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ABSTRACT: A methodology for incorporating structural information into conventional classification procedures is de- 
scribed. The technique is based on the use of an edge-density image which is generated using a Laplacian operator. 
This image is included in a Mahalanobis classifier as an additional band of data. The method is particularly designed 
for higher spatial resolution data in which plenty of spatial information is available. It has been tested using SPOT HRV 
multispectral data obtained over part of the rural-urban fringe of Metropolitan Toronto, Canada. Twelve Iand-cover 
types have been used to evaluate the approach and the classification results have been compared with those obtained 
by conventional maximum-likelihood classification. An overall accuracy of 86.1 percent was achieved by incorporating 
structural information into the classification compared with an accuracy of only 76.6 percent obtained without the 
structural information. 

INTRODUCTION 

R ECENT STUDIES of multispectral classification using higher 
spatial resolution satellite data, such as Landsat Thematic 

Mapper (TM) and SPOT High Resolution Visible (HRV) data, have 
shown that, when conventional per-pixel classifiers are em- 
ployed, better accuracies may not necessarily be obtained over 
lower spatial resolution data such as Landsat Multispectral 
Scanner (MSS) data (Clark and Bryant, 1977; Townshend and 
Justice, 1981; Williams et al., 1983; Toll, 1984; Shimoda and Sak- 
ata, 1987; Howarth et al., 1988; Martin ef al., 1988). Two factors 
in particular have been recognized as influencing the classifi- 
cation results obtained with higher spatial resolution images. 
First, the improved resolution has increased the spatial varia- 
tion in such images which in turn makes the training process 
more complex. Second, commonly-used classifiers, such as the 
minimum-distance (MD) classifier and the maximum-likelihood 
(ML) classifier, are per-pixel classifiers which make decisions 
based solely on the spectral information of each individual pixel. 
A large amount of spatial information that might be obtained 
from surrounding pixels is thus ignored. 

Several approaches have been tried to overcome these prob- 
lems. They include improving the quality of the training statis- 
tics by refining the supervised training samples (Badhwar et al., 
1984; Irons et al., 1985; Toll, 1985a; Buchheirn and Lillesand, 
1987; Khorram et al., 1987), testing unsupervised training strat- 
egies (Wang, 1984; Kiyonari et al., 1988), preclassification filter- 
ing (Cushnie and Atkinson, 1985; Toll, 1985b; Cushnie, 1987), 
the use of advanced classification procedures such as the ECHO 
(Extraction and Classification of Homogeneous Objects) per- 
field classifier (Latty et al., 1985), and the probabilistic relaxation 
classification method (Gong and Howarth, 1989). Among these 
procedures, the majority have shown no significant improve- 
ment in classification results. However, the preclassification fil- 
tering methods, using median, mean and other low-pass filters, 
have resulted in accuracy improvements approaching 20 per- 
cent (Cushnie, 1987). This was achieved using 5-m by 5-m spa- 
tial resolution airborne MSS data to simulate 10-m by 10-m and 
20-m by 20-m SPOT HRV data for classifying general land-use 
categories, such as residential. However, such data-smoothing 
strategies may discard too much information when attempts are 
made to map detailed land covers using SPOT HRV data. 

In this paper, a procedure to improve land-cover classification 
accuracies obtained with SPOT multispectral (xs) data is pre- 
sented. First, a "structural information" (SI) image is generated 
and used as an additional band of data in the classification. In 
this study, an edge-extraction algorithm was applied to the SPOT 
xs Band 1 data to produce an edge-density image as the SI band. 
The SI band is then combined with two bands created by prin- 
cipal component analysis (PCA) from the original three SPOT XS 
bands. An MD classifier is applied to the two PCA bands and 
the SI band to produce the classification. A comparison of the 
results obtained with this method and the results obtained using 
the two PCA bands and the standard ML classifier is reported. 

STUDY AREA 

The study area covers the Town of Markham (43" 52' N; 79" 
15' W), which is situated at the rural-urban fringe of north- 
eastern Toronto. This site has been used for a variety of remote 
sensing studies of rural-to-urban land conversion over a period 
of several years (Martin, 1975; Johnson and Howarth, 1987; Ho- 
warth et al., 1988; Martin et al., 1988; Martin, 1989). It provides 
a good study site for this analysis as large tracts of natural and 
agricultural land are being rapidly converted to urban uses. As 
a result, the spatial structure within the study area presents a 
variety of patterns. These structural patterns are considered to 
be useful signatures for discriminating some of the rural and 
urban land-cover types whose spectral signatures are often dif- 
ficult to differentiate. 

