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AbsTrACT: Methodologies of pattern recognition, image analysis, computer vision, and knowledge-based expert sys-
lems are reviewed. The potential of their integration for effective interpretation of remotely sensed images is delineated.
[he advantages and limitations along with the basic similaritics and differences between the approaches are examined.
I'he evaluation takes place so as to indicate the gradual shift from tone/color to site/association descriptions, from pixel-
to object-based representations, from spectral to spatial and structural methods, from numeric to symbolic computa-
tions, from procedural to declarative programming, and from domain-independent to knowledge-based systems. A
number of knowledge-based image interpretation systems are examined. The complexity of aerial and high resolution
satellite images emphasizes the need for exploitation of the knowledge employed by expert photointerpreters and its
encapsulation in expert consultation systems. Explicitly coded knowledge in such systems can be replicated, taught,
criticized, and expanded and it offers the promise for smarter image interpretation systems. It is necessary to develop
methodologies defining how photointerpreters assimilate facts, articulate descriptions, and perform their reasoning.

INTRODUCTION

SI.'\II.HJIL AL PATTERN RECOGNITION has been employed for
image classification from remotely sensed images for the past
20 years. Owing to its assumptions, it is ideally suited for ap-
plications in which the pattern classes can be described by a set
of numerical measurements (spectral signatures), which can be
represented in a vector form (Swain and Davis, 1978; Schow-
engerdl, 1983). Image processing has been employed mainly
for image enhancement applications. The results of statistical
pattern recognition and image processing techniques have been
rather crude compared with those of a skilled photointerpreter
(Philipson, 1980; 1986). Image interpretation is more than read-
ing pixels from an image as it involves seeing and understand-
ing, which requires both the identification of image pattern
clements (i.e., tone, color, size, texture, shape, pattern, height,
shadow, site, association) and the analysis and articulation of
conceptual knowledge, based on diverse stereotyped models
and heuristic rules employed by expert interpreters.

Artificial intelligence (Winston, 1984) and knowledge-based
expert systems (Harmon and King, 1985) have provided pow-
ertul methodologies for the development of computer programs
that have the potential to represent expertise in image inter-
pretation. A major area of contribution of the artificial intelli-
gence and expert system paradigm to pattern analysis has been
the study of how domain specific and heuristic knowledge can
be represented and used to control the process of extracting
meaningful descriptors and objects from images. In image
analysis, as in artificial intelligence, a paradigm shift has emerged
from domain independent to knowledge-based representation
techniques (Figure 1). The flexibility, power, and effectiveness
of combining artificial intelligence, pattern recognition, and im-
age analysis techniques have been demonstrated with the re-
search prototypes already built.

Previous reviews of pattern analysis and expert system meth-
odologies for image interpretation have been contributed by
Estes ef al. (1983), Mooneyhan (1983), Campbell and Roelofs
(1984), Shapiro (1985), Fabbri ef al. (1986), Rosenfeld (1986), Tai-
lor ¢t al. (1986), and Friedl ef al. (1988). The comparison and
contrasting of human and computer assisted approaches to im-
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age interpretation have been described by Estes ef al. (1986).
Parallel to the fusion of artificial intelligence and image analysis
techniques, there is a trend for knowledge-based geographic
information systems (GIs), in which techniques from artificial
intelligence are merged with GIS techniques for new designs
and products. Robinson ef al. (1986, 1987), Fisher and Macka-
ness (1987), and others have reviewed developments in this
field.

PATTERN RECOGNITION AND CLASSIFICATION

Pattern recognition is defined as the categorization of data
into identifiable classes through the extraction of significant fea-
tures or attributes of the data (Tou and Gonzalez, 1974). Basic
tunctions required to recognize objects in images are prepro-
cessing, feature selection and detection, segmentation, descrip-
tion, recognition, and classification. Feature detection,
segmentation, and description are explored predominately in
image analysis and computer vision, whereas pattern recogni-
tion emphasizes feature selection and classification techniques
(Fu and Rosenfeld, 1976). Description and segmentation are
essential components of the structural and syntactic pattern re-
cogntion approaches (Gonzalez and Thomason, 1978).

The methodology of pattern recognition applied to a partic-
ular problem depends on the data, the models about the data,
and the information that one is expecting to find within the
data (Bezdek, 1981). The data may be qualitative, quantitative,
numerical, pictorial, textual, linguistic, or any combination of
the above. Pictorial data carry information about the objects in
the scene depicted in the image (Figure 2). The manner in which
this information can be described and organized so that rela-
tionships between the scene objects can be identified is ascribed
to the structure of the image (Bezdek, 1981). Image information
can be described at many levels of abstraction. A description
may range from one in terms of meaningful attributes of the
scene depicted in the image, to one that describes only the
spatial variation of intensity. Any of these descriptions can be
expressed with a model that captures only the relevant features
of the image in that level of abstraction and leaves others un-
specified. The role of a model is to convert information in the
image into usable forms and, therefore, enable the inference of
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Fic. 2. Dependence of pattern analysis techniques on models and information.

objective properties of the objects being studied. To do so, the
model must assimilate the data and make them compatible with
the search and matching strategies to be used. Each search and
matching strategy corresponds to a different pattern recognition
methodology. This is the reason for the diverse approaches to
pattern recognition (Figure 2), e.g., mathematical or statistical,
grammatical, syntactic or structural, and heuristic or descriptive
(Tou and Gonzalez, 1974; Mero and Vamos, 1981; Nevatia, 1982).

