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ABSTRACT: Geophysical and Environmental Research Imaging Spectrometer (GERIS) 63-channel scanner data covering 
the spectral region 0.4 to 2.5 km were analyzed for the Cuprite mining district, Esmeralda and Nye Counties, Nevada. 
The data were calibrated to reflectance using field spectral measurements. Individual and spatially averaged spectra 
extracted from the GERIS data were used to identify the minerals alunite, kaolinite, buddingtonite, and hematite by 
their spectral characterisitcs. An area with reflectance properties similar to zeolite-group minerals was also identified. 
The images were classified in the spectral domain to produce color-coded image maps of mineral distribution that 
clearly show the zoned nature of the hydrothermal system. Comparison of the thematic mineral maps with existing 
geologic and alteration maps demonstrates the utility of imaging spectrometers for producing detailed maps for mineral 
exploration. Identification of individual minerals and spatial display of the dominant mineralogy using the imaging 
spectrometer data adds information that can be used in determining the morphology and genetic origin of the district. 

INTRODUCTION 

T HE OBJECTIVE OF THIS RESEARCH was both to evaluate the 
GENS and to use the data to develop a better understanding 

of the hydrothermal system at Cuprite, Nevada. Detailed maps 
of the distribution of materials at the surface are essential to 
understanding the Earth as dynamic system. High spectral res- 
olution remote sensing (imaging spectrometry) is a new tool 
that can be used to quickly produce detailed maps for previ- 
ously unmapped areas, and to supplement existing geologic 
mapping. Imaging spectrometry is "the simultaneous acquisi- 
tion of images in many narrow, contiguous spectral bands" 
(Goetz et al., 1985). Analysis of imaging spectrometer data al- 
lows extraction of a detailed spectrum for each picture element 
(pixel) of the image. Broad-band remote sensing systems, such 
as the Landsat Multispectral Scanner (MSS) and Landsat The- 
matic Mapper (TM), drastically under sample the information 
content available from a reflectance spectrum. An imaging spec- 
trometer, on the other hand, samples at close intervals and 
allows construction of spectra that closely resemble those mea- 
sured on laboratory instruments (Figure l). The high spatial and 
spectral resolution imaging spectrometer systems make identi- 
fication of individual minerals (alunite, calcite, dolomite, ka- 
olinite, muscovite, etc.) and mineral assemblages possible (Marsh 
and McKeon, 1983; Goetz et al., 1985; Lang et al., 1987; Kruse, 
1988; Pieters and Mustard, 1988). 

The first imaging spectrometer, the Airborne Imaging Spec- 
trometer (AIS), was designed at the Jet Propulsion Laboratory 
and flown during the 1984 through 1986 flight seasons on NA- 
SA's C-130 aircraft. The AIS was an experimental instrument 
designed to test two-dimensional, near-infrared area array de- 
tectors, imaging 128 bands from 1.2 to 2.4 km (Vane et al., 
1983). Several investigators have reported on the varied geo- 
logic applications of the Als data (Vane and Goetz, 1985, 1986; 
Vane, 1987a). Goetz et al. (1985) and Goetz and Srivastava (1985) 
used the AIS data to identify the minerals kaolinite and alunite 
at Cuprite, Nevada, and to produce narrow strip maps showing 
their distribution for a portion of the mining district. 

The Airborne VisibleAnfrared Imaging Spectrometer (AVlrUS) 
represents the second generation of NASA imaging spectrome- 
ters. It is a 224-channel instrument utilizing the spectral range 
0.41 to 2.45 pm in approximately 10-nm-wide bands (Porter and 
Enmark, 1987). Preliminary geologic results have been reported 
by Vane (198%) for images of Cuprite. Individual spectra of the 
minerals kaolinite, alunite, and buddingtonite were successfully 
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FIG. 1. Comparison of a laboratory spectrum of alunite (Sulfur, California), 
a simulated Thematic Mapper (TM) spectrum (resampled from the lab 
spectrum), and a GERls spectrum from Cuprite, Nevada. Symbols and 
channel numbers on both the TM and GERls spectra indicate band centers 
of widely spaced, broad scanner channels (note that channels 24 to 27 
(0.971 to 1.32 pm) have been deleted in the GERls data because of poor 
scanner performance characteristics). Other data points on the GERlS 
spectrum are too close together to mark. Note that all characteristic ab- 
sorption band information is lost with the TM spectrum (with the exception 
of low reflectance in TM band 7 at 2.2 ~ m ) ,  while much of the spectral 
information is preserved in the GERls spectrum. The spectra are offset 
vertically for clarity and the absolute values of the reflectance axis do not 
show true brightness. 

extracted from the AVIRIS data, but no map showing the mineral 
distributions was produced for the district. 

Based in part on the success of the NASA instruments and on 
demand from the mining and petroleum industries, Geophys- 
ical and Environmental Research Corporation (GER) developed 
a 63-channel high spectral resolution scanner for commercial 
use (a 64th channel is used to store aircraft gyroscopic infor- 
mation). The system consists of three grating spectrometers with 
three individual linear detector arrays (Figure 2.) The GER im- 
aging spectrometer (GERIS) qualifies as an imaging spectrometer 
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FIG. 2. Block diagram of GERlS optics (modified from Wil- 
liam Collins, written communication, 1989). 

TABLE 1. GERIS BAND SPECIFICATIONS 

Wavelength Number of Sampling 
range channels Interval 
0.4 - 1.0 pm 24 23 nm 
1.0 - 2.0 pm 7 120 nm 
2.0 - 2.5 fim 32 17 nm 

in the true sense of the definition as it acquires 63 inherently 
co-registered data channels simultaneously, produces continu- 
ous spectra, and retains the image format. It differs from other 
imaging spectrometers, however, in that the spectral bands vary 
in width across the spectrum (Table 1). These bands were se- 
lected to provide maximum signal-to-noise while retaining suf- 
ficient spectral resolution to identify key minerals (William 
Collins, written communication, 1987). 