SPOT XS data used for this study were obtained on 4 June 
1987. For the analysis, a subscene of 512 by 512 pixels (approx- 
imately 10 km by 10 km) was selected. A portion of the area 
covering approximately 300 by 400 pixels (6 km by 8 km) is 
shown in Plate 1. This color composite displays the three XS 
bands after geometric correction with Bands 1, 2, and 3 being 
assigned to the blue, green, and red color guns, respectively. 

Land-cover types which exist in the study area are shown in 
Table 1. Most of them are self-explanatory. It should be noted, 
however, that the lawn and tree complex occurs within urban 
areas, while the cultivated grass primarily forms the fairways 
on golf courses. The distinction between crop cover, and new 
crops and pasture, is easily made on the basis of high and low 
reflectances, respectively, in the infrared band. 
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Type 
Residential Roof 
Paved Surface 
Industrial and Commercial Roof 
Cleared Land 
Lawn and Tree Complex 
Cultivated Grass 
Deciduous Trees 
Coniferous Trees 
Crop Cover 
New Crops and Pasture 
Bare Field 
Water Surface 

Abbreviation 
RR 
PS 
ICR 
CL 
LTC 
CG 
DT 
CT 
CC 
NCP 
BF 
WS 

Color 
Red 
Light Green 
Mid Blue 
Yellow 
Pink 
Turquoise 
Tan 
Gray 
Dark Green 
Dark Blue 
Purple 
Light Blue 

TABLE 2. CORRELATION MATRIX AND EFFECTIVE DIGITAL DATA RANGES 
FOR THE SPOT HRV MULTISPECTRAL DATA 
- - - - - -  - 

Band 2 Band 3 ~ i ~ i t a l x n ~ e  
Band 1 0.98 - 0.34 34 - 116 
Band 2 - 0.42 22 - 116 
Band 3 22 - 153 

DATA PREPARATION 

No radiometric correction was applied to the image because 
the selected test site is small and relatively flat and the topo- 
graphic and atmospheric conditions were assumed to be ho- 
mogeneous throughout the image. However, a geometric 
correction was performed to make it easier for the analvst to 
locate the reference data on a map of the area and on the image. 
The original data were spatially transformed to the UTM map 
projection using a third-order polynomial and were resampled 
to 20-m by 20-m pixels using a cubic-convolution interpolation. 
These procedures were undertaken using the standard software 
on a Dipix ARIES 111 image analysis system. 

The original SPOT XS data were quantified in 8 bits, but an 
examination of the histograms for each of the three bands showed 
the effective ranges of the digital data to be far less. In addition, 
a correlation analysis indicated that the Band 1 and Band 2 data 
are highly correlated (Table 2) .  This seems to be a deficiency of 
the gain setting of the sensor because other researchers (Quarmby 
and Townshend, 1987; Chavez, 1989) have encountered similar 
problems. In order to minimize the redundancy and reduce the 
amount of computation, the original three bands of multispec- 
tral data were transformed into two bands through principal 
component analysis. The two new bands of data contain over 
99.6 percent of the variance of the original data. 

METHODOLOGY 

The procedures used in this study were implemented on a 
VAX 111785 computer using FORTRAN 77 as the programming 
language. 

The procedure for generating the s1 band involves three steps: 

(1) A high-pass filter is applied to the image. 
(2) Edge extraction is performed. 
(3) An edge-density image is generated. 

In Step 1, a Laplacian high-pass filter (Pratt, 1978), which 
enhances the high-frequency components of an image in all 
directions, is applied to the Band 1 image of the SPOT XS data. 
The Band 1 image was selected because visually it shows the 
largest contrast in spatial structure between the rural and the 

urban areas. Road networks and residential structures in 
particular are easily identified on the Band 1 image. 

The enhanced image contains both edge and non-edge 
components. At Step 2, a threshold is set from the histogram 
of the enhanced image. This threshold is selected interactively 
so that on the resultant image only the road networks and some 
other high frequency components are displayed (Figure 1). 