StaTisTIcAL AND CONTEXTUAL MODELS

The decision theoretic or statistical pattern recognition approach
is ideally suited for image interpretation applications where the
pattern classes can be described by a set of numerical
measurements or features (Figure 3). The measurement vector
is composed of the gray level or spectral properties of the classes
considered. The power of this approach is dependent on (1) the
availability of features that are invariant to the expected changes
within the pattern classes, (2) the amount of discriminating
information contained in the measurements or features, and (3)

the effective utilization of this information in a suitable
classification algorithm.

The first step in this approach is the selection and extraction
of a set of measurements or features from the pattern classes.
The choice of features is problem dependent. In processing
Landsat and sroOT satellite data or airborne multispectral data,
one can use all the available bands or any subset thereof. To
reduce the dimensionality of the data, and to eliminate highly
correlated spectal bands, principal component analysis
(Karhunen-Loeve technique) or canonical analysis are often used
for feature (band) selection. These techniques can also be used
when the standard band vector is augmented by measures of
texture, elevation, or multiple image sets (Swain and Davis,
1978; Moik, 1980; Schowengerdt, 1983; Jensen, 1986).

The classification of the feature vectors usually takes place by
the use of a similarity measure, such as a distance measure, a
discriminate function, or a likelihood function (Figure 3). If a
complete set of discriminatory features for each pattern class
can be determined from the data, then the patterns are
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represented by a “feature vector,” and the recognition and
classification of patterns may be reduced to a simple matching
process or a “table look-up” scheme. To take noise and distortions
into consideration, as well as overlapping classes, statistical
methods have been employed. In such methods, each pattern
class is represented by a class-conditional probability density
function, and the classification of unknown patterns is based
on a parametric or nonparametric statistical decision rule. To
determine the parameter values of a decision rule or the parameter
values and the form of the class-conditional probability density
function, various supervised and unsupervised learning
algorithms have been suggested (Swain and Davis, 1978; Moik,
1980; Schowengerdt, 1983; Jensen, 1986). K-Means and 1ISODATA
are methods of unsupervised clustering that determine, on the
basis of observed measurements, the pattern classes responsible
for generating such measurements (Niblack, 1986).

Statistical pattern recognition techniques have been employed
for image classification in remote sensing for the past 20 years
tor such diverse applications as land-cover identification, tree
species classification, water pollution mapping, geologic
classification, and thermal mapping (Lillesand and Kiefer, 1987).
These methods, however, have been based primarily on the
multispectral characteristics of individual pixels without
considering spatial context, that is, relations among neighboring
points. Thus, they result in characterization of spectral classes
rather than object identification and description, which are at
the core of standard photointerpretation techniques. For example,
while individual pixels can be classified as water bodies, it is
not possible to infer that a certain patch of pixels comprise a
lake or river. This shortcoming is partially due to the lack of
utilization of knowledge pertaining to the scene objects during
the recognition and classification processes.

As the spatial resolution of the acquired remotely sensed data
increases (MSS, ™, SPOT), spatial context can contribute to the
interpretation of complex objects (Figure 1). Innovative models
have therefore been developed to take into account temporal,
spatial, and contextual information in addition to spectral
information (Figure 2). Temporal information was emploved
through signature extension methods that employ the change
of spectral features over time. However, registration and
calibration problems seriously hamper the application of these
methods. Classification of multispectral data by extraction and

classification of homogenous objects has been carried out by
Kettig and Landgrebe (1976). Spatial logic techniques have been
employed involving spectral stratification, region formation, and
iterative classification algorithms (Merchant, 1984). Classification
accuracies have been improved by employing ancillary map data
such as slope, aspect, and elevation (a) before classification for
stratification, (b) during classification by modifying the a prion
probabilities in the maximum likelihood classifier or as another
layer in the classification process, and (c) tor post-classification
sorting by resolving problematic spectral classes (Hutchinson,
1982; Richards ¢f al., 1982; Schowengerdt, 1983; [ensen, 1986;
Niblack, 1986). However, even these spatial/contextual
classification methods did not address structural and semantic
relations between features or objects, that is, the underlving
structure of the scene represented in the image. For recognition
of complex and structured image patterns, such as highways
and airports, drainage patterns, and landforms, the “feature
vector” representation and the statistical classification approaches
are not adequate.

STRUCTURAL MODELS

The weakness of the statistical approach in classifving complex
image patterns, as these usually appear on high resolution aerial
images, is its inability to cope with what is thought of intuitively
as the “structure” of the pattern. Structure has been detined as
the configuration of elements, parts, or constituents in a complex
entity or the interrelation of parts or the principle of organization
in a complex entity (Morris, 1979). There does not seem, though,
to be anything in nature of reality that is structured a priori
(Robinson and Petchenik, 1976). Structure is what is attributed
by an expert to an arrangement of components which has more
meaning than that obtained from simply an aggregation of the
parts. While an image pattern may have the potential for being
regarded as having structure, the actual conception of that
structure must be provided by an expert.

A structural description of a pattern can be described as an
organization of subpatterns, objects, or elements. A subpattern
can be again considered as an organization ot further subpatterns
or objects, and so on. An organization is a complex of
relationships that subsist between the elements that are
recognized. Thus, a method of recognizing a pattern is to search
and find if a particular organization exists, that is, search for a
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certain configuration of objects satisfying particular relationships
(Narasimhan, 1974). Structural descriptions are often employed
by expert photointerpreters in identifying complex image patterns
by articulating their several features. For example, an interpreter
can identify a certain drainage pattern as being of a certain type
by recognizing that (1) it is composed of a main stream, from
which issue primary tributaries, and from which main stream
and primary tributaries issue secondary tributaries, and (2) it is
characterized by specific attributes of and relationships among
the main stream, and the primary and secondary tributaries
(Argialas ¢f al., 1988). Therefore, to recognize a drainage pattern,
it is necessary to seek, describe, and represent syntactic and
semantic components of the parts and the relations among them.
Classification techniques based on such structural descriptions
of image patterns have been proven to be more comprehensive
schemes than classification techniques based on a per-pixel feature
vector, which is a degenerate description, with the structural
information not included.

