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ABSTRACT: A description of the clustering, classification, and image display program AMOEBA is presented. Using a 
difficult high resolution aircraft-acquired MSS image, the steps the program takes in forming clusters are traced. A 
number of new features are described here for the first time. Usage of the program is discussed. The theoretical 
foundation (the underlying mathematical model) is briefly presented. The program can handle images of any size and 
dimensionality. 

INTRODUCTION 

I N T H E  BROADEST SENSE, cluster analysis finds regularity or 
structure in data and classification assigns labels. An image 

analyst performs these (and many other) tasks in the process 
of understanding an image. The analyst clusters by observing 
that different parts of the image represent very similar entities 
from the real world. Labeling is often the primary objective, or 
at least an essential first step. To an analyst, the data units are 
spatial associations of image elements (pixels); the size and shape 
of the associations not only vary but probably influence the 
classification process itself. It would seem quixotic for an analyst 
to even attempt to understand an image from a huge list of the 
measurement vectors. 

Present-day computers, on the other hand, are best at dealing 
with much smaller and more regular chunks of an image. Be- 
cause the pixels in a multispectral image are vectors, a natural 
approach to automatic image analysis is the use of general- 
purpose multivariate statistical techniques, including clustering 
algorithms (see, e.g., Anderberg, 1973; Duran and Odell, 1974; 
Bryant, 1978; Jain and Dubes, 1988). This yields a useful first 
cut at clustering which can often be improved by interactive 
manipulation. However, the cluster map is unsatisfactory for 
low resolution (e.g., Landsat) imagery: many isolated misclas- 
sified pixels are seen which must be dealt with one at a time. 
We will examine the reason for this below: briefly, it is the 
unavoidable consequence of processing the image a pixel at a 
time. Some (often many) pixels do not fit the statistical model 
underlying per-pixel classification. 

A multi-dimensional image, of course, is not arbitrary mul- 
tivariate data. The spatial structure of the image is often the 
most significant attribute, without which an analyst would be 
hopelessly lost. Yet it is difficult to incorporate spatial infor- 
mation in image processing programs. The purpose of this note 
is to describe Version 13 of AMOEBA, a clustering, classification, 
and image display program which makes essential and exten- 
sive use of spatial structure. 

I begin with a literature review. Then I outline the mathe- 
matical model. A general description of the program follows: 
many details are given here for the first time. Images are in- 
cluded to illustrate each major step; one should probably skip 
the details and just look at the pictures on first reading. I then 
explain usage and and give execution characteristics of AMOEBA. 
Finally, I suggest directions future work in the general area 
surrounding AMOEBA might take. 

LITERATURE ON AMOEBA 
Version 6 has been described (Bryant, 1978; Bryant, 1979), 

and descriptions of two features of the current version have 
recently appeared (Bryant, 1988; Bryant, 1989). The first tests 
of the program to be published (except in reports to the NASA- 
JSC) are by Jenson et al., (1982). They find the program (Version 
8) to be faster than and as accurate as ISOCLAS (a variant of 
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ISODATA developed by the NASA). Gurney and Townshend (1983), 
in a survey on the use of contextual information in classification, 
mention the improvement which results from the use of spatial 
information by AMOEBA. Hill and Kelly (1986) find about 80 
percent classification accuracy and 95 percent mapping accuracy; 
the areas studied were so large and separated that supervised 
classification could not be done. Hill and Kelly (1987) used a 
preliminary classification to form a mask to get a subdivision of 
the original clusters. (They were using Version 10; this operation 
has been made much easier in Version 13.) See also Kelly and 
Hill (1987). Strickland and Schowengerdt (1988) use Version 12 
in the course of automatic inspection of printed circuit boards; 
they also employ masking. 

The literature on AMOEBA has its darker side. The basic paper 
on AMOEBA is referenced in Haralick and Shapiro (1985) but not 
mentioned in the body of the survey. Several authors (Chittinei, 
1983; Strahler et al., 1986; Trivedi and Bezdek, 1986; Woodcock 
and Strahler, 1987; and Yarman-Vural and Ataman, 1987) mention 
AMOEBA, but, from what they write, I think they misunderstand 
the basic ideas. Perhaps this is my fault- the details are hard 
to understand without lengthy explanation, and that has never 
been done. 