At Step 3, the thresholded image or edge image is further 
processed to create the edge-density image. This involves moving 
a window pixel by pixel over the edge image. At each position 
of the window, the edge points are counted and the number of 
edge points is divided by the window size. This process results 
in the generation of an edge-density image which is then used 
as an additional feature in the classification. The size of the 
window is determined by visual examination of the edge-density 
images. The procedure is repeated using a range of window 
sizes. The window size which visually gives the best 
discrimination between urban and rural areas is then chosen. 
In this study, 13 edge-density images were generated in which 
the window sizes varied from 7 by 7 to 31 by 31. The window 
size of 25 by 25 was selected and the resultant edge-density 
image (Figure 2) was used as the SI band. 

Two methods were used to classify the SPOT XS data. First, 
the standard ML classification was applied to the two PCA bands. 
The second classification method combined the edge-density 
image or SI band with the two PCA bands. The conventional 
per-pixel MD classifier with the Mahalanobis distance measure 
was then applied as the classification algorithm. A detailed 
description of the classifier is given in Richards (1986). Two 
factors were considered in this choice. First, the MD classifier 
was chosen rather than the ML classifier for this second 
classification because the normal distribution required by the 
ML classifier may be violated by the newly created SI band. 
Second, the Mahalanobis distance measure was selected rather 
than the Euclidean distance measure as it has the advantage of 
directional insensitivities and experience shows that it performs 
almost as accurately as the ML classifier. In other words, by 
using the Mahalanobis classifier, the classification results will 
not be biased by the data variations that exist in the different 
digital bands. 

Supervised training was adopted in this study for both 

FIG. 1 .  An edge image produced by applying the Laplacian filter to the 
SPOT XS Band 1 image. The area shown is the same as in Plate 1. Note 
that urban features are emphasized rather than the rural components of 
the image. 
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RESULTS AND DISCUSSION 

In order to assess the contribution of the SI image to the 
classification transformed divergence (TD) matrices (Jensen, 1986), 
which indicate the separabilities of the training signatures, were 
calculated. In Table 3, the TD matrix calculated from the PCA 
bands only is presented. As suggested by Jensen (1986), the 
underlined values (less than 1900) indicate that the separabili- 
ties of those corresponding pairs are relatively poor. This occurs 
in 14 out of 66 pairs. The overall average (1881) is also lower 
than expected. It indicates that considerable confusion will oc- 
cur in the final classification. In Table 4, the TD matrix generated 
from the two PCA bands in combination with the SI band is 
shown. Improved separabilities can be observed from the re- 
duced number of underlined TD values (nine pairs) and from 
the higher value of 1953 for the average. 

Tables 5 and 6 show the confusion matrices for the two clas- 
sifications. The overall accuracies are 76.6 percent and 86.1 per- 

FIG. 2. An edge-density image generated by passing a 25 by 25 window cent, respectively. A simple comparison of Tables 5 and 6 shows 

across the image shown in  Figure ,, The lighter tones indicate areas of that inclusion of the SI band increased the accuracies of seven 
higher edge densities which are primarily urban features. cover classes. Among the remaining five classes, one of them 

displays no change, while the other four are only slightly re- 
duced in accuracy. This may be attributed to the use of different 
classifiers in the study. 

In order to determine the significance of the difference be- 

classifications. However, rather than training on blocks of pixels, 
single pixel sampling of a large number of individual pixels was 
used. According to Campbell (1981) and Labovitz and Masuoka 
(1984), this type of training prevents violation of the statistical 
independence assumption. Each pixel selected as part of the 
training sample was obtained at least 5 pixels away from any 
adjacent training pixel. Selection of the training pixels was aided 
by the use of aerial photographs at 1:8,000 scale recorded over 
the study area in April 1987, less than two months prior to the 
acquisition of the imagery. As a result, about 60 pixels were 
selected for each class to obtain training statistics. 