To effectively describe and represent the photointerpreter’s
knowledge, expressing the structure of complex patterns, that
knowledge must somehow be stored and made available during
the analysis and recognition processes. Clearly, the feature vector
approach is not adequate for such a representation. It has been
suggested that such knowledge can be recorded as a structural
model, which can represent images in terms of perceived image
structure (Pavlidis, 1977). A structural model can be used to
guide the choice of image or object partitioning, attribute
extraction, and classification operations. Structural models are
based on defining primitive pattern elements and identifying
allowable structures in terms of relationships among primitives
and substructures that combine primitives (Kanal, 1974).
Structural models combine domain specific knowledge about
the scene context together with specific symbolic representation
in order to produce a strutural description (Duda and Hart,
1973; Rosenfeld and Kak, 1982). Any model that is at least
incidentally concerned with decomposing a pattern into
subpatterns (alternatively, synthesizing it from subpatterns) is
called a linguistic (Rosenfeld and Kak, 1982), structural (Pavlidis,
1977), or syntactic (Fu, 1974) model (Figures 2 and 3). A model
that utilizes in any way the syntactic description of a pattern is
called a syntax-directed, descriptive, implicit, or relational model.
If the grammar on which such a description is based is explicitly
directing the analysis, then the model is called syntax-controlled,
grammatical, or explicit (Fu and Swain, 1971).

GRAMMATICAL OR LinGuisTic MODELS

In the grammatical or linguistic approach, patterns are
decomposed in a hierarchical concatenation of subpatterns
analogous to the syntactic structure of languages, and are defined
by a formal grammar. The essence of this approach lies in the
selection of pattern primitives and subpatterns, the assembling
of the primitives and their relationships into pattern grammars,
and analysis and recognition in terms of these grammars (Figure
3). Grammatical pattern recognition has adapted the techniques
of formal language theory, which provide both a notation
(grammar) and an analysis mechanism (parsing), to the problem
of representing and analyzing patterns containing a significant
syntactic content (Fu and Swain, 1971; Fu, 1974; Pavlidis, 1977;
Gonzalez and Thomason, 1978; Fu, 1980a; Pavlidis, 1982).

The syntax of an image pattern is defined as the juxtaposition
and concatenation of subparts. The rules governing these
compositions are often specified by the “pattern grammar.” A
pattern grammar is composed of a set of rules of syntax which
define the permissible or desirable relations between these
subparts. A syntax-controlled analysis employs the syntax of
the grammar in the analysis process. The language which
provides the structural description of patterns, in terms of a set
of pattern subparts and primitives and their composition relations,

is often called “pattern description language” (Fu and Rosenfeld,
1976). A pattern grammar characterizes a structural pattern in
the syntactic approach, in a similar way that a measurement
vector (spectral signature) characterizes a pattern class in the
statistical approach (Figure 3).

A pattern primitive is defined by two components: a token
or symbol from a finite alphabet, and an associated list of
attributes consisting of logical, numerical, or vector values
(Thomason and Gonzalez, 1981). Commonly used primitives
include edges, lines, curves, and angles (You and Fu, 1979; Fu,
1982a). Primitives are described by topologic and geometric
attributes such as length, position, and orientation. Because the
primitives do not embrace any structural information, they are
usually derived by non-syntactic methods (Fu, 1974). The feature
extraction problem in the statistical pattern recognition approach
and the primitive extraction problem in the syntactic approach
are similar in nature except that the primitives in the syntactic
approach represent subpatterns whereas the features in the
statistical approach may be any set of numerical measurements
taken from the pattern (Fu, 1974). The primitive extraction
problem is equivalent to the low-level segmentation methods
(Marr, 1982) discussed later.

Each pattern class is usually encoded as a string, tree, or
graph, composed of primitives from the set of permissible
primitives of the language. Then a pattern grammar is constructed
with the property that the language it generates consists of
sentences or patterns which belong exclusively to one of the
pattern classes. Subsequently, this grammar is used for pattern
classification by employing a procedure for determining whether
or not a given pattern of unknown origin represents a valid
statement of the language generated by that grammar. The
procedure used to determine whether or not a string, tree, or
graph represents a sentence which is grammatically correct with
respect to a given language is called parsing and is performed
by the parser or analyzer (Figure 3). One way that the parser
may categorize the input patterns is by matching the string,
tree, or graph of an unknown pattern against the diverse
prototype or candidate strings, trees, or graphs (Fu, 1976; Fu,
1980a).

To provide a way to deal with geometrical aspects of grammatical
inference, syntactic-semantic models were developed, through
attributed grammars (Tsai and Fu, 1980; Fu, 1982a). In attributed
grammars, each primitive has associated with it geometric
attributes such as length, chord length, curvature, and symmetry,
and the grammatical rules have a syntactic and a semantic
component (Fu, 1982a). Learning from sample patterns, that is,
learning a grammar from a set of sample patterns, is still in its
early development in relation to learning capabilities which would
be acceptable as a general tool for syntactic pattern recognition
(Fu, 1980a). Conventional parsing requires an exact match
between the representation of an unknown pattern and those
generated by the pattern grammars, and thus it does not apply
to noisy and distorted patterns. Stochastic grammars have been
developed to take into account measurement noise, distortions,
and ambiguity due to lack of complete knowledge about the
characteristics of pattern classes (Fu, 1977; Gonzalez and Wintz,
1977). To circumvent exact matching, a parsing procedure, called
error-correcting parsing, was developed involving a selected
similarity measure (distance measure or likelihood function) (Tsai
and Fu, 1980; Fu, 1981).

