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ABSTRACT: Landsat TM images of three different land types taken from coastal Louisiana were measured using the 
fractal model. Fractal dimensions of these TM surfaces were found to be generally higher than most real-world terrain 
surfaces, with resultant values ranging from 2.54 to 2.87 at the scale range between 25 m and 150 m. Among the three 
land types, the urban area was found to be most spatially complex with high D values occurring in bands 2 and 3. 
This is followed by the coastal and rural land types which both exhibit high D values in band 1. 

INTRODUCTION 

I N THE DECADE since Mandelbrot first coined the term "frac- 
tals" (Mandelbrot, 1977), studies on fractals have grown ex- 

plosively. Applications of fractals range from simulation and 
generation of extra-terrestrial planets and objects in motion pic- 
tures and video games (e.g., Mandelbrot, 1983; Batty, 1985) to 
pure scientific analyses of patterns, forms, and structures. The 
development of fractals has been so rapid that, in 1986, there 
were 239 references related to fractals, as compared with only 
two in 1975 (De Cola, 1987). Indeed, as the physicist John A. 
Wheeler has said, "no one is considered scientifically literate 
today who does not know what a Gaussian distribution is, or 
the meaning and scope of the concept of entropy. It is possible 
to believe that no one will be considered scientifically literate 
tomorrow who is not equally familiar with fractals" (Batty, 1985). 

In spite of the numerous applications, the use of fractals in 
remote sensing has not yet been closely examined. The primary 
objective of this study is to explore whether such a new concept 
can be applied to remote sensing. If digital remotely sensed data 
are considered to be one form of spatial surfaces, then the com- 
plexity of these spatial surfaces should be apt for description 
and measurement by a fractal model. The question is how would 
these remotely sensed data compare with other surfaces, such 
as digital terrain model surfaces (DTMDEM), which have been 
measured by the fractal approach. Additionally, how would 
different types of remotely sensed surfaces, such as urban or 
rural land types, behave according to the fractal model. This 
paper will focus on the fractal measurement and description of 
Landsat Thematic Mapper (TM) digital surfaces. 

A brief review of the basic concepts, applications, and prob- 
lems of fractals may be helpful. This review section is meant to 
serve as only a short introduction to those readers who are 
unfamiliar with fractals. For a more detailed review and dis- 
cussion on the use of the fractals in the spatial and earth sci- 
ences, see Goodchild and Mark (1987). 

FRACTALS - A BRIEF REVIEW 

In classical geometry (i.e., Euclidean geometry), the dimen- 
sion of a curve is defined as 1, a plane as 2, and cube as 3. This 
is called topological dimension (D,) and is characterized by in- 
teger values. In fractal geometry, the dimension D of a curve 
can be any value between 1 and 2, according to the curve's 
degree of complexity. Similarly, a plane may have a dimension 
whose value lies between 2 and 3. This concept of fractional 
dimension was first formulated by mathematicians Hausdorff 
and Besicovitch (Mandelbrot, 1977). Mandelbrot (1977) later called 
it fractal dimension and defined fractals as "a set for which the 
Hausdorff-Besicovitch dimension strictly exceeds the topologi- 
cal dimension" (p.15). Since then, the definition of fractals has 

been modified and a complete definition is still lacking (Feder, 
1988). 

The derivation of fractals arises from the fact that most spatial 
patterns of nature, including curves and surfaces, are so irreg- 
ular and fragmented that classical geometry finds it difficult to 
provide tools for analysis of their forms. For example, the coast- 
line of an island is neither straight nor circular, and no other 
classical curve can serve in describing and explaining its form 
without extra artificiality and complexity. 

The key concept of fractals is the use of self-similarity to de- 
fine D. Many curves and surfaces are statistically "self-similar," 
meaning that each portion can be considered as a reduced-scale 
image of the whole. Thus, D can be defined as 

where llr is a similarity ratio, and N is the number of steps 
needed to traverse the curve (Mandelbrot, 1967). Figure 1 illus- 
trates the relationship between the number of steps (N) and the 
similarity ratio (llr). Practically, the D value of a curve (e-g., 
coastline) is estimated by measuring the length of the curve 
using various step sizes. The more irregular the curve, the greater 

FIG. 1. Relationships between fractal dimension (D), number of steps (N), 
and similarity ratio ( l l r ) .  
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increase in length as step size decreases. And D can be esti- 
mated by the following regression equation: 

LogL = C + B logG 
D = 1 - B  

where L is the length of the curve, G is the step size, B is the 
slope of the regression, and C is a constant. This equation is 
strikingly similar to Richardson's empirical law on coastline length 
measurement (Richardson, 1961). The D value of a surface can 
be estimated in a similar fashion and is discussed in detail in 
the methods section. 