The GENS is flown on a Piper Aztec twin engine aircraft at 
an altitude of about 20,000 ft. A 90 degree scan using a rotating 
mirror provides a selectable swath width of 512 or 1024 pixels 
and the along-flightline dimension is provided by the aircraft's 
forward motion. Data are recorded directly on 6250 BPI com- 
puter compatible tapes as 16-bit integers and, after calibration 
to radiance, are typically provided by GER as 63 single-band, 
band sequential (BSQ) images. GER claims radiometric calibra- 
tion repeatability to within 1 percent from flight to flight (Wil- 
liam Collins, written communication, 1989). 

GEOLOGY AND ALTERATION 

The Cuprite mining district is located about 15 km south of 
Goldfield on U.S. Highway 95 in southwest Nevada (Figure 3). 
The geology of the district is relatively well known and has been 
described in detail by Abrams et al. (1977), Ashley and Abrams 

FIG. 3. Generalized geologic map for the Cuprite mining district. Modified 
from Kahle and Goetz (1 985) and Abrams et a/. (1 977). 

(1980), and Shipman and Adams (1987). Bedrock in the area 
consists of Tertiary volcanic and volcaniclastic rocks, principally 
rhyolitic ash-flow tuffs with some air-fall tuff (Abrams et al., 
1977). Cambrian clastic and carbonate sedimentary rocks are 
exposed east of Highway 95 just outside the study area. The 
volcanic rocks have been extensively modified in the Cuprite 
district by hydrothermal alteration. Ashley and Abrams (1980) 
identified three mappable zones of alteration consisting of an 
intensely altered central silica cap surrounded by subsequently 
less altered zones of opalized and argillized rock (Figure 4). The 
mineralogy in the silicified zone was observed to the primarily 
quartz with minor calcite, alunite, and kaolinite. The opalized 
rocks contain the alteration minerals opal, alunite, and kaolin- 
ite. The argdlized zone mineralogy consists of kaolinite derived 
from plagioclase, and montmorillonite and opal derived from 
volcanic glass. 

SPECTRAL MAPPING 

Cuprite has been used for many remote sensing studies over 
the years. An extensive image database and a collection of field 
and laboratory spectra exist for the district (Rowan et al., 1974; 
Abrams et al., 1977; Ashley and Abrams, 1980; Kahle and Goetz, 
1983; Goetz et al., 1985; Curtiss et al., 1985, Shipman and Ad- 
ams, 1987). The Cuprite site, although not known to be eco- 
nomically mineralized, is an excellent area to test remote sensing 
technology because of the good rock exposures and the pres- 
ence of several distinct mineral assemblages. 

The Geophysical and Environmental Research 63-channel im- 
aging spectrometer (GENS) was flown over Cuprite during Au- 
gust 1987. Plate 1 is a "true" color composite image of GEMS 
bands 11, 6, and 4 (0.67 bm, 0.55 pm, and 0.50 bm) (RGB) 
showing the area covered by the flight. Note that this image 
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FIG. 4. Alteration map for the Cuprite mining district. Redrawn from Ship- 
man and Adams (1 987) afier Abrams et a/. (1 977). 

has not been geometrically corrected and thus the orientation 
and geometry of the image does not exactly match that of the 
geologic and alteration maps shown in Figures 3 and 4. Spatial 
resolution of each pixel is about 12 metres cross track and about 
22 metres down track. Comparison of the image with the maps 
is facilitated by noting the locations and geometry of U.S. High- 
way 95 near the left edge of the image and the bright Stonewall 
Playa near the center of the right edge. The color contrast of 
this image has been enhanced through the use of "saturation 
enhancement" to improve the color saturation or purity (Kruse 
and Raines, 1984; Gillespie et al., 1986). The altered rocks (A) 
are easily distinguished from the unaltered rocks (B), primarily 
because of the apparent bleaching of the altered rocks. Note, 
however, that even on an enhanced color composite little detail 
is available for discriminating alteration mineralogy. The three 
alteration zones mapped by Ashley and Abrams (1980) are not 
readily apparent. Commonly used techniques such as principal 
components or band ratioing would serve to enhance the spec- 
tral differences; however, they do not take full advantage of the 
spectral information available nor of the determinative nature 
of imaging spectrometer data. 

ANALYSIS SOFTWARE 
Complete analysis of imaging spectrometer data requires 

sophisticated image processing techniques that combine 
simultaneous extraction and display of both spectral and spatial 
information. Analysis software is under development at several 
research facilities that takes advantage of the combined high 
resolution graphics and imaging capabilities of modern image 
processing workstations (Mazer et al., 1987,1988; Torson, 1989). 
An analysis package called "Integrated Software for Imaging 
Spectrometers" (ISIS) (Torson, 1989) was used for the analysis 
of the Cuprite GERIS data. ISIS runs on a Digital Equipment 
Corporation (DEC) VAxstation with GPX color graphics display 
configured with an additional 1024 by 1024 image display (WAS, 

by International Imaging Systems). This combination allows 
simultaneous display of three spatial image planes as a color 
composite image on the IVAS display with a side slice showing 
the spectral dimension, and real-time display of spectra on the 
GPX graphics screen. A vertical line-cursor on the IVAs display 
shows the location of the spectral slice, while a standard crosshair- 
cursor shows the location of the current spectrum. Concurrent 
application processes allow selection of ground targets for 
calibration, extraction of average spectra, and spectral 
classification. We are developing concurrent ISIS analysis 
programs that utilize expert system capabilities (Kruse et al., 
1988) and allow spectral unmixing to be used in the image 
classification (Boardman, 1989). 

Several investigators are developing alternate techniques for 
extraction of spectral information from imaging spectrometer 
data. One common approach relies on removal of a continuum 
from the data and automated extraction of spectral information 
(Green and Craig, 1985; Kruse et al., 1985, 1986; Kruse, 1987, 
1988; Yamaguchi and Lyon, 1986; and Clark et al., 1987). 
Automatic absorption feature extraction algorithms allow objective 
characterization of absorption bands in terms of quantities such 
as band position, depth, full width at half the maximum depth 
(FWHM), and asymmetry. Absorption features have been 
successfully extracted and characterized for both laboratory and 
aircraft spectra (Clark et al., 1987; Kruse et al., 1988); however, 
these techniques have met with limited success for image 
classification thus far, primarily because they are sensitive to 
signal-to-noise ratios of the data. Other algorithms for 
identification of spectral mixtures and deconvolution of mixed 
spectra are being developed by Mustard and Pieters (1986,1987) 
and Smith and Adams (1985). 