The grammatical approach has been viewed as two distinct
processes — primitive extraction followed by grammatical
description. In separating the grammatical analysis of structure
from the extraction of primitives, each process is excluded from
information available to the other (Watanabe, 1971; Kanal and
Chandrasekaran, 1972). This is a weakness similar to the one
encountered in the bottom-up segmentation methods, discussed
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later, where the extraction of low-level objects proceeds in
ignorance of the a priori restrictions known to the high-level
models.

PParsing becomes available for grammatical analysis only if the
class of patterns of interest can be specified by a formal grammar.
This has been achieved with some success for restricted
applications (Fu, 1977; Fu, 1980b; Kanal and Rosenteld, 1981;
Fu, 1982¢). Li and Fu (1976), Fu (1976), and Brayer ¢f al. (1977)
described a tree grammar approach which interprets highways
and rivers in Landsat images.

HeurisTic or DESCRIPTIVE MODELS

The search for grammars describing large classes of natural
patterns has not vet been very successful (Nevatia, 1982). When
a formal grammatical model is not explicitly used, the terms
“ad-hoc” or “heuristic”” or “descriptive” (Figure 2) are used to
describe the image model (Kanal, 1974). Grammars can be
employed in a heuristic capacity for generating information
structures more than for generating the actual data structures.
For example, labeled graphs have been used to represent
information structures, so that each node of the labeled graph
corresponds to an object, and is labeled with a list of property
names and property values that hold for that object; and each
arc between pairs of objects is labeled with a list of names and
values of the relations that hold between that pair of objects
(Findler, 1979; Rosenfeld and Kak, 1982; Fu, 1981; Shapiro, 1980;
Thomason and Gonzalez, 1981; Winston, 1984). Classification
is often implemented by a series of tests that are designed to
evaluate the occurrence or nonoccurrence of certain subpatterns
or primitives, or certain attributes and their actual values, or
certain combinations of them. These tests may be embedded
within a decision tree, a rule-based system, or a hierarchical
classification model.

Argialas ¢f al. (1988) designed and implemented structural
models that expressed drainage patterns in terms of their
constituent elements, their attributes, and the relationships
among them. Eight pattern types were quantitatively described
and classified. The methodology to classifv these patterns
consisted of drainage pattern models, hierarchical and relational
models, attribute extraction, and classification strategies.

HyBriD MODELS

An efficient pattern recognition system for aerial images
requires integration of statistical, linguistic, and heuristic tools
in various stages of the design. The term “hybrid system” has
been employed to describe pattern recognition svstems in which
both numerical (statistical, decision theoretical) and qualitative
(structural, syntactic, heuristic) techniques are combined (Nadler,
1982). Fu (1982b) identified five ways to mix the decision-theoretic
approach and the syntactic approach. They are: decision theoretic
followed by syntactic approach, use of stochastic languages,
stochastic error-correcting syntax analysis, matching of stochastic
graphs, and use of stochastic attributed grammars. In the
decision-theoretic followed by svntactic apprnm‘h, pattern
primitives are recognized by a decision-theoretic method (Fu,
1982b). For example, each pixel in a Landsat image can be
classified by a decision-theoretic method, such as the maximums-
likelihood classification rule using multispectral measurements.
Structural (or spatial) relations among various pixels can be
described by a syntactic method. Specifically, the structure of
rivers was represented by trees with water-like pixels, and was
characterized by a tree grammar. Consequently, the recognition
of rivers from all water-like pixels was accomplished by using
a tree automaton (Fu, 1981; Fu, 1982b). Another example of
mixing the two approaches has been the explicit inclusion of
semantic evaluations simultaneously with syntactic analysis by
means of attributed grammars (You and Fu, 1979; Tsai and Fu,
1980).

IMAGE ANALYSIS AND COMPUTER VISION

The domain of image analysis and computer vision extends
beyond that of image classification, which is the core subject of
pattern recognition techniques. It encompasses extraction of ob-
jects, description of their structure and mutual relationships,
and analysis of their similarities and differences with other known
objects (Nevatia, 1982; Suen and Mori, 1982). Image analysis in-
cludes image coding, compression, enhancement, restoration,
reconstruction, description, representation, segmentation, and
recognition techniques. The first five techniques have been de-
veloped since the late sixties and have traditionally been the
concern of the field of image processing, while the last four
have been recently evolved, primarily in association with com-
puter vision and artificial intelligence techniques.

Computer vision is the study of computational systems that
interpret natural scenes, that is, they produce descriptions of a
scene from digital images of that scene. The emphasis is in the
design and implementation of effective methods that represent
and exploit knowledge of the world and knowledge of how
images are formed. This knowledge includes properties of sen-
sors, geometry and irradiance relations of stereoscopic models
(Alvertos ef al., 1989), laws of physical optics, and information
about possible configurations in the world. Computer vision
erew oul of image analysis, pattern recognition, and perceptual
psvchology. Computer vision is often considered part of the
field of artificial intelligence and knowledge-based systems be-
cause it aims at building machines that behave intelligently in
perceptual domains (Ballard and Brown, 1982). Artificial intel-
ligence is the study of activities that require intelligence (Win-
ston, 1984). Knowledge-based expert systems (KBES) is a field
of artificial intelligence that emphasizes specific but difficult
problem solving requiring domain specific knowledge (Hayes-
Roth ¢f al., 1983; Harmon and King, 1985).