While it might be fashionable nowadays for one to be 
misunderstood, this should not extend to a program with so 
many capabilities. An overview of the program, including the 
more developed model, the new context classifier, and a 
discussion of program operation, has never been published. I 
hope the concise presentation here will expose this public domain 
program to more potential users. 

THE MATHEMATICAL MODEL 

Before I begin, I need some notation. Suppose the multi- 
image has rectangular organization with pixel coordinate pairs 
of integers. Let us use the notation p for the spatial location of 
a pixel and p = [p, p, ... p,,JT for the measurement vector at 
location p. Denote by Jp - ql the spatial distance between p and 
q and (Ip - qll the euclidean distance IX (p, - qk)2]'R between 
the measurement vectors. (In the model, the measurements are 
vectors with real components. In the program, the components 
are 16 bit two's complement integers. The original measure- 
ments are presently eight bit unsigned integers.) 

My first assumption is simple: I assume that real classes exist. 
A pixel is said to be pure if it and all four nearest neighbors are 
in the same real class. It is clear that if p and q are pure pixels 
and Jp  - qJ 2, then p and q are in the same real class. A path 
is a sequence p,, ...,p,, such that pi is one of the four nearest 
neighbors of p,,,, i = 1 ,..., n - 1. A set of pixels is said to be 
connected if each pair of points in the set can be joined by a path 
lying in the set. Denote by P the set of all pure pixels. The 
components of P are the maximal connected subsets of P; they 
are called patches. Each pure pixel is contained in a uniquely 
determined patch. The classifier is the (unknown) mapping from 
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the set of all pixels to the (again unknown) set of labels. If F is 
a patch, then points in F are classified alike. Under the as- 
sumption that the patches can be estimated accurately, this ob- 
servation furnishes an automatic sampling of spectrally Merent 
points which should bear the same label. 

A nearest neighbor classifier (NNC) is a spectral classifier that 
classifies a measurement space vector into one of c classes. Let 
d(p,q) denote the distance between p and q. The attractors are 
vectors q, ...q,, and p is assigned to class m if d(p,q,) 5 d(p,q,) 
for i = 1, ..., c. (Ties can be decided by selecting the smallest 
value of m). An NCC is uniquely determined by the distance 
function and the set of c cluster attractors. The next assumption 
has the remarkable effect of telling what the distance function 
should be for the lowest level classification decisions. A mea- 
surement vector r is said to be a convex combination of vectors p 
and q if r = cup + (1 - a)q for some a between 0 and 1. I assume 
that if p and q are pure pixels in the same real class and if r is 
a convex combination of p and q, then an NCC should classify 
r in the same class as p and q. 

A distance function is said to be natural if it is induced by a 
norm on the space Rm in which the measurement vectors are 
embedded. For example, the 1, distance Z[p, - q,( is derived 
from the norm llpll = Zlpkl. This distance function is used in 
ISOCLAS. Another popular distance function is implicit in the 
maximum likelihood classifier (see, e.g., Andrews, 1972). The 
assumption implies that the decision regions should be convex, 
and this leads to the following: any natural NCc is weighted 
Euclidean distance IZw, (pk - q3'I1n. Because clustering is ap- 
plied in the preliminary exploratory phase of analysis, it is nat- 
ural to weight the measurements equally. Therefore, the distance 
function for the NcC should be Euclidean distance. This is prob- 
ably even true in problems of supervised classification. See Bauer 
et al. (1977) and Kast and Davis (1977). 

Let C:P -, (1, ..., c} be a classifier defined on the set P of pure 
pixels. Consider the classification of pure pixels p and q: there 
are four possibilities: 

(I) p and q are in the same real class and C(p) = C(q). 
(2) p and q are in different real classes and C(p) # C(q). 
(3) p and q are in the same real class and C(p)  # C(q). 
(4) p and q are in different real classes and C(p) = C(q). 
Clearly Cases 3 and 4 are errors. The pair probability of mis- 

classification is the sum PPMC of the conditional probability of 
Case 3 and the conditional probability of Case 4. (Although 
similar to the Rand statistic, the PPMC is much different when 
there are many clusters because there are many more Case 4 
events than Case 3. See Rand (1971).) With the distance function 
for pure pixel classification fixed, it remains to select the cluster 
attractors - the vectors which the NNC uses. I assume the at- 
tractors should be selected to minimize the PPMC. 