In order to determine the accuracy of each classification, 
approximately 30 individual test pixels per class were selected 
as reference data for comparison of ground information with 
the classification results. These pixels had to be pure rather than 
mixed pixels to ensure that the correct land cover was identified 
for each pixel. As with the training pixels, they were chosen 
with the aid of the 1:8,000-scale aerial photographs of the study 
site. For each pixel, the ground information determined from 
the aerial photographs (and field checking when necessary) was 
compared with the classification results by means of confusion 
matrices. 

tween the two classifications, the Kappa coefficient and its var- 
iance (Cohen, 1960) were calculated for each confusion matrix. 
The Kappa value for Table 5 is 0.744 and 0.848 in Table 6 due 
to the inclusion of the SI band. A test shows that the improve- 
ment in the classification is significant at the 99.9 percent con- 
fidence level. 

An examination of Table 5 shows that the classes obtained 
using the ML classification of the two PCA bands displays con- 
siderable confusion. Pairs of classes where obvious omission 
and commission errors occur are residential roof versus bare 
field, paved surface versus industrial and commercial roof, paved 
surface versus bare field, new crop and pasture versus lawn 
and tree complex, and deciduous trees versus crop cover. It can 
be seen that much of the confusion is between rural and urban 
land covers. The situation is very different for the MD classifi- 
cation of the two PCA bands combined with the SI band (Table 
6). Most of the confusion between urban and rural areas has 
been removed or has been greatly reduced. Within urban areas, 
however, there is still some confusion between paved surface 
and industrial and commercial roof. In rural areas, the culti- 
vated grass and the crop cover display slight confusion. 

The classification results using the two PCA bands and the ML 
classifier are shown in Plate 2, while the results obtained by 
including the SI band in the classification are shown in Plate 3. 
These results parallel the figures reported in the matrices (Ta- 

TABLE 3. THE TRANSFORMED DIVERGENCE MATRIX CALCULATED USING THE TWO PCA-BAND IMAGES* 

RR PS ICR CL LTC CG DT CT CC NCP BF 
PS 1642 - 
ICR 1997 1804 
CL 2000 1984 1903 
LTC 1954 1951 2000 2000 
CG 2000 2000 2000 2000 1996 
DT 2000 2000 2000 2000 1995 1998 
CT 1911 2000 2000 2000 1668 2000 1988 - 
CC 2000 2000 2000 2000 1554 - 1845 - 1343 - 1964 
NCP - 1832 1938 2000 2000 459 2000 1978 1358 - 1681 
BF 1745 562 1719 1% 

- 
- - 1492 2000 2000 2000 2000 1999 

WS 1983 1986 1952 %Xi 2000 2000 2000 1998 2000 2000 1967 

AVERAGE 1881 

"The abbreviated classes are listed in Table 1. 
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TABLE 4. THE TRANSFORMED DIVERGENCE MATRIX CALCULATED USING THE TWO PCA-BAND IMAGES AND THE SI-BAND IMAGE* 

PS 
ICR 
CL 
LTC 
CG 
DT 
CT 
CC 
NCP 
BF 
ws 

PS ICR CL LTC CG DT CT CC NCP BF 

1846 - 
1988 1920 
1961 2000 2000 
2000 2000 2000 2000 
2000 2000 2000 1995 2000 
2000 2000 2000 - 1827 2000 1992 
2000 2000 2000 - 1787 1900 - 1578 1976 
1987 2000 2000 - 1757 2000 1988 1563 - 1732 
1607 1944 1971 2000 2000 2000 z6ii 2000 1999 
1988 1964 2000 2000 2000 2000 1999 2000 2000 1977 

AVERAGE 1953 

*The abbreviated classes are listed in Table 1. 

Classified Results Omission 
RR PS ICR CL LTC CG DT CT CC NCP BF WS Total errors(%) 

RR 30 2 6 38 21.1 
PS 15 12 5 32 53.1 
ICR 28 4 32 14.2 
CL 33 33 0.0 
LTC 9 37 27.0 
CG 5 33 18.2 
DT 5 32 15.6 
CT 22 2 25 12.0 
CC 18 26 30.8 
NCP 1 2 20 31 35.5 
BF 1 9 1 1 23 1 36 36.1 
WS 1 1 2 21 25 16.0 

Total 33 25 43 34 36 28 35 25 28 31 40 22 380 

Commission errors (%) 
9.1 40.0 34.9 2.9 25.0 3.6 22.9 12.0 35.7 35.5 42.5 4.5 

'The abbreviated classes are listed in Table 1 

TABLE 6. THE CONFUSION MATRIX CALCULATED FROM THE CLASSIFICATION PRESENTED IN THIS PAPER* 

Classified Results Omission 
RR PS ICR CL LTC CG DT CT CC NCP BF WS Total errors(%) 