In the earlier developments in image analysis, there was no
sharp dividing line between knowledge-based (high-level, se-
mantic) models and general purpose (low-level,non-semantic)
models (Zucker ¢of al., 1975), partially because the knowledge-
based methodology was not available to provide the tools to do
so (Figure 1). Vision systems were programmed in procedural
languages, which did not provide for separation of declarative
domain knowledge from search and control algorithms (Figure
3). Procedural representations of knowledge did not provide a
means for representing expertise in an intelligible, inspectable,
and explicit form. With the growing need for incorporating do-
main-specific knowledge in image analysis, and the subsequent
development of knowledge-based techniques, the distinction
between the non-semantic and semantic information became
feasible (Marr, 1982). A major area of contribution of the arti-
ficial intelligence and expert system methodologies in computer
vision has been the study of how domain specific knowledge
can be represented and used to control the process of extracting
meaningful descriptors and objects from images (Horn, 1978;
Marr, 1982). It is now possible to use hybrid programming en-
vironments, where object-oriented programming, frames, rule-
based programming and methods, or active values can be em-
ploved at the appropriate level of problem representation. As
a result, image analysis, computer vision, and artificial intelli-
gence are inevitably and inextricably linked.

IMAGE DESCRIPTION, REPRESENTATION, AND
SEGMENTATION

From a conceptual point of view, information in images can
be described at many levels of abstractions or domains. An
abstraction may represent the scene depicted in the image, the
three-dimensional (3-D) objects of the scene, or the image do-
main (Clowes, 1971). The scene domain consists of knowledge
and models of the semantic objects depicted in the scene. An
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object can be any relevant feature in the scene which is to be
detected and recognized. The world domain consists of the rep-
resentation of physical objects in three-dimensional space. The
image domain describes only the spatial variation of intensity
obtained through the imaging geometry consisting of the source,
object, and sensor. The image domain is a domain of observable
facts which can be obtained from the digital image while the
scene domain is an abstract domain in which objects are mod-
eled and relations are defined. The world domain consists of
all physical objects with their surfaces and surface material which
relate to observable properties such as reflectance and texture.
izach object, according to the imaging geometry, will project an
image in the image domain. The image domain is composed of
pixels, which are single points, and patches, which are com-
posed of connected sets of pixels with some uniformity property
such as uniform gray level or texture. In general, patches will
have to be grouped together to indicate a surface of a physical
object in the world domain. A part of the image, perhaps a set
of patches which corresponds to an object surface, is often called
a region.

Another conceptual classification recognizes three levels of
representation: high, medium, and low (Ahuja and Schachter,
1983). High-level representations involve highly semantic
(meaningful) objects relating to image understanding itself. High-
level representations allow the interpretation of an image in
terms of the goals of the analysis. Although high-level objects
are the ultimate concern, even these objects must be defined
through medium-level objects and primitives. Medium-level
representations provide simple aggregations of the basic prim-
itives. Primitives are the most basic image elements that do not
contain any semantic information and that can be meaningfully
and adequately incorporated in the higher level of representa-
tions (Marr, 1982).

Most approaches for obtaining an image description start with
the primitives, and synthesize higher representations by aggre-
gating lower-level objects to higher-level objects in bottom-up
hierarchical procedure. The first step, in this procedure, is the
identification and labeling of primitives. Further grouping of
these primitives may take pIJL‘L‘, to idunlify higher-level, more
meaningful objects. This process of partitioning or synthesizing
an image into its constituent objects is called segmentation
(Thomason and Gonzalez, 1981; Rosenfeld and Kak, 1982). Seg-
mentation methods can be characterized according to the level
of semantics employed into three levels: low, medium, and high
(Figure 3). A low-level segmentation method has as input the
grey level image pixels and as output the primitives such as
edges, blobs, lines, and arcs (Marr, 1982). Low-level segmen-
tation does not depend on one's knowledge or expectations
about the particular situation, but on what it is possible to com-
pute from an image. Medium-level segmentation corresponds
to the intermediate details of the analysis — the nodes which
sel up partial results from the primitive elements or which de-
compose the highest level of description into substructures (Mero
and Vamos, 1981). A segmentation method is considered high
level if its output is the final interpretation of the image. High-
level segmentation approaches are more sensitive to the specific
needs of recognition and to the context of the image (Ballard
and Brown, 1982; Marr, 1982).

LOW- AND MEDIUM-LEVEL SEGMENTATION METHODS

Virtually hundreds of low- and medium-level image analysis
algorithms have been proposed in the literature over the past
20 years (Gonzalez and Wintz, 1977; Ballard and Brown, [982;
Pavlidis, 1982; Rosenfeld and Kak, 1982; Haralick, 1985). Not
surprisingly, this is still an active area of research because of its
importance as a major processing step in any practical appli-
cation. The choice of one segmentation technique over another
is dictated mostly by the characteristics of the problem being

& REMOTE SENSING, 1990

considered (Figure 4). Data structures for representations of low-
and medium-level objects have been described by Shapiro (1979)
and Samet (1980).

The most common operators for low-level segmentation are
neighborhood operators which examine the value of a small
neighborhood of pixels around a given pixel and produce a
resultant value that is a function of all pixel values in the neigh-
borhood. Low-level neighborhood operators have focused upon
edge detection and strategies for connecting edge points into
lines. This approach has intuitive appeal because the eye is
sensitive to edges and humans can recognize objects from the
object’s outline (Marr, 1982). These approaches have encoun-
tered difficulty in practice because global parameters may dic-
tate correct interpretations. Reviews of edge operators and
attempts to overcome some of these problems are given in Brooks
(1978) and Peli and Malah (1982).