While NNC classification is anticipated for pure pixels, it is 
certainly not suitable for all pixels. After a preliminary per-pixel 
nearest neighbor classification of the image, let a denote the 
number of the eight nearest neighbors of p which have the same 
classification as p. I assume that the classification of p is ac- 
ceptable if and only if a r 2. Unacceptably classilied pixels will 
be reclassified. To see how this should proceed, consider a pixel 
p on a spatial boundary between two pure pixel regions. In this 
simple example, each of the measurements p, will be a convex 
combination of the pixel measurements nearby. (Because of reg- 
istration errors the a, may be different.) Such a vector is com- 
pletely unsuited for nearest neighbor classification because a 
third attractor, unrelated to the nearby pure pixel mesurements, 
may be closer to the measurement space mixture. More elabo- 
rate modeling with several classes lends support to the as- 
sumption that an  unacceptably classified pixel should be 
reclassified in the class of one of the acceptably classified eight 
nearest neighbors, provided this is possible. Note that the mix- 
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ture, in the absence of registration errors, would be closer to 
the nearest class than half the distance from that class to the 
others of which it is a mixture. With registration errors, this 
should be increased by a factor of .\/ZS but pure pixels are not 
as bothered by registration problems. I assume that no pixel 
should be classified by the per pixel nearest neighbor classifier 
if the distance to the attractor exceeds this threshold. 

THE PROGRAM 

AMOEBA now consists of about 3,600 lines of FORTRAN77 code 
(12,000 lines including comments). I maintain the VAX* version 
(the only one I can supply), although various versions of the 
program have been converted to such diverse systems as the 
IBM 3090, the HP 3000, the IBM PC, and the MIPS 2000. A brief 
description of the VAX version follows. To illustrate the com- 
plex steps being described, I will use a 512- by 512pixel origi- 
nally 11-band aircraft image. Figure 1 shows the first band of 
the three-band product which is intended to be displayed as 
red. The technique of Bryant (1988) was used. Although sig- 
nificant information from the original is missing in this product, 
one can see in a general way the relationships I want to illus- 
trate. 

The program is modular; system dependent features have 
been isolated and are confined to the main program and the 
routines which read and write files. Care is taken to minimize 
system resources taken by the program. This, together with file 
management, is the responsibility of the main program. Because 
of the many options and the dependence on the size of the 
image being analyzed, memory requirements vary from small 
to fairly large. The main benefit of this relatively minor effort 
is that the program is easy on the system; this, in turn, can 
result in better system performance. The program can handle 
images of any size and dimensionality, and all of this is 
transparent to the user. 

FIG. 1. Band one of the test image. 

* The mention of tradenames here is in no way an endorsement of 
products or manufacturers. 
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On the first pass through the image, points which are possibly 
not pure pixels are identified. Two techniques are provided: 
one uses a multidimensional version of the quickly computed 
Robert's gradient of distance 2 (see Haralick and Dinstein (1975)). 
It is suitable for high to medium resolution low noise data. 
When the gradient exceeds a threshold, boundary is decided. 
The other method operates by comparing the multivariate 
measurement differences of spatially adjacent pixels to a threshold 
vector. In each case the threshold adapts to furnish a user- 
supplied number of pure decisions (default 45 percent thus, 
more decisions are boundary than pure in the default selection). 
An example of the pure pixels discovered can be seen in Figure 
2. Note the large oval shaped bright field in Figure 1 which is 
not found. 

