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ABSTRACT: Four statistical separability measures were analyzed to determine which would most accurately identify the 
best subset of four channels from an eight-channel (two-date) set of multispectral video data for a parametric computer 
classification of an agricultural area. Transformed Divergence and the Jeffreys-Matusita Distance both selected the best 
four-channel subset for classification and showed near perfect correlation (0.96, 0.97) with classification accuracy con- 
sidering all 70 four-channel combinations. The Bahattacharyya Distance measure and Divergence selected the 11th and 
26th ranked four-channel subset, respectively, as the best for classification. These two measures had lower correlations 
(0.81,0.65) with classification accuracy considering the 70 possible four-channel combinations. Analysis of eigenvector 
loadings derived from eight-channel representative spectral statistics of features of interest identified the sixth ranking 
four-channel combination as best for classification. 

INTRODUCTION 

M ULTISPECTRAL AND MULTITEMPORAL remote sensing with 
high dimensionality are not uncommon. The constraints 

of computer hardware and software require efficient methods 
to reduce the dimensionality while still retaining good stan- 
dards of accuracy for classification. Two basic approaches used 
to identify subsets of bands within large data sets to facilitate 
more efficient display and classification of multispectral data are 
separability analysis and evaluation of eigenvector and eigen- 
value data derived from class statistics (i-e.,   canonical 
transformations). 

Several measures of separability are available to predict best 
channel combinations for classification (Swain and Davis, 1978). 
They are based on measurements of the statistical distances 
between spectral classes of interest. Specifically, the four se- 
parability measurements considered in this research were 
Transformed Divergence (TD), Divergence (D), Bhattacharyya 
Distance (8-distance), and Jeffreys-Matusita Distance (JM-dis- 
tance). Analysis of eigenvalues and eigenvector loadings de- 
rived from standard transformation techniques also has been 
shown to be effective in identifying appropriate spectral band 
subsets for land feature classification (Dean and Hoffer, 1983). 
This knowledge often makes it possible to develop a good clas- 
sification using the most appropriate original spectral channels 
without resorting to classification with more costly transformed 
data. 

The objective of this research is to analyze four measures of 
separability and eigenvector loadings to assess their suitability 
for selecting subsets of channel combinations from a high di- 
mensional data set that yields the most accurate parametric 
(Gaussian Maximum Likelihood) computer classification. The 
best four-channel subset case is discussed in this research, but 
insights provided should be similar for other channel subset 
combinations. 

There are techniques, other than those used in this study, 
that utilize class statistics (i-e., variance, covariance, standard 
deviation, correlation) to explore the best channel selection 
problem. Two good examples of alternate techniques are those 
used by Chavez et al. (1982) and Sheffield (1985), both of which 
present interesting algorithms worthy of consideration for se- 
lected channel selection problems. The basic approaches uti- 
lized in this study are older and more established, thus were 
selected for comparative evaluation; however, additional future 

* Presently with the Idaho Dept. of Water Resources, Boise, ID 83720. 

research should consider additional comparisons with algo- 
rithms which have shown promise such as those suggested by 
Chavez et al. and Sheffield. 

SEPARABILITY MEASUREMENTS 

Divergence (D) is a commonly used form of separability mea- 
sure designed to predict best channel combinations for multis- 
pectral classification of earth features. Analysis of D with a 
saturating transform has been used to reduce dimensionality of 
data sets and provides information regarding the relative degree 
to which land cover categories can be classified accurately. It 
also provides insight into which channels can be used to obtain 
the best classification results. For multivariate gaussian distri- 
butions the D between two classes (i and j) is 

D,, = 1/2 tr [(C, - C,) (C, ' C, I)] + 112 tr [(C,-' 

+ c, '1 (M, - MI) (M, - M,lT1 

where C is the class covariance matrix, M is the mean vector, 
and T is the transpose of the matrices. 

A non-linear relationship between classification accuracy and 
D exists due to the unbound characteristics of this measure. A 
transformation has been applied to saturate the D measure so 
it more closely approximates correct classification (Swain and 
Davis, 1978). Transformed Divergence (TD) is calculated as 

TDi, = 2000 [ I -  exp ( - D ,  / 8)]. 