Medium-level segmentation algorithms include region grow-
ing, histogram thresholding, boundary detection, multispectral
classification, probabilistic relaxation, and texture and shape
analysis (Figure 4). Region growing methods were developed
to overcome some of the problems with edge detection (Zucker,
1976). In region growing one attempts to locate areas of thu
image that share some uniformity property, such as uniform
density, similarity proximity, and good continuity and closure.
The most common property used by far is uniformity of gray
level. The hope is that it is easier to locate regions with a uni-
form property than to measure dissimilarity with edge detec-
tors. Pavlidis (1977) described split and merge techniques for
region formation using various methods to measure region sim-
ilarity. A tool often used with split and merge techniques is the
region adjacency graph. It is accessible by region label and con-
tains, for each region, a list of all adjacent region labels. All the
various thresolding methods using histograms are a form of
region formation (Ohlander ¢f al., 1978; Trivedi and Harlow,
1985; Kapur et al., 1985).

Color (Ohlander et al., 1978), multispectral (Kettig and Land-
grebe, 1976), and texture properties (Chen and Pavlidis, 1979)
have been used to some extent in region formation and object
recognition. For multispectral classification, unsupervised clus-
tering techniques are used to partition the measurement space
into spectrally distinct classes, followed by image labeling through
reference to training data. Hybrid supervised and unsupervised
approaches are also available (Schowndegerdt, 1983). The use
of textural representations to supplement the spectral infor-
mation of remotely sensed images generally produces improved
accuracies (Haralick, 1979; Conners ¢t al., 1984; Harlow ¢t al.,
1985) Relaxation techniques have been employed to reduce am-
biguities in segmentation by taking into account local context.
Prior likelihoods are usually assigned to each pixel as belonging
to each of a set of image objects. Further refinement of these
probabilities takes place iteratively according to probabilities of
the neighborhood of each pixel. Probabilistic relaxation labeling
techniques have been applied for the enhancement of rivers in
Landsat images (Rosenfeld ¢f al., 1976; Zucker, 1976).

Shape —the form of an object —is one of the most important
interpretation elements. Many natural and manmade interpre-
tative features such as deltas, oxbow lakes, and drainage pat-
terns are named from distinctive shapes and forms. Shape
analysis consists of producing a description of the form of an
object that can be used for identification, grouping, or further
processing of the object (Shapiro, 1980). Shape analysis tech-
niques can be divided into structural and nonstructural tech-
niques. Nonstructural techniques describe a shape as a vector
of scaler features. For example, the boundary of the shape can
be expressed as a function — the function approximated by a
Fourier series — and the coefficients of the Fourier series used
tor shape descriptors (Gonzalez and Wintz, 1977). A structural
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description of the shape of an object consists of primitives, sub-
parts, properties of the subparts and of the whole, and rela-
tionships among the subparts. Structural descriptions of shape,
like those described earlier under grammatical models, tend to
be more robust than nonstructural descriptions and can de-
scribe more complex objects (Shapiro, 1980).

HIGH-LEVEL (KNOWLEDGE-BASED) SEGMENTATION
METHODS

High-level segmentation utilizes whatever domain-specific
knowledge is available about the class of scenes that it is to
“understand.” Domain-specific knowledge has many forms, in-
cluding descriptive definitions of entities, concepts, and objects
and their relationship to each other and criteria for making de-
cisions. With the fusion of artificial intelligence techniques in
computer vision, knowledge representation started to shift from
procedural to declarative forms. A procedural representation of
a fact is a set of instructions that, when carried out, arrive at a
result consistent with the fact, while a declarative representa-
tion of a fact is an assertion that the fact is true. Usually, in the
procedural instructions, there is no explicit statement of a fact.
The fact is contained only in the list of results of the procedure.
Several declarative and hybrid knowledge representation meth-
ods, such as semantic nets, predicate logic, rules, frames, and
blackboards, have been employed for processing semantic in-
formation in computer vision (Figure 3). Symbolic problem solv-
ing methods, such as modus ponens, resolution, and inexact
reasoning, have been employed for drawing inferences (Ballard
and Brow, 1982). Control schemes such as forward and back-
ward chaining, depth first, and breadth first search are em-
ployed for controlling attention during problem solving (Hayes-
Roth ¢t al., 1983).

SEMANTIC NETWORKS

A semantic network can be used to represent declarative
knowledge. An entity (node) of the network represents general
objects, and arcs represent relationships between objects (Ballard
and Brown, 1982). A token or instance of a node is a specific
example of the general type. This is described by an Is-A link
or arc. For example, a road might be a node and a road in a
specific location would be an instance of the object (Harlow cf
al., 1986). This results in a copy being made of the node which
describes this specific example. This might include specific values
for the properties of the node, for example, the width of the
road. Another special arc or link is the a-kind-of or AKO link,
which indicates generalization (Winston, 1984). For example, a
car is a-kind-of vehicle. Properties in a semantic net are inherited
through the AKO link. Semantic networks are static
representations and require an algorithm to operate on the
network to generate and evaluate inferences.

PrepicaTE Loaic

Knowledge representation in first-order predicate logic
provided the basis for logic programming languages such as
PROLOG. The formalism permits expression of facts and rules.
Simple declarative facts can be expressed as instantiated
predicates (relations) and rules as “predicate X if predicates A,
B, C.” Reasoning is implemented as depth-first search and
backward chaining (backtracking). Inferences (deductions) are
made by the resolution principle. Predicate calculus offers
consistency, formality, and expressiveness. However, no
hierarchical framework exists in which rules can be embedded,
and reasoning is strictly monotonic. Logic programming does
not readily provide means for handling defaults and exceptions
as frames do.
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ProbucTion RuLES

The most widely used schemes for knowledge representation
are rule-based systems (Harmon and King, 1985). Among the
architectures of rule-based systems, the production system
architecture has been most popular (Brownston ¢f al., 1985).
It is a simplified version of the blackboard architecture
discussed below. A production system consists of a knowledge
base and an inference engine. The knowledge base consists
of data (objects, facts, guals] and rules. Data are stored in the
working memory, which serves as a global database of symbols
representing facts and assertions. The set of rules constitute
the program’s core, which is stored in the production memory
(Winston, 1984). Each rule has a condition part, which consists
of one or more antecedent clauses, and an action part, the
consequent, which may create or modify working memory
elements. The inference engine of the system determines which
rule instantiations are relevant to a given working memory
configuration and assembles them in a conflict set. The
inference engine then uses a conflict resolution strategy to
fire one or more rules from the conflict set. Some of the
strategies followed for selection of a rule are recency of the
working memory element involved in the condition part of
the rule, and specificity of the rule measured by the number
of condition elements (Brownston ¢f al., 1985).