The next task is to sample the patches found. After sampling, 
the measurements loose explicit spatial identity, but actually 
preserve spatial structure implicitly because they are separated 
samples from the same patch. There are two conflicting problems: 
because there are a huge number of patch points in a large 
image, the sample should be sparce. On the other hand, one 
must not lose a sample from a rare real class. Initially the patches 
are scanned and sets of five points, called test sets, as spatially 
separated as possible, are selected from each patch. The reason 
for selecting five pixels from each patch will be explained later. 
The first 25 test sets encountered which have the last pixel of 
the test set different from the first pixel in that set are saved in 
a file. Because the initial patch estimate was very conservative, 
I am confident these test sets are samples of real classes. 

For the remaining patches, let d denote the spectral distance 
from the first pixel to the last pixel of the potential test set, and 
let a denote the running average of this distance over test sets 
found acceptable so far. A new test set is added if it is interesting, 
believable, and new. To be interesting, dra12; to be believable, 
d14a; and to be new, the first pixel in the test set must not be 
closer to the first member of one of the last 25 collected than d. 
Note that a probably gradually increases. 

Many test sets remain, however. To form the initial tentative 
cluster attractors, use the third test pixel of each test set. When 
the number of attractors exceeds 156, classify the first and last 
of each of the test pixel sets collected so far. Count the number 
of classifications assigned to each attractor by test set and by 
attractor (forming the weight of the attractor). If two distinct 

attractors get assigned to the pair from a test set, and if the 
weight of each is exactly 1, then combine the two attractors, 
assigning the new average attractor a weight of 2. Otherwise, 
if the weight of one is 1, eliminate it and increment the weight 
of the other. Next, eliminate any attractor with weight of zero 
(these are duplicates). If over 100 attractors remain, classify the 
second and fourth test pixel; until fewer than 101 attractors, 
eliminate any set with weight of one, then two, and finally 
three. These steps are order dependent, so the means are mildly 
shuffled after each pass. 

Eventually, it is likely that more than 356 test sets will be 
collected. Classify each test set (by classifying the third member) 
and count the number of times an attractor is assigned a test 
set. If there are 100 attractors and 300 test sets, then, on the 
average, each attractor will receive three classifications. Test 
sets assigned to those attractors with the most test sets attracted 

FIG. 2. Patches. 

are dup&ates, and are simply removed until 300 test sets remain. 
(The most over-represented are thinned first.) If over 100 attractors 
are present, invoke the attractor thinning procedure just 
described. 

The numbers 156,100, and 356 are not entirely arbitrary; they 
were selected to allow the data storage to fit in one 32K word 
memory segment. In that sense they are inherited from Version 
8 (the HP 3000 version). On the other hand, any clustering 
process must be highly emperical, even one based on a model. 
I have experimented with increasing the numbers. No difference 
in the final clustering is noticed, and more computer time is 
taken. With substantially smaller numbers a small cluster is 
sometimes lost at this stage, although the initial classification 
logic will probably restore it. 

CLUSTER FORMATION 
The test sets are used directly to estimate error Case 3 above. 

Because there are ten distinct pairs in a test set of five sample 
pixels, this gives ten tests per test set. There are ten unordered 
distinct pairs in a set containing five elements; thus, we compare 
the classification of the first with the second, the third, ..., and 
finally the classification of the fourth with the fifth. To estimate 
Case 4, use the initial cluster attractors to find the first principal 
component of the set of distinct pair differences of attractors. 
Earlier versions used the sum of the measurements; I have found 
the principal component mapping to be superior when thermal 
or far IR bands are present. It is quickly computed. This first 
principal component defines a one-dimensional attribute; 
transform the test sets based on this linear mapping and arrange 
them in increasing order. Let there be t test sets. Using 
synthesized data, I determined experimentally that pairs with 
index differing by s = 0.075t were in general close samples from 
different real classes, and thus would be useful as sharp tests 
of the different real class-same cluster error case. For each test 
set i, use the classification of its center and the ten from the 
two test sets with index i 2 s. (If one of these is not a valid 
index, replace it with i k 2s; one of these will serve.) 

Each of the two error case tests (which are equal in number 
and therefore give estimates on the PPMC without unequal 
weighting) counts an error when an attractor is involved in one 
of the two error events. Until the number of attractors is reduced 
to 32, eliminate the attractor contributing the most errors and 
reassign test pixels which were assigned to the attractor. (The 
number of bits in the VAX data bus is 32; thus, I can encode a 
subset of the original 32 attractors as a single computer word 
for quick evaluation.) 