In this form divergence values between 0 and 2000 are possible, 
with 2000 indicating the maximum spectral separability between 
class pairs. The Bhattacharyya Distance (B-distance) is another 
measure of the statistical separability between pairs of multi- 
variate gaussian distributions (Kailath, 1967; Jensen, 1986). It is 
calculated as 

(Ci + C,)pl 
B,, = 1/8 (Mi - M,)T 

2 (M, - M,) 

+ 1/2 log, 
Vdet C;det Cj 

where C is the class convariance matrix, M is the mean vector, 
and det is the determinant of the matrix. A saturating transform 
applied to this yields the Jeffreys-Matusita Distance (JM-dis- 
tance) which is given in Equation 4 (Swain, 1972; Swain and 
King, 1973); i.e., 

JM,, = [2 (1 - e H")]''2. (4) 
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The multiclass solution for the Equations 1 through 4 is pro- 
vided by calculating the average of the measure of all class pairs 
for each combination of channels. 

Swain and King (1973) indicated that the JM-distance yielded 
slightly better results than TD for predicting optimal band com- 
binations. However, they suggested using TD due to its com- 
putational efficiency. It requires one less matrix inversion for 
each class pair. Although TD is a common separability measure 
used in remote sensing, the degree to which it is more accurate 
than D, or if it is more accurate under all circumstances, has 
not been determined (Swain and Davis, 1978). 

EIGNEVECTOR ANALYSIS 

Principal component (PC) analysis transforms a data set com- 
prising n variables (channels) and N observations (pixels) so 
that, with n variables and N observations, the variables are all 
orthogonal (Johnston, 1978). Additional insights into the math- 
ematical basis of PC is discussed by Loeve (1955) and implica- 
tions of these transformations can be found in Sabins (1987). 

In this study eight channels of multispectral (MS) video data 
were used; thus, eight eigenvectors or components exists with 
the first eigenvector containing maximum variance or infor- 
mation content in the data set with increasingly less variance 
or information in succeeding eigenvectors through component 
eight. Each eigenvector is a combination of all eight channels 
of original data. The influence each original channel has on a 
component is represented by the eigenvector loadings which 
are derived from analysis of the convariance matrix associated 
with the data. In an eight-channel system, the transformation 
for eigenvector 1 (El) would be 

where A = eigenvector loading and X = DN or digital number 
of the original bandlchannel. 

Interpretation of the eight sets of loadings for the eight ei- 
genvector transformations to identify the best original channel 
subset for use in classification focuses on those loadings with 
the highest positive and negative values because they are most 
likely to discriminate between features of interest. Also, high 
loadings on original data bands in eigenvectors with greater 
total variance are more influential in best channel selection than 
those eigenvectors which account for very little variance in the 
data. 

MATERIALS AND METHODS 

An agricultural site located near the town of Weslaco in Hi- 
dalgo County, Texas, was chosen for analysis. It was a com- 
pletely randomized design field experiment consisting of six 
classes: cotton, cantaloupe, sorghum, johnsongrass, pigweed, 
and bare soil. Each one of the 24 plots was 7.0 by 9.2 metres in 
size. All plant classes, except cantaloupe, were fully developed 
and vigorous on both dates with the greatest maturity on 24 
July. Cantaloupe was almost fully mature on 31 May but was 
senescing by 24 July. The bare soil plots were fully bare on both 
dates. Figure 1 identifies individual fields comprising the study 
area and gives an example of the video imagery used (channel 
8, 24 July 1983). 

The site was imaged on 31 May and 24 July 1983 near noon 
on moderately sunny days from an altitude of 900 metres using 
the USDA-ARS multispectral video system (Nixon et al., 1985). 
Bandpass filters were used to collect spectral information in four 
wavebands (0.42 to 0.43 pm, 0.52 to 0.55 Fm, 0.64 to 0.67 pm, 
and 0.84 to 0.89 pm). The data were digitized and registered to 
create an eight-channel multitemporal data set with a spatial 
resolution of 0.2 metres. 

Training statistics were extracted from within each of the 24 
plots using the full area of a digital ground truth mask (Figure 

FIG. 1. Exper~rnental plot mask: cotton (COT), bare soil (BS), 
johnson-grass (JG), cantaloupe (CA), pigweed (PI), and sorgham 
(SO) along with video image of the study area (24 July 1893, 
0.84 to 0.89 km, channel 8). 

1) that was developed from a false color composite image of the 
site. Class means and variance-covariance matrices were de- 
veloped from these areas. 