Another aspect of fractal concepts is the generation of fractal 
curves and surfaces. Based on the model of Brownian motion 
in physics, together with the concept of self-similarity, Man- 
delbrot (1975) derived a general stochastic model for generating 
curves and surfaces of various dimensions. Previous research 
has found that curves and surfaces generated with a D value 
between 1.1 to 1.3 and 2.1 to 2.3 would look very much like 
real curves (e-g., coastlines) and surfaces (e.g., topography), 
respectively. Several approaches can be used to generate fractal 
curves and surfaces, including the shear displacement method, 
the modified Markov method, the inverse Fourier transform 
method, and the recursive subdivision method (e.g., Carpenter, 
1981; Dutton, 1981; Fournier el al., 1982; Goodchild, 1980; Man- 
delbrot, 1983). Figure 2 shows some example surfaces with dif- 
ferent D values generated using a shear displacement algorithm 
written by Goodchild (1980). 

Applications of fractals can generaly be classified into two 
major types. The first set of applications uses fractals as a model 
to simulate real-world, as well as extra-terrestrial, objects for 

both analytical and display purposes. Simulation of objects in- 
cludes coastlines (Carpenter, 1981; Dutton, 1981), terrain, trees, 
clouds, mountainscapes, natural landscapes (Mandelbrot, 1983; 
Batty, 1985), cities (Batty and Longley, 1986), particle growth, 
planet rise, dragon, and other computer graphic applications 
(Mandelbrot, 1983; Peitgen and Richter, 1986; Peitgen and Saupe, 
1988). Fractal surfaces have been used as test data sets to ex- 
amine the performance of various spatial interpolation methods 
(Lam, 1982; 1983) and the efficiency of a quadtree data structure 
(Mark and Lauzon, 1984). Fractal curve generation, on the other 
hand, has been used as an interpolation method and as the 
inverse of curve generalization by adding more details to the 
generalized curve (Carpenter, 1981; Dutton, 1981; Jiang, 1984). 
These kinds of applications have made the fractal model a very 
popular tool, largely because of its visual impacts and its ability 
to generate real-world-like objects. 

The second set of applications utilizes the fractal dimension 
as an index for describing the complexity of curves and surfaces. 
For example, fractals have been used to examine coastlines 
(Shelberg et al., 1982), particle shape (Clark, 1986), physical 
properties of amorphous or glassy materials (Orbach, 1986), 
rainfall and clouds (Lovejoy and Mandelbrot, 1985)' terrain (Mark 
and Aronson, 1984; Shelberg et al., 1983), shoreline erosion 
(Philips, 1986), coral reefs (Bradbury and Reichelt, 1983; Mark, 
1984), ocean bottom relief (Barenblatt et al., 1984), underside of 
sea ice (Rothrock and Thorndike, 1980); soils (Burrough, 1983), 
and the central place theory (Arlinghaus, 1985). In addition, 
Goodchild (1980), in a pioneer article, demonstrated that fractal 
dimension can be used to predict the effects of cartographic 
generalization and spatial sampling, a result which may help 
in determining the resolution of pixels and polygons used in 

D = 2.6 

FIG. 2. Examples of fractal surfaces generated from an algorithm originally written by Goodchild (1980). 
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studies related to geographic information systems and remote 
sensing. 

The fractal model is a fascinating tool for simulating land- 
scapes and objects in the movie industry and for some other 
computer graphics applications. However, the use of fractals in 
the spatial and earth sciences, and in remote sensing, could be 
limited by problems at two levels. At the theoretical level, the 
self-similarity property underlying the fractal model assumes 
that the form or pattern of the spatial phenomenon remains 
unchanged throughout all scales. This further implies that one 
cannot determine the scale of the spatial phenomenon from its 
form or pattern. This is considered unacceptable in principle 
and hence it has been rejected by a number of geoscientists 
(Hakanson, 1978). Empirical studies have shown that most real- 
world coastlines and surfaces are not pure fractals with a con- 
stant D. Instead, D varies across a range of scales (Goodchild, 
1980; Mark and Aronson, 1984). These findings, however, can 
be interpreted positively. Rather than using D in the strict sense 
as defined by Mandelbrot (1983), it is possible to use the D 
parameter to summarize the scale changes of the spatial phe- 
nomenon. Consequently, some interpretation of its processes 
at specific ranges of scales could be made. 