CALIBFWTION 
Analysis of imaging spectrometer data requires that both 

wavelength and radiometric calibration be performed. These 
steps were accomplished as preprocessing operations prior to 
analysis using the ISIS software. Laboratory measurements by 
GER provided the initial wavelength calibration for the Cuprite 
GENS data. An additional check on the wavelength calibration 
was made by comparing the positions of known atmospheric 
absorption features to their locations in the imaging spectrometer 
data. Atmospheric carbon dioxide (COJ absorption bands located 
at 2.005 and 2.055 pm were useful for wavelength-calibration 
of the data in the infrared (Kneisyz et al., 1980; Vane, 198%). 
The corresponding CO, absorption bands were observed in the 
GERIS radiance data at 2.0189 and 2.0682 pm, respectively, offset 
+0.0139 and + 0.0132 pm or approximately 1 channel from where 
they should be located. Accordingly, the wavelength positions 
were adjusted 1 channel in the last spectrometer to shift the 
CO, bands to their proper spectral positions. Atmospheric H,O 
absorption bands in the visible portion of the spectrum were 
also examined to determine if they were properly located in the 
GERIS data. Unfortunately, these features are not as sharp as 
those in the infrared, and the GEMS channels are more broadly 
spaced in this region. The observed positions of the 0.66,0.76, 
and 0.94 p,m atmospheric absorption features in the GEMS data 
were within 1 or 2 channels of their correct positions; however, 
their exact location oscillated, and offset directions were 
inconsistent. Therefore, the visible wavelengths provided by 
GER were used as the correct channel wavelengths. 

The next and most critical step in the data reduction is to 
convert the data to reflectance so that individual spectra can be 
compared directly with laboratory data for mineral identification. 
Ideally, the aircraft data should be calibrated to absolute 
reflectance; however, this requires onboard calibration to 
reflectance for each flight, which is not available for the GERIS 
data. In the absence of onboard calibration, two standard areas 
on the ground were used to calibrate the data (Roberts et al., 
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PLATE. 1. Saturation enhanced color composite image of GERls bands 11, 6, and 4 (0.67 
pm, 0.55 pm, and 0.50 I L ~ )  (RGB) showing the area covered by the flight. Altered volcanic 
rocks (A) are distinguishable from unaltered volcanic rocks (B) primarily because of bleach- 
ing. 

1985; Elvidge 1988). This approach requires a priori knowledge 
of each site. This empirical correction uses a constant gain and 
offset for each band to force a best fit, in the least-squares sense, 
between sets of field spectra and image spectra characterizing 
the same ground areas. The result of this calibration is the removal 
of atmospheric effects (both attenuation and scattering), viewing 
geometry effects, and any residual instrument artifacts. While 
no such correction can be perfect, it does allow conversion of 
the remotely sensed spectra into a form that can be readily 
compared with laboratory or field acquired spectra. 

The calibration to reflectance, as we have implemented it, is 
a three-step process. The first involves choosing two ground 
target regions and acquiring field spectra to characterize them. 
These regions should span a wide albedo range. Field spectra 
were measured and samples were collected for several areas at 
the Cuprite site during 1988. For this study, the two calibration 
targets used were Stonewall playa (bright target) and a varnished 
tuff (dark target). The second step in the process involves picking 
the multiple pixels in the airborne data set that are associated 
with each ground target. This is done interactively, and individual 
pixels are selected until the regions are fully covered. Then, an 
over determined system of linear equations may be constructed 
for each band in which the number of unknowns is two, the 
gain and offset values, and the number of knowns is equal to 
the total number of image pixels chosen. Solving these systems 
of equations provides gain and offset spectra for use in the 
calibration, as well as estimations of the standard error for each 
parameter at each wavelength (Figures 5 and 6). Large total 
errors in the estimates produced during the calibration process 
may indicate excessive spatial variability or potentially, instrument 
instability. For the Cuprite data, channels 24 through 27 (0.971 
to 1.32 km) had excessively high total errors and were deleted 
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FIG. 5. Gain factor spectrum of Cuprite GERlS data with stan- 
dard errors superimposed. Bands 24 through 27 (0.971 to 
1.32 pm) have been deleted due to high error. 

from further analysis. The gain spectrum of the remaining bands 
is essentially an inverse solar irradiance curve. The gains are 
highest in the extreme wavelengths and in the regions of water 
absorption. The standard errors of the gain factors are also highest 
in these regions. The offset value spectrum is a negative correction 
that increases in magnitude with wavelength. This is most likely 
a correction for some residual dark current in the instrument. 
The correction implies that a zero reflectance target would have 
a positive DN value in the uncorrected data that would increase 
with wavelength. 

The final step in the calibration involves the actual correction 
of the data. The instrument DN values are multiplied by the 
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FIG. 6. Offset value spectrum for Cuprite GERlS data with 
standard errors superimposed. Bands 24 through 27 (0.971 
to 1.32 ~ m )  have been deleted due to high error. 

proper gain factor, and the corresponding offset value is added. 
These gain and offset corrections may be applied to any or all 
of the total imaging spectrometer data set. The outputs from 
this process are the original DN spectra empirically corrected to 
reflectance spectra. In this corrected form direct comparison to 
laboratory and field reflectance spectra can be made. The empirical 
method used here for correction to reflectance is a rapid and 
easily implemented technique. It corrects for atmospheric, 
instrument, and viewing geometry effects. It also provides error 
estimates for each band on the accuracy of the calibration, which 
can be used in all subsequent processing. The technique does 
require field or laboratory spectra of at least two regions in the 
area of interest. It also makes the assumption that all of the 
image pixels chosen to characterize each ground spectrum 
represent identical composition and reflectance response. 
Currently we are investigating the effect of including more than 
two ground targets, in an attempt to remove any residual 
instrument calibration errors. This will require a fitting of a 
nonlinear response for each band. 