When 32 attractors are attained, the search is widened: 
essentially all of the arrangements of the 232 - 1 possible subsets 
which have any chance at all of having the minimal PPMC are 
evaluated. The number of arrangements being considered at a 
time, called the width of the search, is 45 in the present version. 
The number of times a daughter arrangement has her daughters 
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evaluated, called the dppt/l of the search, is presently three. A 
variant of the alpha-beta algorithm (originated by Claude 
Shannon) is used to prune searches which are not productive. 
Tests on real and simulated data show precisely the same solution 
is obtained with this method as with the search with a width 
of 32,768 and a depth of five (involving over 21 million 
evaluations). The method is fast because of two factors: wasteful 
duplicate evaluations are quickly avoided by saving in a 32 bit 
word the arrangement of attractors in an already evaluated set; 
and because each step requires few classifications to update the 
PPMC calculation for a subset which differs by the absence of 
exactly one attractor. 

An option of the program allows one to produce a three-band 
color display from the greater than three-band multi-image; this 
has recently been described (Bryant, 1988) in some detail. Color 
reproductions of the three-band composite image and the cluster 
map can be found there. The computations of cluster formation 
just described are interrupted when 32 attractors have been 
formed, and the dimensionality reduction process and image 
formation is started. Then the entire program is restarted using 
the three-band image instead of the original. 

Now that the cluster attractors have been formed, the rejection 
thresholds can be computed. For each attractor a, find the most 
distant other attractor (say b), and let p, = Ila - blV2 be the 
rejection threshold for the cluster A attracted by a. During the 
initial per pixel classification step, only classes A are considered 
for classification of p which have (Ip - a(( < p,. In particular, there 
is a possibility that no class exists; in that case the offending 
pixel is labeled with 0 in the classification process. 

I now describe the per-pixel classification process. Recall that 
each pixel is a vector in R"'; with c classes, it at first appears to 
require 3rn arithmetic operations to compute the distance from 
the pixel to an attractor, and so 3cm such computations to class* 
a pixel. However, the image is being processed in a spatially 
natural order so that most of the time the next pixel encountered 
is like the one just processed. By using this fact to exit the 
distance function calculation loop early (and several similar 
programming tricks-see Bryant (1989)), I have made the per- 
pixel classifier in Version 13 about three times faster than earlier 
versions. 

In noisy images false boundaries are detected. An odd and, 
perhaps, hard to comprehend phenomenon is that even the 
best local boundary detectors fail to find boundaries in high 
resolution images. High resolution requires a large window to 
find boundaries. Woodcock and Strahler (1987) and others have 
found that for each analysis problem there is a range of acceptable 
resolution, and that too fine is as detremental as too coarse. 
After a per-pixel classification, however, a point which fails to 
be acceptabiy classified is very likely to b e  a boundary point, 
indevendentlv of noise and resolution. Turn this around: a point 
whiih is claisified like all four of its nearest neighbors sh'ould 
be a pure pixel in the setting of the model; accordingly, under 
the assumption that the original set of attractors leads to a good 
classification, a new boundary map is produced. The new map 
marks points which are not classified like all four of their 
neighbors as boundary. The zero (rejected) classification is 
included as a legitimate class so that a blob of rejected pixels 
will have another chance. (This is very important in high 
resolution data - I have examples of aircraft MSs data taken of 
oil fields where the drilling sites were not found by the program 
without this feature.) Then the entire process is restarted with 
new boundaries. That is, the program is iterative, although two 
iterations suffice to arrive at an acceptable clustering. In Figure 
3, I display the boundaries which result from this strategy. 

FIG. 3. Classification-based estimate of the boundary. 

Once the cluster attractors are known, it is time to classify. 
Three classifiers are provided. The per-pixel classifier, modified 
by the rejection thresholds discussed above, is also used as a 
preliminary classifier for the other two; see Figure 4. If per-pixel 
classification is to be the end product, then unclassified points 
result in an expanded list of cluster attractors, used only to 
classify other unclassified points (so that the exceptional classes 
are small but often significant). 