Recently, Goodchild and Mark (1987) suggested using fractal 
surfaces as a null-hypothesis terrain or norm whereby further 
simulation of various geomorphic processes can be made. Sim- 
ilarly, Loehle (1983), in a paper examining the applications of 
fractal concepts in ecology, suggested the use of the D param- 
eter to summarize the effect of a certain process up to pa;ticular 
scale. He also proposed the use of the self-similarity property 
as a null hypothesis. For example, if wind turbulence, a major 
cause of tree breakage, is a self-similar process, then one can 
use the property as a null hypothesis to test the forest canopy 
breakage pattern. Any deviations from the self-similar pat tern 
ivould mean the possible existence of other factors such as fires 
or beaver damages. Thus, the application of fractals allows not 
only a different and convenient way of describing spatial pat- 
terns, but also the generation of hypotheses about the causes 
of the patterns. Although the latter application may be pre- 
mature at this time, the suggestions made in these studies open 
another new direction for applying fractals. Clearly, the poten- 
tial of fractal appIications has not yet been fully realized. 

The second problem of applying fractals, the technical prob- 
lem of measuring fractals, is equally intriguing. Several aspects 
of the problem can be identified. First of all, the fact that self- 
similarity exists only within certain ranges of scales makes it 
difficult to identify the breaking point. This affects the final D 
value, which is then used to characterize the curve or surface. 
The calculation of fractal dimensionality for surfaces presents 
an additional technical problem. A recent empirical study has 
shown that, for the same surface, different D values could result 
from using different algorithms, with a range of as low as 2.01 
to as high as 2.33 (Roy et al., 1987). Finally, all the existing 
methodi have so far been applied only to ;egular grid data, 
such as digital terrain model data and, in this paper, Landsat 
m data. Fractal measurement of many other socio-economic 
phenomena, such as population and disease distributions, is 
another challenge. These data are typically reported in an ag- 
gregate polygonal form, with irregular boundaries and possibly 
holes (in the forms of lakes or islands) or missing data. The 
existing algorithms will have to be modified and extra steps will 
have to be taken before the actual measurement takes place. 

RESEARCH OBJECTIVES 
Despite the theoretical and technical problems, the fractal model 

seems to have potential for providing new norms and perspec- 
tives in the measurement, analysis, and interpretation of digital 
remotely sensed data. First, fractal dimensions of remotey sensed 
data, such as TM images, could be calculated and used as a 

measure of spatial complexity or information content. Different 
types of remotely sensed data, including data of different land 
types, sensors, and bands, could be compared and analyzed 
based on the fractal dimensions. Second, the dimension values 
could be compared with other spatial complexity measures. Third, 
if different types of remotely sensed images have unique fractal 
dimensions, one could base on the dimension values a control 
to the fractal surface generation algorithms for the simulation 
of remotely-sensed images. 

This study focuses on the first step of fractal analysis using 
Landsat TM images. In particular, the objectives of this study 
are (1) to compare the fractal dimensions of the Landsat TM 
surfaces with those of the DTM surfaces measured in other stud- 
ies. Given the same spatial resolution, it is expected that TM 
surfaces are more spatially complex and thus have higher di- 
mension values, because m images are basically synoptic and 
contain both topographic as well as non-topographic informa- 
tion. (2) To examine if different land types, presumably of dif- 
ferent levels of spatial complexity, would have distinct fractal 
dimensions. For example, would a typical middle-size city have 
a unique dimension as compared with a rural area? (3) And 
finally, to analyze if different bands have different levels of 
complexity in different types of surfaces. The results from the 
last two objectives of this study will be useful to the display 
and analysis as well as future generation of TM images. 