RR 35 1 2 38 7.9 
PS 21 10 1 32 34.4 
ICR 1 27 1 2 32 15.6 
CL 33 33 0.0 
LTC 35 37 5.4 
CG 2 5 33 21.2 
DT 3 32 9.4 
CT 2 21 1 25 16.0 
CC 20 26 23.1 
NCP 4 1 26 31 16.1 
BF 35 1 36 2.8 
WS 3 1 2 19 25 24.0 

Total 37 24 38 34 43 28 34 23 28 29 42 20 380 

Commission errors (%) 
5.4 12.5 28.9 2.9 18.6 7.1 14.7 8.7 28.6 10.3 19.0 5.0 

'The abbreviated classes are listed in Table 1. 

bles 5 and 6 ) .  In Plate 2 the classes are fragmented, even in the Plate 3, where the SI Band is introduced into the classification, 
rural areas where the fields are large and relatively homoge- the classified pixels are much more concentrated in homoge- 
neous. Many of the fields show several land covers and the neous groups. Most fields display only one land cover and the 
paved surface class is frequently displayed with the bare fields. paved surface misclassification in rural areas has been largely 
In addition, the tree and lawn complex, which should be re- removed. In turn, the class of new crops and pasture is no 
stricted to urban areas, is also displayed in the rural areas. In longer displayed in urban areas. 



STRUCTURAL INFORMATION FOR LAND-COVER CLASSIFICATION 



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1990 

The changes observed i n  the matrices a n d  the classifications 
can readily b e  explained b y  reference to Figures 1 and  2. In  
Figure 1, it can b e  observed that the edges are  primarily asso- 
ciated with roads a n d  other structures in the  urban area. When  
converted to  a n  edge-density image (Figure 2), the bright areas 
represent urban development while the dark areas of the image 
are  rural components, in particular the fields. For many  of the 
classes, this differentiation in the edge-density image eliminates 
the  confusion between the  rural a n d  urban land covers which 
have similar spectral characteristics. They include paved surface 
versus bare field, n e w  crop a n d  pasture versus lawn and  tree 
complex, a n d  deciduous trees versus crop cover. 

It should b e  noted, however, that the edge-density image 
does not entirely eliminate the spectral confusion that is en- 
countered. For example, i n  the  urban area both the  paved sur- 
face a n d  the industrial and  commercial roof display a relatively 
high density of edges. In  the rural area, it  is the cultivated grass 
a n d  the  crop cover that both display a relatively low density of 
edges. In other words, for these pairs of classes there is  still 
some spectral and spatial confusion between them, which makes 
accurate classification difficult. It  is suggested, however, that if 
other measures, such a s  textural o r  contextual measures were 
to  b e  employed a s  the 51 band or  a s  a n  additional SI band, the  
confusion might be  further reduced. 

CONCLUSIONS 

It h a s  been demonstrated that a structural information (SI) 
band generated from using high spatial resolution data, such 
a s  SPOT xs data, can be  readily combined with spectral data  for 
image classification. For this study, a n  edge-density image gen- 
erated using a Laplacian filter w a s  used a s  the sI band. High 
edge densities were encountered i n  urban areas d u e  to  the pres- 
ence of roads a n d  buildings, while the field patterns i n  rural 
areas led to  low edge densities. Thus, the  edge-density image 
provided a distinction between rural a n d  urban environments. 
A s  a result, it improved differentiation of land covers with sim- 
ilar spectral signatures that are encountered i n  both environ- 
ments. Classification accuracies increased from 76.6 percent to  
86.1 percent overall with the  use of the  SI band. I n  other mul- 
tispectral classification studies where spectral confusion is en- 
counted, it is suggested that a n  edge-density image o r  other 
spatial measure used for the SI band may help to  improve the 
classification accuracy. 
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scope enconipasses both conceptual ancl methodological issues; 
they are presentee1 logiccllly and clearly, with ample references. 
The volume is organized into 23 chapters, each addressing a 
topic such as dat'i collection, sampling, projections, inherent 
inacc~r~lc ies  in cartographic measurements, estimation of er- 
rors, errors in areal and linear measurements, spatial sampling, 
projections, fractals, stereology, deformation of paper, and  m'ip 
accuracy standards. I expect most readers will use this book as  
a reference work, but it could form a useful text for a n  upper  
level university course dedicated to examination of issues in 
cartogr'iphic accuracy or cartographic measurements. 