Previous research results have shown that the best four chan- 
nels of high dimensional data sets usually yield optimal results 
in terms of accuracy and computer time (Dean and Hoffer, 1983). 
Thus, this research was restricted to analysis of four-channel 
combinations. The eight-channel data set yielded 70 possible 
four-channel combinations. The D, TD, B-distance, and JM-dis- 
tance were computed for all class pairs of the seventy combi- 
nations. The distance measurement averages were calculated 
and the channel combinations were ranked in descending or- 
der. 

Supervised gaussian maximum likelihood classification pro- 
cedures were applied to all 70 band combinations. Classification 
accuracy was assessed using all pixels in the experimental plot 
mask, which represents approximately 3030 pixels of each class. 



OPTIMUM BAND SELECTlON 57 

Correlation coefficients were calculated between overall percent 
classification accuracy and each of the separability measures to 
determine the degree to which each could be used to predict 
optimal channel combinations (Mausel and Kramber, 1987). 

The identical spectral statistics of all eight channels of video 
data developed from the training areas for parametric classifi- 
cation were used in eigenvector/component analysis. These eight- 
channel statistics were processed to provide the eigenvector 
loadings. The percent of the total variance of the data associated 
with each eigenvector was also calculated. Evaluation of the 
loadings and percent variance associated with each one of the 
eigenvectors permitted identification of the original data chan- 
nels which had the most power to discriminate between the 
features of classification interest. 

RESULTS AND DISCUSSION 

The four-channel percent classification accuracies, consider- 
ing the average of all six classes, ranged from 92.2 to 68.4 per- 
cent. The most accurate classifications are shown in Table 1 with 
the associated ranks as determined by average separability be- 
tween all class pairs. The rankings clearly illustrate the superior 
nature of TD and the JM-distance as predictors of classification 
accuracy. Both correctly predicted the 3, 4, 7, 8, channel com- 
bination would yield the most accurate classification results. 
This combination is comprised of the yellow-green and near 
infrared channels of both dates (Table 1). Correlation coeffi- 
cients between the classification results and the four separability 
measures: D, TD, B, and JM were 0.65, 0.96, 0.81, and 0.97, 
respectively. The JM-distance has a slight advantage over TD but 
both have near perfect correlations with classification accuracy. 
These results support the early work of Swain and King (1973), 

TABLE 1. OVERALL PERCENT CLASSIFICATION ACCURACY AND 
SEPARABILITV RANK OF THE BEST TEN FOUR-CHANNEL COMBINATIONS 

Channel Overall% Rank* 
Combinations Correct D TD B JM 

3,4,7,8 92.2 26 1 11 1 
2,4,7,8 91.6 42 3 29 2 
4,6,7,8 91.3 6 9 6 3 
4,5,7,8 90.8 10 11 9 9 
1,4,7,8 90.7 54 10 42 6 
3,4,5,8 89.9 3 5 1 8 
2,4,6,8 89.7 4 4 4 5 
3,4,6,8 89.6 2 2 2 4 
2,4,5,8 89.6 5 7 3 10 
1,4,6,8 89.2 8 8 7 7 

'Divergence (D), Transformed Divergence (TD), Bhattacharyya Dis- 
tance (B), Jeffreys-Matusita Distance (Jh4). 

and support their conclusion that TD should be used under most 
circumstances due to its superior computational efficiency. 

Tables 2 and 3 show the interclass D and TD values for the 
top ten-channel combinations, respectively. These were ranked 
according to the statistical distance averages, with the highest 
rank given to the channel combination with the largest average 
separability between class pairs. The 4, 5, 6, 8, channel com- 
bination yielded the highest average D but was ranked number 
22nd in classification accuracy. The reason for this becomes ap- 
parent when examining the D values between the class pairs 1- 
2, 2-3, 2-4, and 2-5. All these combinations yield high D values 
that indicate a statistical distance beyond the threshold required 
for good classification accuracy. Most of the above combinations 
yield TD values of 2000. Thus, the saturating nature of TD re- 
duces their effect and creates a prediction that more closely 
resembles classification accuracy. This clearly illustrates how 
one highly separable class such as soil (class 2) creates D results 
that cannot be used for overall channel predictions; but these 
values could be used as a more direct measure of spectral se- 
parability between features pairs for applications where classi- 
fication of all features was not an objective. 

Tables 4 and 5 show the interclass B-distance and JM-distance 
measurements for the respective top ten-channel combinations. 
The 3, 4, 5, 8, channel combination yielded the highest B-dis- 
tance and was sixth in overall classification accuracy. The (2-3), 
(2-4), and (2-5) class combinations had very large 8-distance 
measures. Corresponding JM-distance measures saturated to 2.00 
to prevent the JM averages from being biased by statistical dis- 
tances in feature space that do not improve classification ac- 
curacy. 