The second classifier, with results displayed in Figure 5, cames 
out the reclassification process suggested by the model, except 
that the user can specify the number of eight nearest neighbors 
which should be classified like the central point for accepting a 
per-pixel classification. To allow for rnisregistration, the rejection 
thresholds are multiplied by d 2 .  Table 1 shows the statistical 
summary of the final classification: listed is the index (i-e., cluster 
label), the number classified in that cluster, and the cluster 
attractor. There are three bands in this example because a 
dimensionality reduction from the original 11 bands to three 
was selected. (The band order is RGB, attempting to imitate color 



FIG. 5. Spatial improvement of per-pixel classification. FIG. 6. Context classification. 

I TABLE 1. CLUSTERS FOUND BY AMOEBA USING ALL DEFAULT 
PROGRAM PARAMETERS. fast 3" by 3" context classifier which has been designed but not 

implemented. See also Wharton (1982). 
The context classifier operates by packing the arrangement of 

classifications in the 3 by 3 neighborhood in a 16-bit word. These 
are histogrammed, with the most popular being used as "leaders" 
in a modification of the leader algorithm. This method takes 
the first data unit encountered as the leader and joins subsequent 
data to it when the distance is less than a threshold; otherwise, 
it adds new leaders. The modification simply starts with p pure 
contexts and uses the 255 - p mixed contexts as leaders. The 
distance between contexts is larger when the contexts are very 
different. For example, consider three classes X, Y, and Z. 
Suppose the context in four 3 by 3 neighborhoods is as follows: 

A: 7 X a n d 2  Y B: 4 X and 5 Y 
C: 6 X and 3 Z D: 7 X and 2 Z 

The distance from A to B and C is 6, and to D is 4. The 
distance from B to C and D is 10. Finally, the distance between 
C and D is 2. (The distance function is defined when more than 
two classes are present but it is more complicated). The program 
does not consider contexts separated by more than 8 to be 
candidates for identification; thus, B and C would never be 
merged. The program ordinarily yields the pure classes plus 
context classes giving 255 total; an option merges context classes 
as much as possible (yielding as few context classes as possible), 
again following the logic of the leader algorithm. 

Index Number Attractor 

1 1  144,886 65 36 28 

infrared (IR) film products, so that cluster 1 seems to be 
vegetation.) 

The third classifier is intended as an tool for an analyst who 
needs to know the classification of the points in the 3 by 3 
neighborhood of the point as an image. I display such a product 
in Figure 6; the solid looking dark areas are uncomplicated 
homogeneously classified regions. The lacy pattern surrounding 
them is impossible to interpret without an interactive display 
system, but contains information hard to obtain from an ordinary 
classification map. In the statistical summary furnished with the 
image, one obtains the usual count and attractor of the attractors 
for the homogeneous areas. (These have low class numbers.) 
Following that is a list of the class numbers of the mixed 
classifications: included is the index, the size of the class, the 

It sometimes happens that one class dominates the image. 
Indeed, the example used here illustrates this phenomenon: the 
large class covers about 55 percent of the image. The class looks 
like pasture, but suppose you need more: imagine the soil 
moisture or ground cover type could be detected from your 
image, and you would like to investigate the sub-structure of 
some of the preliminary clusters. The program provides an option 
whereby you can select certain clusters to be combined and then 
reclustered, treating the others as a mask. In Figure 7, I show 
the result of masking clusters 2 to 16. That is, the program tries 
to find finer structure there in the part of the image formerly 
placed in cluster 1. (The program allows any selection or 
combination of classes for finer clustering, including context 
classification classes.) The new map adds clusters to the old 
ones without changing their clustering; however, the numbering 

index of and count of the most popular pure class present, the 
same for the second most popular class, and whether four or 
more classes were present in the 3 by 3 neighborhood. From 
the output map and statistics file, it is easy to implement your 
own spatial classifier, e.g., a majority rule classifier. I have 
experimented with 9 by 9 majority rule classifiers with limited 
success. (They work best on extremely high resolution data.) 
This program option is intended as a preprocessor for a very 



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1990 

FIG. 7. Detailed classification of the pasture class only. 

of the new clusters will be different. (Clusters labels are always 
assigned in increasing order by sum of the bands in the attractor.) 