DATA 

Three study areas were extracted from three different Land- 
sat TM quadrants of coastal Louisiana for this study. These 
Landsat data were purchased by the Coastal Management 
Division of the Louisiana Department of Natural Resources. 
A small subset, approximately 6 kilometres on a side, was 
selected from each quadrant. The subsets were then rectified, 
using UTM coordinates, to a 5-km by 5-km area with resulting 
pixels measuring 25 m by 25 m. Each subset contains a total 
of 201 by 201 = 40,401 pixels. The selection of these three study 
areas was primarily based on the availability of the data and 
the typical land types they represent. The use of a small subset 
instead of a full TM quadrant is preferred, partly due to the 
machine size (using PC ERDAS) and processing time, and partly 
due to the fact that a full TM quadrant often encompasses a 
wide variety of land types and thus will not be suitable for the 
present study. 

Plate la shows the locations of the Landsat TM quadrants and 
the subsets in the quadrants used in this study. Table 1 lists 
the image acquisition dates of the Landsat scenes and the UTM 
coordinates of the three subsets. Plates lb, lc, and Id display 
the study areas using bands 2 (blue), 3 (green), and 4 (red). 
Study area A covers part of the City of Lake Charles in south- 
western Louisiana. It represents an urban landscape with a city 
size of about 75,000 people. Study area B covers part of the 

TABLE 1. LOCATIONS OF THE THREE STUDY AREAS 

Study area Upper Left 
(within 7.5 min. Subset from Image Path/ UTM Coordinates 

quadrangle) TM-Quadrant Date Row (Zone 15) 
A. Lake Charles Calcasieu & 11-30-84 24/39 478000, 

White Lakes 3345000 
(Quad. 4) 

B. Kemper Atchafalaya 1-26-85 22/40 623306, 
Basin 3297559 
(Quad. 2) 

C. Bay Tambour Timbalia Bay 12-2-84 23/39 779918, 
Breton Sound 3251911 
(Quad. 4) 
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-- 
(a) Locations of t (b) Study Area A - Urban, Lake Charles 

PLATE 1. Locations of the three study areas, their corresponding TM Quadrants and image displays using bands 2 (blue), 3 (green), and 4 (red). (b), 
(c), and (d) show study areas A (urban - Lake Charles), 19 (rural - Kemper), and C (coastal - Bay Tambour), respectively. 
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Kemper 7.5 minute quadrangle and is within St. Mary parish. 
It represents a rural area in coastal Louisiana characterized by 
scattered settlement along a major road, marsh vegetation, lakes, 
waterways, bayous, and pipeline channels. Study area C rep- 
resents a coastal area dominated by salt-marsh vegetation, is- 
lands, and round and lagoonal lakes (Kniffen and Hilliard, 1988). 
The use of these three different land types provides information 
on how different land types respond spectrally and whether 
this spectral information would result in different fractal di- 
mensions. 

METHODS 

Two main approaches to calculating surface dimensionality 
exist. The first measures the dimensionalities of the isarithmic 
lines (e.g., contours) characterizing the surface (Goodchild, 1980; 
Shelberg et al., 1983), and the surface's dimension is the re- 
sultant line dimension plus one. The isarithmic lines can be 
digitized directly from a map or derived from the corresponding 
D m  surface. The second approach utilizes the variograms, either 
of the whole surface or of certain profiles extracted from the 
surface, as a basis for fractal c?lculation (Mark and Aronson, 
1984; Roy et al., 1987). This study used the isarithmic line al- 
gorithm by Shelberg et al. (1983), with modifications to adapt it 
to the VAX computer. 

In brief, the algorithm operates as follows. Given a matrix of 
Z values, a maximum cell size (i.e., number of step sizes), and 
an isarithmic interval, for each isarithmic value and each cell 
size, the algorithm first classifies each pixel below the isarithmic 
value as white and that above it as black. It then compares each 
neighboring cell, along the rows or columns as specified by the 
user at the beginning, for boundary cells. The option of either 
using rows or columns is provided to capture any directional 
bias or trends that may exist along the rows or columns. The 
length of each isarithmic line is approximated by the number 
of boundary cells encountered. It is possible, for a given cell 
size, that no bounary cells are encountered. In this case, the 
isarithmic line is eliminated to avoid regression using fewer 
points than the given number of step sizes. This feature is es- 
hecially useful to fractal calculation involving Landsat images 
because of the random occurrence of unusual s~ectral reflec- 
tance recorded at certain pixels. In effect, this feature ensures 
that the random "noise" in the images will not be taken into 
account in the calculation procedure. 