Table 6 shows the loadings and the percent variance associ- 
ated with each one of the eight eigenvectors. It is evident that 
most analysts who utilize eigenvector or component analysis 
would include the first three eigenvectors (which account for 
93.8 percent of the total data variance) in their determination. 
The value of the fourth component (2.8 percent variance) or the 
fifth component (1.5 percent variance) for feature discrimination 
is debatable; however, the literature contains numerous cita- 
tions in which eigenvectors with low variances contain valuable 
data for selected feature discrimination (Richards, 1984; Go- 
ward, 1984). Eigenvectors with very low variance are dominated 
by noise; thus, in this analysis the sixth through eighth com- 
ponents are not considered as important discriminating chan- 
nels. 

Analysis of the loadings found in Table 6 can vary somewhat 
depending on the view of an individual. Analysts consider higher 
variance and higher loading (positive or negative) eigenvectors 
as most important in selecting which original data channels are 
superior for feature discrimination. However, how many eig- 

TABLE 2. DIVERGENCE (D) OF THE BEST TEN FOUR-CHANNEL COMBINATIONS. 

Class Combinations' 
Channels 

'Classes are cotton (I), bare soil (2), johnsongrass (3), cantaloupe (4), pigweed (5), and sorghum (6). 
D values in parentheses are class combinations with TD that saturated to 2000. 
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TABLE 3. TRANSFORMED DIVERGENCE (TD) OF THE BEST TEN FOUR-CHANNEL COMBINATIONS. 

Class Combinations* 
Channels TD(ave) 1-2 1-3 1-4 1-5 1-6 2-3 2-4 2-5 2-6 3-4 3-5 3-6 4-5 4-6 5-6 

3,4,7,8 1900 2000 1931 1998 1979 1975 2000 1994 2000 1980 1995 1040 1899 1878 1949 1882 
3,4,6,8 1889 2000 1933 1997 1999 1942 2000 2000 2000 1998 1990 1008 1892 1866 1821 1894 
2,4,7,8 1887 2000 1846 1996 1973 1971 2000 1986 2000 1952 1996 1023 1858 1896 1954 1850 
2,4,6,8 1885 2000 1876 1994 1998 1929 2000 2000 2000 1995 1990 996 1858 1890 1848 1900 
3,4,5,8 1880 2000 1901 1997 1994 1957 2000 2000 2000 1999 1989 1097 1903 1843 1726 1789 
1,3,4,8 1877 2000 1892 1999 1982 1938 2000 1994 2000 1965 1995 945 1894 1865 1913 1772 
2,4,5,8 1876 2000 1819 1993 1992 1948 2000 2000 2000 1997 1990 1092 1863 1879 1793 1776 
1,4,6,8 1871 2000 1739 1994 1998 1930 2000 2000 2000 1994 1918 1096 1828 1704 1924 1942 
4,6,7,8 1871 2000 1680 1967 1994 1970 2000 2000 2000 1996 1917 1104 1831 1688 1951 1963 
1,4,7,8 1861 2000 1719 1996 1978 1968 2000 1975 1998 1941 1971 1073 1784 1715 1977 1813 

'Classes are cotton (I), bare soil (2), johnsongrass (3), cantaloupe (4), pigweed (5), and sorghum (6). The maximum TD value possible is 2000. 

TABLE 4. BHAITACHARWA (6-DISTANCE) OF THE BEST TEN FOUR-CHANNEL COMBINATIONS. 

Class Combinations* 
Channels B(ave) 1-2 1-3 1-4 1-5 1-6 2-3 2-4 2-5 2-6 3-4 3-5 3-6 4-5 4-6 5-6 

'Classes are cotton (I), bare soil (2), johnsongrass (3), cantaloupe (4, pigweed (5), and sorghum (6). B values in parentheses are class combina- 
tions with JM values that saturated to 2.00. 

TABLE 5. JEFFREY-MATUSITA (JM) DISTANCE OF THE BEST TEN FOUR-CHANNEL COMBINATIONS. 

Class Combinations' 

'Classes are cotton (I), bare soil (2), johnsongrass (3), cantaloupe (4), pigweed (5), and sorghum (6). 
The maximum JM value possible is 2.00. 

nevectors should be considered and how high a loading needs 
be for consideration can vary depending on the research prob- 
lem. In this analysis, loading greater than k0.50 were consid- 
ered important. The loadings of the first four eigenvectors 
contained 96.6 percent of the total variance which was deemed 
sufficient to permit identification of the requisite four most in- 
fluential channels for feature discrimination needed to compare 
with the separability/classification study. 

