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ABSTRACT: Aerial sample surveys may require use of image frames that have varying ground coverage. This may be 
due to variation in aircraft altitude, deleted land categories (e.g., water), cloud coverage/shadow, and other reasons. 
A weighted estimate of the population totals was obtained that minimized that variance where the weights were a 
function of the ground area and the spatial correlation of the items of interest. This estimator included as special cases 
the two standard estimators that extrapolate sample total and sample density. 

INTRODUCTION 
EN THE AREA OF INTEREST is large and the required scale 

is large, an aerial survey that images the entire region is w 
often cost prohibitive. Rather, a sample survey is required. If it 
is part of a well-designed experiment, this sample can then be 
statistically extrapolated to the entire region. 

This paper addresses the problems associated with survey 
data when imageslframes have varying area coverage. That is, 
the total area imaged at one location differs from that acquired 
at other locations. This can happen for a number of reasons. 
For example, if the survey is collected over mountainous terrain 
at a relatively low altitude, the pilot will have trouble maintain- 
ing a constant altitude above ground as the plane flies over 
valleys and mountain tops. This will cause image frames to have 
different scales, and the area imaged on the ground will vary 
with the square of the altitude above the ground. 

Even if the image scale is kept constant (as often specified in 
the survey design), area can vary for other reasons. For exam- 
ple, some part of the frame may be cloud covered or in cloud 
shadow and must be debited out. Such frames will represent 
smaller ground area compared to those without cloud cover. 
Sometimes a particular land-cover category (e.g., water) is of 
no interest and, if included, might give misleading results. Such 
adjustments will again induce variation in plot size. 

Ground area may also vary because of the survey design it- 
self. Typically an aerial survey stratifies the entire region of 
interest into two or more homogeneous subareas, for example, 
high and low density areas. Sometimes, because of navigation 
errors, or because the ground area associated with a frame is 
very large, a single image will intersect two or more strata, and 
the frame must be divided accordingly. As a result, some frames 
will have smaller (possibly much smaller) area then others. 

The effect of varying ground area is to make the statistical 
analysis more complicated. Standard sample survey methodol- 
ogies for treating varying sample unit size - such as sampling 
with probability proportional to size - do not apply here be- 
cause they require that the ground area associated with each 
frame or potential frame be known in advance. This is simply 
not the case for many aerial surveys. 

This paper presents alternative approaches for analysis of aer- 
ial sample surveys that have varying ground area per frame. In 
particular, a common way to reduce the survey variance is to 
standardize the data to a per unit area basis, i.e., densities. A 
more complex correction was developed that calculates a weight 
for each frame. These weights are based upon the ground area 
imaged and spatial correlation of the objects of interest, so that 
the variance of the survey estimate is minimized. 
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METHODOLOGY 

In order to make the discussion more focused, Table 1 pre- 
sents a hypothetical aerial survey designed to estimate the total 
number of agricultural fields in a region of interest. This region 
had a total area, Q, equal to 179,000 hectares (ha). The value of 
Q is typically determined from a map. As Table 1 indicates, 
image frames were acquired at ten random locations within this 
region. An image analyst then identified the number of agri- 
cultural fields, C,, in each frame and determined the total area 
exploited, q,, based upon aircraft elevation data, cloud cover, 
etc. Note that q, varied from a minimum of 100 ha (Frame Num- 
ber 1) to a maximum of 800 ha (Frame Number 7). The average 
area per frame was 358 ha and the total area exploited was 3580 
ha (i.e., a 2 percent sample). In particular, it would require a 
total of N = 500 frames of average size to image the entire 
region of interest. A total of 150 fields were detected in the 
sample, as shown in Table 1. 