Once reflectance spectra have been obtained, the sheer volume 
of the data requires that efficient algorithms for mineral 
identification be utilized to analyze the data. One approach 
involves binary encoding and spectral matching using a reference 
library (Mazer et al., 1987, 1988). Each reference spectrum is 
encoded by finding its mean and determining whether each 
point in the spectrum is above or below the mean. The spectrum 
is stored as an integer value with each bit representing a point 
in the spectrum. If a point is above or equal to the mean it is 
set to 1 and i f  a point is below the mean it is set to 0. The 
spectrum for each pixel in the image is encoded in the same " 
manner and compa;ed to the reference spectrum using a bitwise 
exclusive OR. The exclusive OR determines voints where the 
encoded spectra do not match. A tolerance is used to determine 
how many points in the spectra must match in order to classify 
that pixel as being a match to the reference. Binary encoding is 
a fast and accurate technique for identdymg minerals with distinct 
absorption bands because it is sensitive to band positions and 

contain the most information for these minerals. Figures 7, 8, 
and 9 show the spectra extracted from the GERlS data compared 
to laboratory standards and to laboratory spectral measurements 
of samples collected at Cuprite. The spectra extracted from the 
GERlS images provided the ability to identify individual minerals 
by their spectral characteristics. Alunite was identified by the 
presence of a broad 2.16 pm absorption band and weaker bands 
near 2.32 and 2.42 p.m (Figures 7 and 10). Kaolinite was identified 
by the presence of an asymmetrical band at 2.20 p.m. Figures 8 
and 10 show how the G E R I ~  spectral resolution of 17 nm in the 
2.0- to 2.5-p.m spectral region results in an asymmetrical single 
band at 2.20 km rather than the characteristic 2.16-p.m and 2.20- 
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FIG. 7. Comparison of a laboratory spectrum of alunite (Sulfur, Califor- 
nia), a laboratory spectrum from Cuprite, and a Cuprite GERIS spectrum 
identified as alunite. The spectra are offset vertically for clarity and the 
absolute values of the reflectance axis do not show true brightness. X- 
Ray diffraction verifies the aircraft identification (Kruse, unpublished data, 
1 989). 
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For the Cuprite GERIS data, the binary encoding technique WAVELENGTH (micrometers) 
was used to find the distribution of three minerals in the Cuprite 
image. spectra (averages of 3 by boxes) from known locations FIG. 8. Comparison of a laboratory spectrum of kaolinite Washington 

County, Georgia), a laboratory spectrum from Cuprite, and a Cuprite of alunitet buddingtonite (an ammonium feldspar (Krohn and GERls spectrum identified as kaolinite. The spectra are offset vertically 
A1tanerf 1987))t and kaOlinite were extracted the for clarity and the absolute values of the reflectance axis do not show 
data using the ISIS software and used as references for the true brightness. A small absorption band near 1.75 pm in the laboratory 
classification. Only the 32 bands in the infrared region between spectra indicates the presence of intermixed alunite. X-Ray diffraction 
1.9 and 2.5 km were used in the binary encoding because they verifies the aircraft identification (Kruse, unpublished data, 1989). 
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FIG. 9. Comparison of a laboratory spectrum of buddingtonite (Menlo 
Park, California, sample provided by R. C. Erd) and a Cuprite GERlS 
spectrum identified as buddingtonite. The spectra are offset vertically 
for clarity and the absolute values of the reflectance axis do not show 
true brightness. Field spectroscopy and X-Ray diffraction verify the air- 
craft identification (Kruse, unpublished data, 1989). 
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FIG. 10. comparison of GERlS buddingtonite, alunite, and kaolinite spec- 
tra showing the locations of the strongest absorption bands. The spectra 
are offset vertically for clarity and the absolute values of the reflectance 
axis do not show true brightness. 

pm kaolinite doublet seen in both of the laboratory spectra. The 
doublet was observed, however, in a few individual spectra. 
Figure 9 compares a laboratory standard for buddingtonite and 
a GERIS buddingtonite spectrum. The broad absorption feature 
at 2.117 seen in both Figures 9 and 10 is characteristic of this 
mineral. The distribution of these three minerals in the image 
is shown in Plate 2. It should be noted that this is a map of the 
predominant mineral (spectrally) in each pixel. Mineral mixing 
was not considered, although field and laboratory spectral 
measurements indicate that there is significant mineral mixing 
taking place at the surface. Mineral mixing at Cuprite, Nevada, 
is being studied by Boardman (1989). 

Several other areas with identifiable spectral characteristics 
were located during the interactive analysis stage with the Isis 
software. One previously unreported area with spectral 

characteristics similar to zeolite-group minerals was discovered 
north of the main altered area in the unaltered volcanic rocks. 
Figure 11 compares the extracted spectrum with a laboratory 
spectrum for a volcanic tuff containing several zeolite minerals. 
The strong absorption bands at 1.4,1.9, and near 2.45 pm are 
characteristic of zeolite-group minerals (Ehmann and Vergo, 
1986). The apparent position of the absorption feature near 2.45 
bm indicates that the predominant zeolite mineral may be 
natrolite (Ehmann and Vergo, 1986). This observation has not 
yet been field checked or confirmed by laboratory analysis. 