After counting the number of boundary cells per cell size for 
each isarithmic line, a linear regression using their logarithms 
is performed. The D value for the surface is calculated using 
the following equation instead of Equation 3: 

The surface's final fractal dimension is the average of the D 
values for all the isarithmic lines included. 

The algorithm was applied to compute the fractal dimensions 
of all seven bands of the three study areas. An isarithmic in- 
terval of 2.0 and a maximum step size of 6 were used for all 
surfaces. In addition, both options of using rows and columns 
were applied to see if there are significant changes in the re- 
sultant D values. The average D values are the basis for com- 
parison and analysis discussed in the next section. Table 2 lists 
the minimum, maximum, mean, and standard deviation values 
of each band. For ease of comparison, the coefficient of variation 
(standard deviation / mean) calculated for the entire study area 
for each band was also computed and listed, along with its 
average D value, in Table 2. Table 3 summarizes the D values 
using rows and columns, their corresponding coefficients of 
determination (r-squared), and the average D values. The row 
averages for each band and the column averages for each study 

area were also computed and are shown in Table 3. In addition, 
Figures 3a, 3b, and 3c display, in three-dimensional form, the 
band yielding the highest D value of each study area. These 
three-dimensional images serve as a useful means of comparing 
visually the spectral surfaces among themselves and other DTM 
surfaces (as shown, for example, in Figure 2). Compared with 
the conventional gray-scale map, the display of spectral band 
values in three-dimensional form has an added advantage that 
anomalies and groupings of values can be easily detected. 

RESULTS AND DISCUSSION 
The results, as summarized in Table 2, have shown that Landsat 

TM images &nerally have higher dimensions that most terrain 
surfaces on the Earth. This is expected because the TM data 
include both topographic information and non-topographic high 
frequencies, such as roads and edges caused by different spec- 
tral characteristics of different neighboring cover types. The 
spectral variability at the local scale affects the D values. With 
the exception of band 6, the thermal infrared band (10.4 to 12.5 
pm), the resultant D values for all other bands of the three study 
areas range from 2.54 to 2.87, whereas most of the real-world 
terrain surfaces tested for other areas (using USGS 30-m DTM 
grid data) have dimensionalities between 2.1 and 2.5 (Shelberg 
et al., 1983; Mark and Aronson, 1984; Roy et al., 1987). The low 
dimension values (D = 2.16 - 2.21) for TM band 6 are partially 
due to the resampling procedures and partially to the original 
spatial resolution. Band 6 has a coarser spatial resolution of 
about 120 m by 120 m, compared with spatial resolutions of 
about 30 m by 30 m for other bands. The resampling of the 
original pixels into a fixed pixel size of 25 m by 25 m for all 
bands during the rectification process has, in effect, made the 
band 6 surfaces smoother, thereby resulting in lower fractal 
dimensions. In addition, thermal surfaces are expected to be 
smoother because temperature does not vary as quickly as spec- 
tral reflectance of other surface elements. An example of band 
6 surface (study area A - Lake Charles, D=2.21) in three-di- 
mensional form is shown in Figure 3d. This figure can be com- 
pared with Figure 3a, band 3 of the same study area (D =2.73), 
with the former looking much smoother. 

It is interesting to note that Bay Tambour band 1 has the 
highest dimension (D=2.87 among all bands and study areas 
(Figure 3c). Yet its corresponding three-dimensional display does 
not look as drastic as Figures 3a or 4b, though the latter figures 
are of lower dimensions. This is due to the use of the same Z 
scale for all three-dimensional displays and because Bay Tam- 
bour band 1 has a range of Z values only between 57 and 79, 
the ups and downs are not shown as clearly as others which 
have larger Z ranges. A closer look at Figure 3c, however, in- 
dicates that it has a coarse texture with ups and downs inter- 
mingling in short distances. 