One way to estimate the total number of fields in the region 
is to simply extrapolate the number of fields in Table 1 to the 
entire area. Because the sample of ten frames represented 2 
percent of the total area, an unbiased estimate of the total number 

TABLE 1. HYPOTHETICAL AERIAL SAMPLE SURVEY TO ESTIMATE THE 
TOTAL NUMBER OF AGRICULTURE FIELDS IN A 179,000 HA REGION 

q t  cj 
Area Field d 

Frame (Hectares) Count Density 
1 100 4 0.040 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Total 
Average 
Standard 
Deviation (SD) 
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of fields would be 
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density when compared to the independence case. As a result, 
the variance of a density based upon a frame with 800 ha will 
be less than one based upon a frame having only 100 ha, but 
not eight times less. 

H. Fairfield Smith (1938) proposed that the variance of plot 
totals will vary as a power law with plot size. If qi is the ground 
area associated with a frame i, then the Smith variance model 
would imply the variance of the corresponding field counts, C,, 
would vary as 

= 150/0.02 
= 7500 fields 

where f is the sampling fraction (f = area sampledftotal area = 
0.02). The standard deviation of the estimate is discussed in a 
later section and was estimated as 2225. Thus, a 95 percent 
confidence bound (i.e., 2 standard deviations) would be 7500 
& 60 percent. 

This sampling uncertainty would be unacceptably large for 
many applications. One way to reduce this uncertainty would 
be to acquire a larger sample. Alternatively, text books on sample 
survey methodology (e-g., Cochran, 1977) suggest using field 
densities as a way of reducing the standard deviation. Thus, 
this approach was also examined as discussed below. 

where 1 5 b 5 2 and B is the variance of Ci when q, = 1. When 
b = 1, the counts are spatially independent. This follows from 
the fact that the variance of the sum of independent random 
variables is just the sum of the individual variances. 

If b = 2, the counts have perfect spatial correlation. This 
would imply that a frame wiih a small ground area was as 
useful as a frame with a large ground area. It follows that, given 
the small ground area count, one could predict the count of the 
surrounding ground area. In practice, one expects to find b 
values between 1 and 2. For example, the b parameter was 
estimated to be between 1.5 and 1.7 for wheat field yields in 
several midwestern states (Hallum and Perry, 1984). This model 
remained valid over several orders of magnitude in q. There is 
a large body of sample survey design literature on using this 
power law; see, for example, Cochran (1977, pp. 243-244). Hansen 
et al. (1953, pp. 306-309), and Jessen (1978, pp. 100-107). 

Because density is calculated as counts divided by area (i.e., 
Clq), Model 4 implies that the variance of the density is 

Table 1 also shows the density of fields for each frame and 
also gives the average density, d, and the standard deviation, 
where 

and 

A second unbiased estimate of the total number of fields in the 
region of interest would be 

Now assume that each frame was a random sample from a 
super population where di = pd + ei and the E, were independent 
with zero mean and variance given by Equation 5.  Further, 
consider the class of linear weighted estimators of p,, of the form Y , = j x Q  

= 0.0397 x 179,000 
= 7115 fields. 

The estimated variance of Y,, as shown in Cochran (1977), is 
given by the equation It has been shown (Cochran, 1977, p. 160) that if the di are 

independent, and have a variance given by Equation 5, then 
the best linear unbiased estimate (BLUE) of pd has weights that 
sum to 1.0 which are given by 

 car(^,) = (1 -fi (SD x Q)2/n 
= 4,534,186 

where SD = 0.038, as given in Table 1. The total area, Q, was 
179,000 ha and n = 10 as before. The standard deviation for Y, 
was 2129, and, hence, the estimated 95 percent confidence bounds 
would be 7115 fields ? 60 percent. Thus, for this case, the use 
of densities did not reduce the overall uncertainty relative to 
the total. However, if the population is homogeneously 
distributed, the use of densities often results in a more precise 
estimate (e.g., Cochran, 1977). 