Channel 8 was clearly identified as important in the first ei- 
genvector discrimination with a 0.72 loading. Only channel 8 
appeared in all 10 four-channel combinations determined to be 
the best for classification. Channel 3 (0.54 loading) and 8 (0.64 
loading) were both important in the second eigenvector. Chan- 
nel 4 had a very strong 0.87 loading in the lower variance third 
eigenvector. Another high loading (0.81) was found on channel 

5 in the relatively low variance of eigenvector four. Thus, based 
on analysis of eigenvectors, channel 8 had the most discrimi- 
nating power followed in order by channels 3, 4, and 5. 

The selection of channels 3, 4, 5, and 8 (a yellow-greednear 
infrared and redhear (infrared combination) by eigenvector 
analysis for classification of the agricultural features of interest 
resulted in a classification accuracy of 89.9 percent which was 
the sixth best four-channel combination. This result indicates 
that eigenvector analysis predicted a useful four-channel com- 
bination which was not the very best, but quite suitable for good 
classification. 

Although this work was restricted to the four-channel case 
for comprehensive analysis, data about comparable classifica- 
tion accuracy and times required for classification using the best 
channel predicted by TD were also explored. Figure 2 shows the 
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TABLE 6. EIGENVECTORS AND VARIANCE ASSOCIATED WITH PRINCIPAL' 
COMPONENTS 1 THROUGH 8. 

Eigenvectors (Components) 
PC 1 2 3 4 5 6 7 8  

July C1 -0.19 0.32 0.28 -0.29 0.75 -0.36 -0.11 0.02 
C2 -0.31 0.39 0.12 -0.24 -0.15 0.15 0.67 -0.46 
C3 -0.35 0.54 -0.07 -0.18 -0.52 -0.17 -0.48 0.19 
C4 0.17 -0.17 0.87 -0.13 -0.34 -0.18 0.00 -0.12 
C5 -0.39 0.08 0.19 0.81 0.08 -0.07 -0.14 -0.34 
C6 -0.20 0.07 0.15 0.27 -0.04 -0.13 0.50 0.77 
C7 -0.13 0.14 0.32 -0.04 0.16 0.87 -0.19 0.19 
C8 0.72 0.64 0.04 0.27 0.02 0.02 0.06 0.00 

Percent 63.5 22.2 8.1 2.8 1.5 0.8 0.6 0.5 
Variance 

C1-C4(24 July 1983), respectively, represent 0.64-0.67 pm, 0.42-0.43 
pm, 0.52-0.55 pm, and 0.84-0.89 pm. C5-C8 (31 May 1983), respec- 
tively, represent 0.64-0.67 pm, 0.42-0.43 pm, 0.52-0.55 pm, and 0.84- 
0.89 p,m. 

1 2 3 4 5 6 7 8  
NUMBER OF BANDS 

FIG. 2. Overall classification accuracy for channel com- 
binations one through eight. 

TABLE 7. VARIANCE ASSOCIATED WITH ~NDIVIDUAL CHANNELS OF 
ORIGINAL VIDEO DATA. 

Channel Variance % Total Variance 
1 173.0 6.2 
2 276.7 9.9 
3 409.0 14.7 
4 247.3 8.9 
5 329.6 11.8 
6 100.1 3.6 
7 84.5 3.0 

CI-C4 (24 July 1983), respectively, represent 0.64-0.67 pm., 0.42-0.43 
pm, 0.52-0.55 km, and 0.84-0.89 pm. C5-C8 (31 May 1983). repsec- 
tively, represent 0.64-0.67 pm, 0.42-0.43 pm, 0.52-0.55 pm, and 0.84- 
0.89 Wm. 

changes in overall classification accuracy using the best chan- 
nel(~)  from one through eight. It appears that use of three chan- 
nels would be the best compromise between accuracy and 
efficiencies of data compression; however, the use of the best 
four channels is also a reasonable choice. Additions of channels 
after four results in classification accuracy increases of only 0.4 
to 1.3 percent per channel. 

The cPU time required for a maximum likelihood classification 
of the six-class study area using an IBM 4381-23 mainframe is 

NUMBER OF BANDS 

FIG. 3. Seconds of IBM 4381-23 cpu time required for 
classifications: two through eight channels. 

indicated in Figure 3. It is evident that a four-fold reduction in 
CPU is attained by using the best four channels compared to 
using all eight channels when classification is conducted using 
this mainframe. 