An examination of the overall average D values for each band 
(row average in Table 3) indicates that among bands 1 to 5 and 
7, band 1 generally yields the highest dimension (D=2.758), 
followed by bands 2, 3, 4, 7, and 5 (D=2.565). This further 
indicates that the spectral characteristics of neighboring cover 
types in a given band will affect the D values. For example, 
because the study areas used in this study generally have a 
large percentage of water, one would expect TM bands 1 and 2 
to have more variability and, therefore, a larger D value than 
TM bands 4, 5, and 7. Among the three study areas, highest 
overall average dimension occurs in study area A, an urban 
area, with D=2.609 (column average in Table 3). This is fol- 
lowed closely by study area C, a complex coastal area (D=2.597). 
The lowest D occurs in study area B, a rural area, with D = 2.539. 
The difference in these overall average D values among study 
areas, however, is small compared with the differences in over- 
all Ds among bands. This implies that different land types are 
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(a) TM Band 3 lmage of 

Lake Charles (D= 2.73) 

(b) TM Band 1 lmage of 

Kernper (D = 2.7 1) 

(c) TM Band 1 Image of 

Bay Tambour (D=2.87) 

(dl TM Band 6 lmage of 

Lake Charles (D = 2.2 1) 

FIG. 3. Three-dimensional displays of TM surfaces. (a), (b), and (c) show the band yielding the highest D value of each study area. An example of 
band 6 surface, which is much smoother, is shown in (d). 
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TABLE 2. SUMMARY STATISTICS OF THE THREE STUDY AREAS 

Standard Coefficient 
Study Area Band Minimum Maximum Mean Deviation of Variation Average D 

A 1 40 255 70.37 12.95 0.184 2.698 
Lake Charles 2 13 126 27.40 7.57 0.276 2.715 

3 8 158 30.95 11.20 0.362 2.726 
4 4 138 45.98 11.82 0.257 2.672 
5 0 232 52.07 17.28 0.332 2.592 
6 116 146 132.37 3.61 0.027 2.208 
7 0 148 22.37 9.96 0.445 2.653 
1 50 112 70.29 6.45 0.092 2.709 
2 13 45 26.59 4.37 0.164 2.615 
3 12 63 33.02 7.82 0.237 2.607 
4 5 70 36.10 8.43 0.234 2.587 
5 0 255 63.48 22.32 0.352 2.540 
6 94 108 99.71 2.45 0.025 2.176 

B 
Kemper 

C 
Bay Tambour 

TABLE 3. FRACTAL DIMENSION VALUES AND R2 (IN BRACKETS) 

A-Lake Charles B-Kemper C-Bay Tambour Row 
Band Row Column Ave. D Row Column Ave. D Row Column Ave. D Average 

1 2.635 
(0.90) 

2 2.626 
(0.90) 

3 2.631 
(0.89) 

4 2.656 
(0.92) 

5 2.596 
(0.92) 

6 2.210 
(0.76) 

7 2.650 
(0.91) 

Column Average: 

better characterized by their spectral responses to different sets 
of bands than by their overall average responses to all seven 
bands. For example, study area A has its highest dimensions 
occurring in bands 2 and 3, whereas band 1 yields the highest 
dimension in both study areas B and C. In other words, bands 
2 and 3 of study area A are more spatially complex (i.e., more 
within-band spectral variations) and probably have higher tex- 
tural information content than the other bands. These two bands 
may be preferred over other bands for further analysis for these 
particular sites for applications where texture is important. These 
findings could serve as a useful guideline in the future for the 
selection of bands for display, classificaton, and analysis. 

A comparison between D values computed along rows and 
columns indicates that discrepancies in resultant D values are 
highest in study area A (an urban area). This is expected be- 
cause directional bias is more likely to exist in urban areas where 
roads, highways, housing, and trees often follow certain linear 
patterns. As illustrated in Plate lb, most of the roads and high- 
ways in the City of Lake Charles are aligned with rows and 
columns, thus resulting in greater directional bias. 

The inclusion of the coefficients of variation along with the 
average D values in Table 2 is to illuminate the relationship 
between these two indices. The coefficient of variation (stan- 
dard deviation / mean) of the study area is a simple aspatial 
statistical measure of data variability. Fractal dimension, on the 
other hand, can be regarded as an index of spatial complexity. 
As expected, there is no significant correlation between the two 
indices with an r=0.32. This result simply further asserts the 
need for spatial indices in analyzing spatial data that are com- 
monly used in cartography, remote sensing, and GIs. 

It should be noted that the present study has deliberately 
minimized the technical problems involved in the computation 
of fractal surface dimensionality (as discussed earlier) by apply- 
ing the same maximum step size and isarithmic interval in the 
computation process. It is likely that, by using different maxi- 
mum step sizes and isarithmic intervals, different fractal di- 
mensions will result. The use of the same set of parameters in 
this study has ensured a more comparable analysis of the var- 
ious TM surfaces used in this study, but not necessarily with 
other surfaces in other studies, because different parameters, 
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scale ranges, and calculation methods might have been used 
(e.g., Mark and Aronson, 1984). Interpretations of the latter 
comparison therefore should be made with caution. Based on 
the high r-squared values in almost all of the cases (Table 3), 
these TM surfaces have dimensionalities between 2.54 and 2.87 
at the scale range of 25m to 150m (maximum step size = 6) .  

