, the choice of which depends on the nature of the survey.
The weights chosen were a function of the ground area and the
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spatial correlation parameter, b, where 1 = b = 2. The estimators
include as limiting cases the estimators that extrapolate sample
total and sample density, which implicitly assume b = 1 (spatial
independence) and b 2 (pertect spatial correlation), respec-
tively.
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