There are two ways that rules can be used in a rule-based
system: forward chaining (OPs5 like) and backward chaining,
(PROLOG like). In forward chaining, rules are matched against
facts to establish new facts or hypotheses. In backward chaining,
the system starts with what it wants to prove and tries to establish
the facts it needs to prove it. This matching of rule conditions
to the facts produces what are called “inference chains.” The
inference chains indicate how the system used the rule to make
the inference, and they can be represented in an ANIDYOR tree.
The methods of selecting and firing rules in forward-chaining
rules is different from those of backward chaining rules.

Rules are appropriate for image interpretation because a major
part of domain-specific knowledge results from empirical
associations (heuristics) developed through vears of experience
in a particular area, which may be expressed as heuristic rules.
However, representing knowledge as an unordered and
unstructured set of rules has certain disadvantages. For example,
one cannot easily express the structure of the domain in terms
of taxonomic, or part-whole, relations that hold between objects
and between classes of objects. Frames provide for such a
mechanism.

FRAME SysTEMS

Frames (scripts of schemata) are structural models for
representing stereotyped objects or situations (Minsky, 1975).
A class frame is a collection of all the relevant information that
describes a class of objects. An object or instance frame is a
collection of all the relevant information that describes an
individual or instance of a class frame. A frame has slots that
contain properties and relationship information about classes
and objects as well as procedural attachments. The slots specify
what we expect to know about an object class and how we
expect to acquire it. The number and type of slots are fixed
when the frame is defined. Procedural attachments or active
values are rule sets or procedures associated with the slot of a
frame which must be invoked before a value can be assigned
to or read from that slot. Thus, they behave like “demons”
monitoring changes and uses of the values. These attachments
may contain links to other frames, slot values, predicates,
procedures, and hvpotheses or conjectures about other objects
or classes. Frames can control the invocation of knowledge
sources (large rule sets) within the frame context of a blackboard
system. Once a frame is hypothesized, it is invoked or instantiated

as a frame instance, that is, the slots are filled to determine if
the frame matches the object being considered.

The hierarchies of a vision system as described by Kanade
(1977) can be expressed in a frame system in an explicit manner.
These hierarchies are a processing unit hierarchy, a detail
hierarchy, and a composition hierarchy (Figure 5). Within the
image domain the processing unit hierarchy refers to the size
of the areas processed in an image such as pixels or regions.
The detail hierarchy, which is in both the scene and image
domains, refers to the precision of description. The description
may range from crude to very detailed. In the scene domain
this might be the precision of shape descriptors. In the image
domain this may be the resolution of the data. The composition
hierarchy includes part-of relations, such as object to subobject
designations. Complex objects are represented as compositions
of simpler objects, thus creating a composition hierarchy. The
recognition of a complex object involves the recognition of its
component parts such that the constraints of the frame are
satisfied.

Frames can contain both declarative (property values) and
procedural knowledge (procedural attachments) which is
important in a combination top-down and botton-up control
strategy. The procedural information is useful for guiding the
search process for instances of the object class. A procedural
approach is most useful when the structure of the image is well
known so that the operators and their sequencing can be
determined. This is the same class of scenes in which a top-
down approach is most useful. When the scenes have great
variablility in structure, then the analysis process will be more
data driven. In this situation, large numbers of variables will
have to be computed and verified, which complicates the control
in a procedurally oriented process. A declarative approach will
have advantages in this situation. In a top-down search a frame’s
hypothesis provide parameters to the subframes. In a bottom-
up search the hypothesis expectations can restrict the subframes
which can invoke the frame as a supergoal. Verification is done
by matching of the knowledge base to the data. One uses image
features computed from the input data to find candidate objects,
and then one attempts to match the expectations of each candidate
object to the image features. That is, one uses image features
to reference into a frame which limits the expectation of the
next step in the analysis. This allows one to selectively activate
knowledge.

Because of their structure, frame systems are useful for image
interpretation because expectations about the form, relations,
and recognition procedures of the objects play an important role
in image interpretation.

BLACKBOARD ARCHITECTURES

In the organization of a “blackboard system architecture”
(Figure 5), each node in the object hierarchy has a package of
“how-to” knowledge, specific to that node, which is often
represented in the form of a cluster of rules called knowledge
sources (Engelmore and Morgan, 1988). Usually, there is no
need for a uniform mechanism which operates on some
description of the knowledge within each knowledge source,
but, rather, each knowledge source has different kinds of
knowledge and different mechanisms for carrying out its
reasoning (Chandrasekaran, 1983). The generated solution
elements by the independent knowledge sources are recorded
on the blackboard or short term memory (5T™M). The “blackboard,”
like the working memory of a production system, is a global
database for recording solution elements generated during
problem solving (Figure 5). At any given time the several
knowledge sources that contribute to the solution of the problem
communicate only by writing on the blackboard. Blackboards
have mechanisms associated with them for invoking pattern
directed procedures (active values or demons) and for
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svnchronizing their activities (Hanson and Riseman, 1978). Often
potential actions awaiting execution are recorded in the agenda
of the blackboard. A scheduler can be used for selecting the
knowledge source to be executed at a given time by determining
which pending action from those stored in the agenda should
be executed next. A consistency enforcer maintains a consistent
representation of the emerging solutions (Hayes-Roth ef al., 1983).
This may take the form of likelihood revisions or a belief
maintenance system that combines the information obtained
from the different knowledge sources. Several belief maintenance
systems have been proposed; some are heuristic and some have
a theoretical basis. Fuzzy logic (Zadeh, 1978) and the Dempster-
Shafer theory (Shafer, 1976) are examples of systems with a
theoretical base.