The abundance of red areas on the color composite image 
(Plate 1) indicates the probable presence of iron oxide minerals 
at the surface. Accordingly, an average spectrum was extracted 
from the Cuprite data, compared to lab spectra of hematite and 
goethite (Figure 12), and used to classify the GENS image. 
Hematite was identified by the presence of a broad absorption 
band near 0.85 pm in the average spectrum. Only the first 24 
GERIS channels were used for classification because hematite 
does not have spectral features in the near-infrared. A "spectrum 
ratioing" technique was used to find the distribution of hematite 
in the Cuprite image (Plate 3). This technique classifies an image 
by dividing the reference spectrum by the spectrum for each 
pixel in the image. The resulting average deviation from 100 
percent is compared to a tolerance to determine if the image 
spectrum matches the reference spectrum. The ratio technique 
was selected for classification of the hematite because the binary 
encoding does not work well for minerals without sharp 
absorption features. Unlike the binary encoding, the spectrum 
ratioing technique is sensitive to albedo and topographic slope 
as well as absorption band positions and depths. 

RESULTS 

Analysis of the GEMS data in the spectral domain results in 
extraction of absorption band information that allows definition 
of the surface mineralogy at Cuprite. Because complete spectra 
can be extracted from the imaging spectrometer data, it was 
possible to idenhfy and map the individual minerals. The GEMS 
data show a roughly concentrically zoned hydrothermal sys- 
tem. The mapped mineral zones do not correspond one-for-one 
to Abrams' alteration zones; however, a general match is ob- 
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FIG. 11. Comparison of a laboratory spectrum of a mixture of several 
zeolite minerals from the northern Grapevine Mountains, Nevada (Kruse, 
1988) and a GERlS spectrum speculated to contain zeolites. This result 
has not yet been verified by collection of field samples. The spectra are 
offset vertically for clarity and the absolute values of the reflectance axis 
do not show true brightness. 



PLATE. 2. Color-coded ~f the prite Mining District produced by 
binary encoding of and spectral matching to the GERIS spectra shown in Figures 
7, 8, 9, and 10. The color codes indicate the predominant mineral in each pixel 
of the image; Blue pixels = alunite, Red pixels = kaolinite, Green pixels = 
buddingtonite. Unclassified areas are shown as the original gray scale image. 

PLATE 3. Color-coded image map of the Cuprite Mining District produced by 
spectrum ratioing and spectral matching to the GERls spectrum shown in Figure 
12. The color code (purple) indicates the distribution of areas where hematite is 
spectrally dominant (in the visible portion of the spectrum) for the district. Un- 
classified areas are shown as the original gray scale image. 
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FIG. 12. Comparison of laboratory spectra of hematite and goethite and 
a GERlS spectrum from Cuprite, Nevada, interpreted to contain hematite. 
This result has not yet been verified by collection of field samples. Note 
the match of the broad absorption feature near 0.85 pm in the GERIS 
and hematite spectrum. The cause for the mismatch in slope between 
the GERIS and the other spectra between 0.4 and 0.5 pm is not known, 
but may be caused by low signal-to-noise in this region. The spectra 
are offset vertically for clarity and the absolute values of the reflectance 
axis do not show true brightness. 

served. A central silica cap mapped previously by Abrams et al. 
(1977) (Figure 4) was not distinguished using spectral classifi- 
cation of the 63-channel imaging spectrometer data because 
spectra of the cap were highly variable and no characteristic 
spectrum could be identified. The silica cap can be seen, how- 
ever, as a bright, unclassified area in the center of Plate 2. The 
imaging spectrometer data show that the first zone out from 
the silica cap consists primarily of alunite (Blue on Plate 2). This 
corresponds with portions of the opalized zone mapped by 
Abrams et al. (1977). A kaolinitic zone is found generally farther 
from the center (Red on Plate 2), but overlapping the alunite 
zone. This zone corresponds in part with the argillized zone of 
Abrams; however, it is much more extensive than shown on 
Figure 4. Because Abrams defined his argillized zone on the 
basis of kaolinite, and kaolinite is difficult to map in the field, 
it is likely that the distribution shown in Plate 2 is representative 
of the extent of the argillized zone. It should also be noted, 
however, that many of the areas mapped as kaolinitic using the 
imaging spectrometer data that have high spatial variability cor- 
respond to obvious alluvial fan surfaces, indicating transported 
kaolinite derived from altered areas. Significant occurrences of 
alunite and kaolinite are also mapped west of U. S. Highway 
95; however, these exposures are outside the area of mapped 
alteration and have not yet been evaluated in the field. Areas 
of ammonium enrichment near the northwest edge of the for- 

DISCUSSION 
Imaging spectrometer data provide a fast yet accurate means 

of mapping mineralogy at the Earth's surface. Zoned mineral- 
ogy mapped at Cuprite, Nevada, using the GERIS system, con- 
forms in a general sense to previous field and multispectral 
image mapping; however, identification of individual minerals 
and spatial display of the dominant mineralogy adds informa- 
tion that can be used to help determine the morphology and 
genetic origin of the hydrothermal system. The zoning at Cu- 
prite has many characteristics similar to those described for large 
replacement-type alunite deposits. Hall and Bauer (1983) de- 
scribe four principal alteration zones consisting both radially 
and with increasing depth of (1) an interior silceous core or cap 
zone, (2) a Quartz-alunite zone (alunite and rnicrocrystalline 
quartz), (3) an Argillic Zone (kaolinite and dickite), and (4) a 
Propylitic Zone (epidote, chlorite, zeolites, pyrite, and calcite). 
This zoning is idealized and actual systems exhibit irregular and 
inhomogeneous zoning assemblages; however, the Cuprite 
zoning mapped using the GERIS system is remarkably like that 
described above. Identification and mapping of the ammonium 
feldspar buddingtonite using the GERIS system is also significant 
because this mineral is often associated with hot springs type 
gold deposits (Krohn, 1986). 

The minerals present in this typical alunite zoned-replace- 
ment deposit indicate a sulfuric acid-charged system with hy- 
drothermal fluids and solfataric gases emitted in a "hot springs" 
type volcanic environment (Ha11 and Bauer, 1983). Deep recir- 
culation of meteoric water in a convection cell above an intru- 
sive body resulted in replacement of primary rock forming 
minerals with the alteration minerals observed at Cuprite. The 
classical bullseye zoning at Cuprite indicates that alteration 
probably occurred along a localized vent with the lateral distri- 
bution controlled by the rock textures and porosity. Mineral 
zoning was controlled by decreasing acidity and temperature 
with increasing distance from the conduit structure. 