As a final note, some analysts will evaluate original channel 
variance of a large multispectral set to determine best channel 
combinations. This procedure, albeit better than nothing, is not 
likely to identify the superior channels required for classifica- 
tion. For example, the combined percent variance of the four 
individual original channels with the highest variance in this 
study is approximately 78 and is represented by channels 2, 3, 
5, and 9 (Table 7). The four-channel combination derived from 
selecting the four highest variance channels of original data 
ranked 56th in classification accuracy (80.8 percent). This result 
is clearly inferior to the channels 3, 4, 7, and 8 combination 
suggested by TD and JM-distance as best for four-channel clas- 
sification (92.2 percent accuracy). 

CONCLUSIONS 
The JM-distance and TD separability measures showed excel- 

lent and similar results for predicting the best channel combi- 
nations for classification of the six agricultural land features 
studied. The B-distance and D measures may give a more pre- 
cise measurement of the statistical distance between selected 
spectral classes because they do not have a limit and thus could 
be used for analysis in studies where actual separability values 
without a saturating value is important. However, these two 
measures yield relatively poor results for predicting the best 
channel combinations for classification of all six classes. Eigen- 
vector analysis is a reasonable alternative for selecting the best 
channel subsets for classification, although in this research, bet- 
ter results were achieved using the separability measurements 
of Transformed Divergence and Jeffreys-Matusita distance. 

The number of channels of original data, the number and 
nature of classes of interest, and the algorithm used for classi- 
fication can affect the predictive strength of a11 five methods 
used. Thus, the conclusions made in this research are specific 
to the data, features of interest, and parametric classifier im- 
plemented. However, these results are likely to be transferable, 
with caution, to different research designs and should be con- 
sidered to reduce dimensionality of data for classification. 
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Forum 

Accuracy Assessment: Another User's Perspective 

T HE RECENT ARTICLE by Story and Congalton (PE&RS, March 
1986, pp. 397-399) makes a valuable comment on the inter- 

pretation of the accuracy with which images can be mapped 
using quantitative analysis of remotely sensed data. 

Their emphasis is on the interpretation of the derived map, 
rather than on the production of that map. They do, however, 
assume implicitly that the outcome will be a label for each pixel. 
It is on this point, in the context of the so-called maximum- 
likelihood classifier, that some additional comment may be war- 
ranted. 

The maximum-likelihood approach requires the value of the 
multivariate Gaussian density of a pixel for each of the land- 
uselland-cover categories. Training data are used to estimate 
the parameters of the multivariate Gaussian densities for each 
of these reference categories. The pixel is then labeled or mapped 
as the category with the maximum value of the density. This 
approach is often referred to in the statistical literature as a 
forced allocation procedure, because the pixel is forced into one 
or the other of the reference categories, irrespective of the strength 
of the spectral information for it belonging to the assigned cat- 
egory. 

Two modifications seem useful in practice. The first is to as- 
sess the typicality of the pixel before assigning it to any of the 
reference categories. This can be done by assessing the mag- 
nitude of the individual squared Mahalanobis distance which 
forms the basis of the calculation of the multivariate Gaussian 
density. The calculation reduces to the probability associated 
with the squared distance and is calculated by referring (some 
function of) the value to the F distribution (see, e-g., Aitchison 
et al., 1977; Campbell, 1984). 

The second modification is to calculate the a posteriori prob- 
abilities of membership for each category, rather than the label 

which arises from the forced allocation of the pixel to the cat- 
egory with the maximum a posteriori probability. The calcula- 
tions require a priori probabilities for each category, though equal 
a priori probabilities can be adopted in the absence of other 
information. When a pixel is atypical for one or more categories, 
then these categories can be excluded from the calculation of 
the a posteriori probabilities. 

Is it worthwhile calculating the a posteriori probabilities, given 
the extra computing time involved? The potential extra infor- 
mation available to the user is considerable: an area mapped as 
forest, with a posteriori probabilities close to one, is much more 
likely to be forest than an area with a posteriori probabilities for 
forest which are only marginally greater than those for another 
category. The usual labeling approach makes no such distinc- 
tion. I suggest that there are practical benefits in knowing that 
the spectral information strongly supports a particular category 
as opposed to the spectral information being equivocal (a so- 
called region of doubt). 
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