RUNNING AMOEBA 

Operation of the program is simple if the user selects default 
values for the optional parameters. The mandatory parameters 
are required to specify the input filename, its organization, its 
size (unless this is read from the header), and the output file 
name. The VAX version assumes International Imaging System 
header structure as default, but the user can supply all needed 
information at run time simply by telling the program the file 
is not standard and supplying required information. In addi- 
tion, the four short modules which use header information or 
perform image inputloutput can be (and have been) modified 
to use other systems. 

There are nine optional parameters not related to file struc- 
ture: 

Three bands? A Boolean parameter: if the original image is at 
least four bands, then a three-band composite image will be 
produced. You will have to furnish two band numbers, one the 
index of a visible band and another the index of an infrared 
band if you want the program to produce images that look like 
color IR film products. The default is to produce the three-band 
product with default visible band 2 and IR band 4. 

Mask? A Boolean variable; if specified, then band 1 of the 
image will be treated as a mask: pixels with value 0 in band 1 
will not be processed, and they will be labeled 0 in the classi- 
fication products. Mask is the default. 

Class Mask? A Boolean variable, default no. If specified, then 
you will be prompted for the file name of a previous cluster 
map and the list of the cluster indices you would like to select 
for subsequent clustering. I have used this option, new to Ver- 
sion 13, to subdivide three classes of shallow water and wet- 
lands in a complex area into nine classes. Before it was possible, 
but required several steps and was not as efficient. 

Roberts? It this Boolean variable is set, then Robert's gradient 
will be used to find the initial estimate of boundary. The default 
is no Robert's gradient. 

Classification Method. The classification method: an integer pa- 
rameter, as follows: 

the number of 8-nearest neighbors which should match in order 
for a classification to be accepted (default 2 neighbors alike). 

(3) Context classification; you must specify whether you want many 
finely detailed context classes or as few as is possible (default 
many). 

Iterations. The number of iterations (default 2, range 1 to 5). 
Pure pixels. The percent of pixels which are pure (range 25 to 

75, default 45). 
Error weights. The weights for the two error cases discussed 

above (default 1, range 1 to 9). The weights can be used to 
slightly favor more or fewer clusters. For example, if the same 
real class-different cluster weight is made higher, than fewer 
clusters will be produced (because the extreme one-cluster "so- 
lution" will be perfect in this error Case). 

The following data refer to test runs on a 512- by 512-pixel 
three-band image. The computer is a low end VAX 2000 
workstation running VMS 4.5. This machine is slightly slower 
than a VAX11/780, a system which is often used for benchmark 
comparison of computers. Although no floating point hardware 
is present, the modules which do use floating point arithmetic 
take less than 1 percent of the overall time, so that little 
improvement would result from its presence. 

The first pass through the data required 65 percent of the 26 
minutes the basic two iteration (per-pixel classification) requires. 
The next pass takes less time because a much better estimate is 
available for the set of pure pixels. The spatial fixup operations 
require an additional 40 seconds, and context classification takes 
almost three minutes more. One might say the added burden 
of the more specialized classifier is insignificant. The size of the 
image has the predictable almost linear influence on the time; 
however, the dimensionality (number of bands) has only minor 
influence. A good estimate is that the time taken is proportional 
to the square root of the number of bands. Thus, nine-band 
data should take about twice as much time as three-band data. 
For example, the original image in this test contained 11 bands. 
Two iterations took slightly over an hour. 

I have described new features of the latest version of AMOEBA 
and illustrated them on a difficult high resolution image. The 
main line of reasoning which leads to the method has been 
outlined. Many of the details of the program are revealed here 
for the first time. 

Version 1 of AMOEBA appeared in 1976; it shows no sign of 
stopping with Version 13. Problems being pursued here include 
the development of the 31 by 3" context classifier, the problem 
of the use of texture in classification, the boundary estimation 
problem in high resolution low noise imagery, and the problem 
of approximately recovering original data from the three-band 
product. 
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