Hall and Bauer (1983) cite numerous examples of the corre- 
lation between alunite and hypogene metalliferous deposits. 
The presence of alunite at the surface presents a favorable target 
for further gold exploration at depth and in peripheral alteration 
zones. This research demonstrates that imaging spectrometers 
can be a viable part of a precious metals exploration effort. 
Integrated use of satellite remote sensing and selected imaging 
spectrometer aircraft coverage can be a powerful tool in guiding 
the initial stages of property assessment and development. 

ACKNOWLEDGMENTS 
The authors would like to thank William Collins of Geo- 

physical and Environmental Research Inc. for providing the Cu- 
prite GERIS data for evaluation and the U.S. Geological Survey 
(Flagstaff) for providing the initial IsIS software framework on 
which many of our analysis techniques are based. Development 
of imaging spectrometer analysis techniques was funded in part 
under NASWPL contract #958039. 

REFERENCES 
mer hydrothermal system were also identified by u r b  the Ahams, M. I., R. P. Ashley, L. C. Rowan, A. F. H. Goetl and A. 8. data to detect the presence of the mineral buddingtonite (Green Kahle, 1977. Mapping of hydrothema] alteration in the Cuprite 
on Plate 2). Buddingtonite is an ammonium-bearing feldspar mining district, ~~~~d~ using aircraft scanner images for the spec- 
discovered in the Cuprite district using the NASA Airborne Im- tral region 0.46-2.36 pm, Geology, Vol. 5, pp. 713-718. 
aging Spectrometer (A1s) (GOetz and Srivastava, 1985)- Bud- Ashley, R. P., and M. J. Abrams, 1980. Alteration Mapping Using Mul- 
dingtonite is very difficult to recognize in the field but was tispectral Images-Cuprite Mining District, Esmeralda County, Nevada: 
found using the imaging spectrometer data by the presence of U. S. Geological Survey Open File Report 80-367,lPp. 
a broad 2-117 Pm absorption band and a secondary narrow Boardman, J. W., 1989. Spectral and spatial unmixing: Applications of 
band near 2.02 Pm (Krohn and Altaner, 1987). Hematite mapped singular value decomposition: Proceedings, Image Processing '89,& 
using the GEMS data (Purple in Plate 3) is distributed primarily 26 May 1989, Sparks, Nevada (in press). 
around the contact between the altered and unaltered volcanic Clark, R. N., King, T. V. V., and Gorelick, N. S., 1987. Automatic 
rocks. continuum analysis of reflectance spectra: Proceedings, Third AIS 



MINERAL MAPPING WITH A 63-CHANNEL IMAGING SPECTROMETER 

workshop, 2-4 June 1987, JPL Publication 87-30, Jet Propulsion Lab- 
oratory, Pasadena, California, pp. 138-142. 

Curtiss, Brian, M. 0. Smith, and J. B. Adams, 1985. Separation of hy- 
drothermal Fe (111) oxyhydroxides from weathering produced Fe 
(111) oxyhydroxides in multispectral images (Abst.): Proceedings, In- 
ternational Symposium on Remote Sensing of Environment, Fourth The- 
matic Conference, "Remote Sensing for Exploration Geology", San 
Francisco, California, 1-4 April, 1985, Environmental Research In- 
stitute of Michigan, Ann Arbor, 497 p. 

Ehmann, W .  J., and Norma Vergo, 1986. Spectral discrimination of 
zeolites and dioctahedral clays in the near-infrared: Proceedings, In- 
ternational Symposium on Remote Sensing of Environment, Fifth The- 
matic Conference, "Remote Sensing for Exploration Geology", Reno, 
Nevada, 29 September-2 October 1986, Environmental Research 
Institute of Michigan, Ann Arbor, pp. 417-425. 

Elvidge, C. D., 1988. Vegetation reflectance features in AVIRIS data: 
Proceedings, International Symposium on Remote Sensing of Environ- 
ment, Sixth Thematic Conference, "Remote Sensing for Exploration Ge- 
ology", Houston, Tx, 16-19 May, 1988, Environmental Research 
Institute of Michigan, Ann Arbor, p. 169-182. 

Gillespie, A. R., A. B. Kahle, and R. E. Walker, 1986. Color enhance- 
ment of highly correlated images. I. Decorrelation and HSI contrast 
stretches: Remote Sensing of Environment, Vol. 20, pp. 209-235. 

Goetz, A. F. H., and Vinay Strivastava, 1985. Mineralogical mapping 
in the Cuprite mining district: Proceedings of the Airborne Imaging 
Spectrometer (AIS) Data Analysis Workshop, 8-10 April 1985, JPL Pub- 
lication 85-41, Jet Propulsion Laboratory, Pasadena, California, pp. 
22-29. 

Goetz, A. F. H., Gregg Vane, J. E. Solomon, and B. N. Rock, 1985. 
Imaging spectrometry for earth remote sensing: Science, Vol. 228, 
pp. 1147-1153. 

Green, A. A., and M. D. Craig, 1985. Analysis of aircraft spectrometer 
data with logarithmic residuals: Proceedings, AZS workshop, 8-10 April 
1985, JPL Publication 85-41, Jet Propulsion Laboratory, Pasadena, 
California, pp. 111-119. 

Hall, R. 8.. and C. W. Bauer, 1983. Alunite: hdustrial Minerals and Rocks, 
5th edition (S. J. Lefond, ed.), AIME, pp. 417-434. 

Kahle, A. B., and A. F. H. Goetz, 1983. Mineralogical information from 
a new airborne thermal infrared multispectral scanner: Science, Vol. 
222, NO. 4619, pp. 24-27. 

Kneisyz, F. X., E. P. Shettle, W. P. Gallery, J. H. Chetwynd, Jr., L. W. 
Abreu, J. E. A. Selby, R. W. Fen, and R. A. McClatchey, 1980. 
Atmospheric transmittancdradiance: Computer Code LOWTRAN: AFCRL 
Environmental Research Paper No. 697, AFCRL-80-0067. 