The variance of li, is 

An estimate of B would be (Press, 1972, p. 199) The survey estimate can be further improved if additional 
information is known regarding the spatial correlation of the 
fields. Note that the density associated with Frame 1, Table 1, 
was 0.040 fields per ha. It was based upon a frame that imaged 
only 100 ha. The density for Frame 7 ,  0.093 fields per ha, was 
based upon an area of 800 ha. Of course, the density calculated 
using Frame 7 is likely to be more reliable than that associated 
with Frame 1. In fact, if each of the eight potential 100 ha 
subpatches in Frame 7 were statistically independent of one 
another, the variance of the density for Frame 7 would be eight 
times smaller than that for Frame 1. However, such independence 
is rare. It is more common for spatially distributed features, 
such as agricultural fields, to exhibit some degree of spatial 
correlation. This correlation will increase the variance of the 

So an estimate of the variance of fid would be 

The assumption that the d, are independent is not acutally correct. 
The spatial correlations implied by Model 4 persist over long 
distances. See Harrington (1988) for details concerning the 
correlations implied by the Smith Power law. However, if sample 
image frames were sufficiently distant from one another, they 
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would be nearly independent. For this case, the variance 
estimated by Equation 9 will be approximately correct. The theory 
can be extended to include correlated d,, but it requires 
substantially greater mathematical development, and so it will 
not be treated here. 

Given an estimate of f i ,  the estimated total becomes 

and the variance of Y, is estimated as 

as calculated in Equation 9. When b = 2 (i-e., perfect correlation), 
the weights reduce to w, = lln. For this case, p, = a and Y, in 
Equation 10 reduces to Y, (Equation 2) discussed earlier. When 
b = 1.0 (i.e., independence), the weights become 

b d =  ]=I  i c 1 / i q ,  , = I  

Thus, Y, reduces to Yl (Equation 1). Using Equation 11, then, 
the associated variance of Yl was calculated to be 2225 as stated 
earlier. Hence, this weighted estimate includes both Y, and Y, 
when b = 1 and 2, respectively. If this correlation can be 
characterized (or estimated) by a value of b between 1 and 2, 
then the spatial correlation can be factored into the analysis 
explicitly. 

Figure l(a) presents the estimated total using Equation 10 and 
the data from Table 1, as a function of b. Note that the estimated 
total was greatest when b = 1 (7500 fields), and was minimum 
when b = 1.8 (7101 fields). Figure l@) presents the standard 
deviation as a function of b, Equation 11. It was monotonically 
decreasing from 2225 to 2129. The important point is that spatial 
correlation, if known, can be incorporated into the estimate to 
compensate for the varying ground area. If not known, then 
the researcher must assume a value of b (typically either 1.0 or 
2.0) with unknown consequences. 

For the example, the range of values exhibited by both the 
total estimated number of fields and the associated standard 
deviation, as shown in Figure 1, is relatively small. Thus, the 
weighted estimate provided only a modest correction for varying 
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frame size. This need not be the case if the variation in density 
was larger than that assumed in Table 1. It is quite easy to 
generate examples where both the estimated total and the 
associated standard deviation vary much more, as b varies 
between 1 and 2. To demonstrate this phenomenon, the data 
in Table 1 were adjusted so that the number of fields in Frame 
1 was increased from 4 to 28, while the number of fields in 
Frame 7 was decreased a corresponding amount from 74 to 50. 
These two adjustments preserve the total number of fields 
detected, and the estimate Y, (7500 fields) did not change. 
However, as b increases from 1 to 2, frames with smalIer area 
are given weights that are more nearly equal to those given the 
largest frames. As a result, the large density newly associated 
with Frame 1 (0.28 = 28/100) pulled up the estimated total as 
shown in Figure 2(a). When b = 2, the estimated total (Y,) 
increased to 10,874 fields, a 45 percent increase. The standard 
deviation, Figure 2(b), increased by nearly 60 percent over the 
same interval. This example showed the importance of the spatial 
correlation effect when there is considerable variation in the 
frame size or cell-to-cell density. 