Maling engages in a thorough pursuit of liis topics; his work 
encompasses scientific literature from many nations, disci- 
plines, ' ~ n d  scientific traditions. In some instances tlie diversity 
of the material itself forms a statement to the unexpected com- 
plexity of ostensibly simple topics, and to tlie ingenuity of those 
who have attacked these issues. Who could have anticipated 
the remarkable diversity of the methods devised to evalu,ite 
errors in a r e d  estimation? Certainly I was ignorant of many of 
the methods described here, and I expect tliat there are few 
among even the most expert , ~ n d  dedicated ccirtograpliers who 
have already mastered the book's content. 

Some readers may question Maling's description of tech- 
niclues that are anticluated in the context of digital cartography. 
For example, he describes in cletail numerous manual methods 
for estimating distances along curved lines on  niaps, ,lnd for 
estimating areas depicted on  maps. Some readers may regard 
his attention to such issues as misplaced enthusiasm for out- 
moded methodology. I defend Maling's approach on grounds 
of completeness, that he has documented nietliods that were 
not previously written out (at least in accessible documents) and 
tliat some of these metliods can form conceptucil models for 
more sopliisticated methods. I d o  criticize this aspect of the 
book, however, to the extent that I wish he had provided coni- 
ment, summary, and comparison, to provide the reader with 
more evaluation to accompany his excellent compilation of 
methods. 

It is unfortrrnate perhdps that Maling presents this inform+ 
tion through the vehicle of tlie paper map - a product thdt 
may be on  the eve of its demise ,is the primary medium for 
cartographic innovation. Paper mdps will be with us for niany 
more years, but today most cartographic innovation is defined 

in the context of digital maps, so the shift to '1 new par,ldigm 
is already in progress. It is, liow~ever, a mistakt, to dismiss this 
voluriie as  ,~nachronistic o n  this basis. Its content is germane in  
both c l o n ~ ~ ~ i n s ,  and digital ~ ~ ~ r t o g r a p h e r s  are well advised to 
master its content, as it records It,ssons that will be either learned 
from its pdges, or repeateel in practice. 'The errors Maling de-  
scribes here d o  not disappear in the ciigit,il formClt, but are only 
systematized to be more clt,eply hidden. 

The perfect illustr,ition of the difficulty ,lnd tlie s ig~i i t i c~~nce  
of Mding's topic is liis concluding chapter on  maritime hound- 
'iries. Here his clescription focuses on the truly Byzantine meth- 
odology requireel to implement thc diplomatic concepts of 
internc3tion,ll m,lritime boundary law - colicepts intendecl n o  
doubt to embody the essence ot elegant simplicity, but which 
can be implemented only by the most intricate methodology 
and ,I detailed knowledgt. of maritime charts. Here is tlie ulti- 
mate illustr,ition of tlie practical significance ot the principles 
and methods presented in earlier chapters. 

M'lling develops , ~ n d  presents his mathematics and statistics 
with, 1 think, appropriate detail and rigor. For the most part, 
complete proofs are not presented, but the basic logic is given 
in sufficient detail to permit most readers to follotzr \vitIiout 
difficulty. The reader who requires a more complete derivation 
will need to refer to other references, which are cited in ample 
number, and ('1s best I can determine) usually include the orig- 
inal or most authoritative work. Readers will appreciate the 
Index to Symbols, a n  essential aid, given the e ~ t ~ ~ b l i s h e d  use of 
so  many multiple meanings for many of the symbols. 

References encompass ,I diverse range of clisciplines, per- 
spectives, both theoretical, ancl '~pplied topics. The references 
are niclinly in English, but Maling has identified iniport,lnt works 
in other languages including Russian, German, and French. The, 
subject index is '~decluate, but like niany other scientific books, 
it seems to have been prepared in a mechanical manner by 
someone who is not really interested in the book's content. I 
found most items I searched for in the index, but many were 
listed in a n  awkwarcl manner. 

This book will soon become one of the modern cartographer's 
most valued references. 

-James B. Campbell 
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