Krohn, M. D., 1986. Spectral properties (.4 to 25 microns) of selected 
rocks associated with disseminated gold and silver deposits in Ne- 
vada and Idaho: Journal of Geophysical Research, Vol. 91B, No. 1, pp. 
767-783. 

Krohn, M. D., and S. P. Altaner, 1987. Near-infrared detection of am- 
monium minerals: Geophysics, Vol. 52, No. 7, pp. 924-930. 

- - 

Kruse, F. A., 1987. Extracting spectral information from imaging spec- 
trometer data: A case history from the northern Grapevine Moun- 
tains, NevadafCalifornia: Proceedings, 31st Annual International Technical 
Symposium, 16-21 August 1987, SPIE Proceedings, Imaging Spec- 
troscopy 11, Vol. 834, pp. 119-128. 

-, 1988. Use of Airborne Imaging Spectrometer data to map min- 
erals associated with hydrothermally altered rocks in the northern 
Grapevine Mountains, Nevada and California: Remote Sensing of 
Environment, Vol. 24, No. 1, pp. 31-51. 

Kruse, F. A., W. M. Calvin, and Olivier Seznec, 1988. Automated ex- 
traction of absorption features from Airborne Visiblehnfrared Im- 
aging Spectrometer (AVIRIS) and Geophysical Environmental 
Research imaging spectrometer (GERIS) data: Proceedings AVlRIS 
Performance Evaluation Workshop, JPL publication 83-38, Jet Propul- 
sion Laboratory, Pasadena, California, pp. 62-75. 

Kruse, F. A., D. H. Knepper, Jr., and R. N. Clark, 1986. Use of digital 
Munsell color space to assist interpretation of imaging spectrometer 
data - Geologic examples from the northern Grapevine Moun- 
tains, California and Nevada: Proceedings, 2nd AIS Data Analysis 
Workshop, Pasadena, California 6-8 May 1986, JPL Publication 86-35, 
Jet Propulsion Laboratoy, Pasadena, California, pp. 132137. 

Kruse, F. A., and G. L. Raines, 1984. A technique for enhancing digital 
color images by contrast stretching in Munsell color space: Proceed- 
ings, lnternational Symposium on Remote Sensing of Environment, Third 
Thematic Conference, "Remote Sensing for Exploration Geology", Colo- 
rado Springs, Colorado, 16-19 April 1984, pp. 755-760. 

Kruse, F. A., G. L. Raines, and Kenneth Watson, 1985. Analytical tech- 
niques for extracting geologic information from multichannel air- 
borne spectroradiometer and airborne imaging spectrometer data: 
Proceedings, International Symposium on Remote Sensing of Environ- 
ment, Fourth Thematic Conference, "Remote Sensing for Exploration Ge- 
ology'', San Francisco, California, 1-4 April 1985, pp. 309-324. 

Lang, H. R., S. L. Adams, J. E. Conel, B. A. McGuffie, E. D. Paylor, 
and R. E. Walker, 1987. Multispectral remote sensing as strati- 
graphic tool, Wind River Basin and Big Horn Basin areas, Wyo- 
ming: AAPG Bulletin, Vol. 71, No. 4, pp. 389402. . . 

Marsh, S. E., and J. B. McKeon, 1983. Integrated analysis of high-res- 
olution field and airborne spectroradiometer data for alteration 
mapping: Economic Geology, Vol. 78, No. 4, pp. 618-632. 

Mazer, A.S., Miki Martin, Meemong Lee, and J. E. Solomon, 1987. 
Image processing software for imaging spectrometry: Proceedings, 
31st Annual lnternational Technical Symposium, 16-21 August, 1987, 
Society of Photo-Optical Instrumentation Engineers, Vol. 834, pp. 
136-139. 

-, 1988. Image processing software for imaging spectrometry data 
analysis: Remote Sensing of Environment, Vol. 24, No. 1, pp. 201- 
210. 

Mustard, J. F., and C. M. Pieters, 1986. Abundance and distribution of 
mineral components associated with Moses Rock (Kimberlite) dia- 
treme: Proceedings, 2nd Airborne Imaging Spectrometer (AIS) Data 
Analysis Workshop, 6-8 May 1986, JPL Publication 86-35, Jet Propul- 
sion Laboratory, Pasadena, California, pp. 81-85. 

-, 1987. Abundance and distribution of ultramafic microbreccia in 
Moses Rock Dike: Quantitative application of mapping spectros- 
copy: Journal of Geophysical Research, Vol. 92, No. B10, pp. 10376- 
10390. 

Pieters, C. M., and J. F. Mustard, 1988. Exploration of crustal/mantle 
material for the Earth and Moon using reflectance spectroscopy: 
Remote Sensing of Environment, Vol. 24, No. 1, pp. 151-178. 

- - 

Porter, W. M., and H. T. Enmark, 1987. A system overview of the 
Airborne Visiblehnfrared Imaging Spectrometer (AVIRIS): Proceed- 
ings, 31st Annual International Technical Symposium, 16-21 August 
1987, Society of Photo-Optical Instrumentation Engineers, Vol. 834, 
pp. 2231. 

Roberts, D. A., Y. Yamaguchi, and R. J. P. Lyon, 1985. Calibration of 
Airborne Imaging Spectrometer Data to percent reflectance using 
field spectral measurements: Proceedings, Nineteenth lnternational 
~ ~ m ~ o b u m  on Remote Sensing of ~nvironment, Ann Arbor, Michigan, 
21-25 October 1985. 

Rowan, L. C., P. H. Wetlaufer, A. F. H. Goetz, F. C. Billingsley, and 
J. H. Stewart, 1974. Discrimination of Rock Types and Detection of 
Hydrothermally Altered Areas in South-Central Nevada by the use of Com- 
puter Enhanced ERTS Images, U. S. Geological Survey Professional 
Paper 883, 35 p. 

Shipman, Hugh, and J. B. Adams, 1987. Detectability of minerals on 
desert alluvial fans using reflectance spectra: Journal of Geophysical 
Research, vol. 92, No, B10, pp. 10391-10402. 