Under the super population model, the total number of fields 
in the region of interest was a random variable, with a mean 
vaIue of pdQ. The sample survey was based upon a particular 
realization of this random variable. In many circumstances, 
however, F ~ Q  is of less interest than the particular realization 
Y where 

Because the d:s would be known for the sample, Y can be 
optimally estimated as 

where fid is calculated as in Equation 6 and 7. The first term 
estimates only those image frames missing from the sample. 
This term is then added to the observed counts. The variance 

::::I : : : : ; : : : : , 
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(a) (b) 

FIG. 1. (a) Estimated number of fields and (b) standard deviation as a function of 6. 
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Smith's Varionce Parometer - b Smith's Variance Parometer - b 

FIG. 2. (a) Estimated number of fields and (b) standard deviation using adjusted sample data. 

Var(Y, - Y) = Var (Q- ni),Gd - 2 d,qi 
i = l  "" I 

= (Q - ni)2 Var(fid) + Var d ~ ,  (1: ) 
From Equations 8 and 4, this becomes 

Note that the variance given by Equation 12 goes to zero as the 
sample size increases. Thus, the variance of estimator Y4 behaves 
similar to variances obtained under more classical assumptions 
that utilize a finite population correction term, (I$, as in Equation 
3 (e.g., Cochran, 1977). When b = 1, the above equation reduces 
to 

This equation was derived under slightly different assumptions 
in Cochran (1977, p. 159). 

ESTIMATION OF b 

To use these weighted estimates, the value of b must be known 
or estimated. One approach is to estimate the variance of C for 
at least two values of q, say q, and q,, where q, > q,. Then, from 
Equation 4, using the method of moments, 

Such variance estimates can be acquired in a pilot survey, or 
directly from the survey itself, by subdividing frames of size q, 
into subframes of size q,. Estimation of b is discussed in more 
detail in Proctor (1980), Proctor (1985), and Hatheway and Wil- 
liams (1958). 

DISCUSSION 

Aerial sample surveys typically estimate a regional total either 
by extrapolating the sample total (Estimate Y,; b = 1) or by 
extrapolating the average density (Estimate Y,; b = 2). If the 
ground areas associated with each frame in the survey are of 
equal size, then these two estimates are equivalent. However, 
if the ground area imaged varies due to changes in the aircraft's 
altitude, cloud cover, etc, then these two estimates will differ, 
and they implicitly make different assumptions about the spa- 
tial correlation. Y, is optimal only if the fields are spatially un- 
correlated while Y, is optimal only if the fields are perfectly 
correlated. In practice, most survey data will fall in between 
these two extremes. 

As a first step, it is appropriate to calculate both Y, and Y,, 
and their associated variances. This will determine the sensitiv- 
ity of the survey to the two extreme spatial correlation assump- 
tions. If the two estimates are similar, then there is little to be 
gained by undertaking a more detailed analysis. It has been our 
experience that, if the frame size, q,, does not vary by more 
than a factor of 2 from smallest to largest in moderate sized 
sample surveys, then Y, and Y2 will be similar. 

If the two estimates do differ significantly, then the additional 
effort needed to estimate b is justified. Again there are two 
choices. Estimate Y,, Equation 9, estimates the super population 
mean, pdQ, while Y,, Equation 11, estimates the particular re- 
alization of the total Y. Which is more appropriate depends 
upon the particular survey objectives. One way to resolve this 
issue is to ask whether it is desirable for the estimate to have 
zero uncertainty if the entire population is sampled. If so, then 
estimate Y, is the correct choice. 

SUMMARY 

Aerial sample surveys often must rely on the use of image 
frames that vary in ground area. In such cases, assumptions 
are required concerning the spatial correlation of the objects of 
interest in order to obtain appropriate estimates of the popu- 
lation totals. The estimates, although unbiased, will be partic- 
ularly sensitive to these assumptions if the variation in frame 
sizes is significant. This paper discussed two weighted esti- 
mates, the choice of which depends on the nature of the survey. 
The weights chosen were a function of the ground area and the 
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spatial correlation parameter, b, where 1 5 b I 2. The estimators 
include as  limiting cases the estimators that extrapolate sample 
total and  sample density, which implicitly assume b = 1 (spatial 
independence) and b = 2 (perfect spatial correlation), respec- 
tively. 
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