Many other factors, such as striping noise, sun elevation an- 
gle, and atmospheric effect, affect the digital values of the im- 
ages and thus the D values calculated from the images. The 
question of which part of the differences in D values is due to 
these noises and which part to land types remains unknown. 
Nevertheless, the three images used in this study were acquired 
at the same season (winter) and also coastal Louisiana is basi- 
cally flat; therefore, the sun elevation angle effect is minimized. 
In addition, the fractal algorithm used here has indirectly en- 
sured that random "noise" in the images will not be taken into 
account in the calculation procedure, though the effect of sys- 
tematic noise, such as striping, on the D values has yet to be 
determined. 

Obviously, more research is needed in order to make full and 
reliable use of fractals in analyzing remotely sensed data. A 
number of possible future studies that are directly related to 
the present study are suggested here. First of all, instead of 
comparing band-by-band or their average Ds for different land 
types as in this study, one may calculate the fractal dimension 
of the classified image or the major component after principal 
component analysis and use this as basis for comparison. This 
may enhance compariosn among different land types. Sec- 
ondly, different types of remotely sensed data other than TM 
images, such as MSS, SPOT, and NHAP images, should be inves- 
tigated. Preferably, multiple data sets for the same study area 
acquired at about the same time could be acquired in order to 
examine the effects of various spectral and spatial resolutions 
on the resultant fractal dimensions. Thirdly, other spatial sta- 
tistics and methods, such as spatial autocorrelation statistics, 
trend surface analysis, or the s'tandard deviation of either the 
high pass filter or first differencelderivative image, could be 
applied and compared with fractal dimension. New insights 
could be generated on how fractals are related to these relatively 
well-established statistics. These research efforts will be useful 
to remote sensing as well as to a number of other disciplines 
such as spatial statistics and information science. Last but not 
least, the fractal dimension values derived from the present 
study could be used in the future as a guideline for the simu- 
lation and generation of TM images using fractal surface gen- 
eration algorithms similar to the one used in generating Figure 
2 (Goodchild, 1980). Additionally, different components or fea- 
tures in the images, which are of different scales and level of 
complexity, could also be generated using more complicated 
procedures such as the multi-fractal approach (Peitgen and Saupe, 
1988), if we know beforehand the fractal dimensions of the dif- 
ferent features in the images. The simulated TM images would 
be especially useful to benchmark or theoretical studies which 
may involve a large number of images. The use of simulated 
TM images could reduce not only the cost in obtaining real im- 
ages, but also the possible bias existing in real images. This 
type of fractal application was, in fact, a major reason for mea- 
suring TM surfaces at the beginning. In addition, the simulated 
TM surfaces could serve as null-hypothesis images such that 
further analysis of normal or anomalous responses of certain 
land-cover types could be made. 

CONCLUSIONS 
The objectives of this study were to examine how different 

TM images and bands behave according to the fractal model and 
how the fractal dimensions of these TM surfaces differ from 
those of other surfaces. The results from the study using TM 
data of three different land types show that different land types 

have different levels of fractal dimensions in different bands. 
The urban area was found to be most spatially complex with 
high D values in bands 2 and 3. This is followed closely by the 
coastal area and the rural area, both with high D values in band 
1. These findings may be useful in the future as guidelines for 
the selection of bands for subsequent display and analysis. 
Compared with the DTM surfaces of other areas tested in pre- 
vious studies, fractal dimensions of the TM surfaces of the pres- 
ent three study areas are generally higher, with D values ranging 
from 2.54 to 2.87 at the scale range of 25m to 150m, as compared 
to values of 2.1 to 2.5 for the DTM surfaces at about the same 
scale range. These fractal dimension values can be used as a 
basis in future studies involving generation and simulation of 
TM images. This latter application was indeed the prime reason 
for its present popularity among many other disciplines. It is 
hoped that this study will stimulate more research in this area 
in the future and that this approach might provide a very dif- 
ferent perspective in studying the various types of remotely 
sensed images. 
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