Smith, M. O., and J. B. Adams, 1985. Interpretation of AIS images of 
Cuprite, Nevada using constraints of spectral mixtures: Proceedings, 
AIS workshop, 8-10 April 1985, JPL Publication 85-41, Jet Propulsion 
Laboratory, Pasadena, California, pp. 62-67. 

Torson, J. M., 1989. Interactive image cube visualization and analysis: 
Proceedings, Chapel Hill Workshop on Volume Visualization, 18-19 May 
1989, University of North Carolina at Chapel Hill, (in press). 

Vane, Gregg (ed.), 1987a. Proceedings of the 3rd Airborne Imaging Spec- 
trometer (AIS) Data Analysis Workshop, 2-4 June 1987, JPL Publication 
87-30, Jet Propulsion Laboratory, Pasadena, California, 183 p. 
, 1987b. First results from the Airborne VisibleAnfrared Imaging 

Spectrometer (AVINS): Proceedings, 31st Annual International Tech- 
nical Symposium, 16-21 August, 1987, Society of Photo-Optical In- 
strumentation Engineers, Vol. 834, pp. 166-174. 

- - 

Vane, Gregg, and A. F. H. Goetz (eds.), 1985. Proceedings of the Airborne 



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1990 

Imaging Spectrometer (AIS) Data Analysis Workshop, 8-10 April 1985, actions on Geoscience and Remote Sensing, Vol. GE-22, No. 6, pp. 546- 
JPL Publication 85-41, Jet Propulsion Laboratory, Pasadena, Cali- 549. 
fornia, 173 p. Yamaguchi, Yasushi, and R. J. P. Lyon, 1986. Identification of clay 

-, 1986- Proceedings of the 2nd Airborne Imaging Spectrometer (AIS) minerals by feature coding of near-infrared spectra: Proceedings, In- 
Data Analysis Worksho~, 6-8 May 1986, JPL Publication 86-35, Jet tevnafional Symposium on Remote Sensing of Environment, Fifth The- 
Propulsion Laboratory, Pasadena, California, 212 p. matic Conference, "Remote Sensing for Exploration Geology", Reno, 

Vane, Gregg, A. F. H. Goetz, and J. B. Wellman, 1983. Airborne im- Nevada, 29 September- 2 October 1986, Environmental Research 
aging spectrometer: A New Tool for Remote Sensing: I E E E  Trans- Institute of Michigan, Ann Arbor, pp. 627-636. 

Forum 

Comparison of Landsat MSS Pixel Array Sizes for Estimating Water Quality 

I RECENTLY ran across a paper that appeared in this journal 
(Ritchie and Cooper, PE&RS, November 1987, pp. 1549-1553) 

on which I would like to comment. 
In that paper, 5 by 5 square pixel arrays from Landsat MSS 

data for the area including Moon Lake in Mississippi were com- 
pared with total suspended solids and chlorophyll-a readings 
taken from the same locations. From each array, subarrays were 
formed by using the center pixel, all four 2 by 2 center pixels, 
the middle 3 by 3, and the 5 by 5 pixels (see Figure 1). These 
were compared with the purpose of being able to state what 
size subarray was best, or at least which were inadequate. I 
would like to point out some shortcomings with their analysis. 

One of the problems with Ritchie and Cooper's method of 
analysis is that it treats very non-independent observations as 
though they were independent; that is, the data from the sub- 
arrays overlap either completely or to a great extent. We would 
expect more difference between non-overlapping subarrays. For 

ROW 

- - - - -  Single Central Pixel 
--- - --- 2 X 2 Block of Pixels 

---- ---- 3 X 3 Block o f  Pixels 

FIG. 1. Schematic diagram showing the relation between the different 
pixel arrays. From Ritchie and Cooper. 

example, in order for a 2 by 2 and the 3 by 3 subarrays to be 
different the 2 by 2 would have to be different from the non- 
overlapping part of the 3 by 3. Similarly, comparing the 3 by 3 
with the 5 by 5 is equivalent to comparing the 3 by 3 with the 
16 pixels on the outer ring of the array. In fact, what the Ritchie 
and Cooper analysis does essentially is to compare the mean 
responses from the center, middle ring, and outer rings of the 
array. In other words, whether the measurements taken in the 
middle of the array are different from those towards the sides. 
An analysis of these data sets would be valid and would answer 
the same question in a more precise manner. It also suggests 
that the rows and the lines could be compared or whatever 
other subarrays make sense for technical reasons. 

Another problem is the interpretation of the results. Ritchie 
and Cooper do all possible pair-wise t-tests to infer whether the 
means of the different subarrays are different. There seems to 
be a confusion here regarding the difference between parame- 
ters and estimates. Over an area there is a mean chlorophyll-a 
level. If we then take four pixel readings or nine from this area 
we are taking samples from a single population. The sample 
means from these four and nine readings are estimating the 
same population mean. Any statistical difference must arise 
strictly by chance. That is, if we do a number of separate t-tests 
and claim the two sample means are different at the 10 percent 
significance level, then if the t-tests are independent we would 
expect about 10 percent of them to be significant even if there 
is no real difference between the population means the sample 
means are estimating. However, not only are the t-tests Ritchie 
and Cooper performing not independent but as seen above the 
means are not independent either. So that it should not be 
surprising if many (or few) of the tests are significant. For ex- 
ample, they find that one of the 2 by 2 subarray means is sig- 
nificantly different from both the 3 by 3 and the 5 by 5, but 
because most of the data in the 5 by 5 is in the 3 by 3, then the 
fact that the 2 by 2 is different from the 3 by 3 increases the 
chances that it will also be different from the 5 by 5 array. 

The question that should be addressed, then, is not whether 
different subarray sizes give different expected readings (they 
will not under the assumption of a well calibrated instrument), 
but how much better the larger subarrays are than the smaller 
ones. This will depend on the within-site variance between the 
pixels. There is no answer to which size is "significantly" more 
accurate than another. 
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