The distribution of knowledge among various specialists
(knowledge sources) modularizes the knowledge base in a natural
way. The criteria for distribution, that is, deciding which piece
of knowledge should go in what knowledge source, is problem
dependent. Separation of the various types of knowledge in
separate knowledge sources is desirable because it provides
modularity; however, it does complicate the problem of control
and communication.

INFERENCE AND CONTROL STRATEGIES FOR IMAGE
SEGMENTATION

A knowledge-based image interpretation system can be con-
ceptualized as being composed of preproc t“ahlll},, segmentation
and classification procedures, a knowledge base of models and
how-to knowledge, a database of facts and hypotheses pertain-
ing to the current image, and an inference and control system
(Figure 5). The segmentation and classification procedures are
used to extract image features and to label and describe mostly
edges and regions. The role of the inference system is to se-
quence or select the models in the knowledge base, match the
extracted image features against the models, resolve conflicts,
and track the inferences. The function of the control portion of
the inference engine is to decide how to start the reasoning
process with all its facts and rules, and how to resolve conflicts
and decide which rules to fire among conflicting rules that are
ready to fire. Three control strategies are often employed: top-

down, bottom-up, and a combination of the first two strategies.
This terminology has its origin and was adapted from gram-
matical pattern recognition and formal language theory in anal-
ogy to grammatical parsing that takes place in a top-down or
bottom-up manner. In a top-down approach, one starts with an
assumption or hypothesis about the objects on the image and
their appearance. Each hypothesis is then decomposed into
subhypotheses and so on. The lowest level hypotheses must
then be verified by extracting image features. Matches are made
at lower levels of the hierarchy to determine it the hypotheses
are valid. If the hypotheses are not valid, another hypothesis
is chosen at the higher level of the hierarchy.

Top-down processing is goal directed processing. High-level
goals generate subgoals until one can solve the goals and then
back the results up the hierarchy. A number of image interpre-
tation systems that employ a top-down stategy have been de-
veloped to analyze chest radiographs (Harlow, 1973; Harlow ¢!
al., 1976). A top-down approach works for this class of scenes
because they are highly structured, that is, there is available
certain a priori information about the expected image objects
and their relations. If a priori or auxiliary information is available
about the scenes of concern, then one can presumably generate
a set of meaningful goals or hypotheses to pursue, and a top-
down approach is appropriate. Top-down analysis is similar in
spirit to backward-chaining in an inferencing system which proves
goals by seeking to prove their subgoals. In general, a pure top-
down approach is not suitable for images with a large amount
of variablility in their structure such as aerial images.

Most image interpretation systems use a bottom-up strategy,
a process which begins at the bottom of the hierarchy with the
identification and examination of fine detail, e.g., cars and houses,
and attempts to identify more general entities such as residen-
tial areas by recognizing appropriate groupings of the smaller
objects. One usually starts by segmenting the image to find
homogeneous regions or lines that correspond to objects at the
lowest level. Local properties are usually used to produce the
low-to medium-level segmentation, and no resource to seman-
tics is made. Simple properties of scene geometry and gray level
contrast between object and background typify the process (Bal-
lard and Brown, 1982; Marr, 1982). The low- and medium-level
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segmentation process is in general difficult to perform correctly.
Even if a good segmentation is achieved, the segmented image
often contains less information than the original image. The lost
information might be important in obtaining the best high-level
interpretation of the scene. The analysis is driven by the data
at the lowest level. Bottom-up analysis is similar in spirit to
forward chaining in an inferencing system which derives con-
sequences from established results.

A bottom-up approach has the following limitations:

® The segmentation of the scene is based entirely upon image fea-

tures obtained from segmentation algorithms which have rele-
vance only to the information at the lowest levels of the hierarchy
in the scene domain. These operators use litile or no information
from the scene domain, which makes arbitrary interpretations and
errors likely. Because little context is utilized, an extensive search
process is required to locate regions which might correspond to
the low-level objects in the scene domain and for matching all the
low-level objects to synthesize high-level objects.

® The objects in the scene domain which can be explicitly verified

in the image domain correspond to low-level objects, This means
complex models in the scene cannot be directly verified, and in-
dependent evidence cannot be gathered at intermediate levels of
the hierarchy for a beliel maintenance system.

® Because explicit models for high-level objects and their relation-

ships cannot be verified with image features, the objects at high
levels in the scene domain hierarchy must be verified by defining
relationships on lower level objects. After one has obtained inter-
pretations of low-level objects from image ques, one can then infer
the interpretations of the objects at higher levels in the hierarchy.

In general, it is important not to constrain a vision system to
a pure top-down or bottom-up approach. One needs a vision
system which incorporates both goal- and data-driven analysis.
Havens and Mackworth (1983) developed a hierarchical scene
analysis system to overcome the limitations of bottom-up and
top-down approaches. At each node of the hierarchy a scheme
or frame was proposed to model each abstract object. This sys-
tem provided for procedural knowledge at each node to guide
the search for instances of objects. Nagao and Matsuyama (1980)
suggested a trial and error recursion between bottom-up seg-
mentation and the top-down recognition to reach the best re-
sults.

While, for simple images, hierarchical top-down or bottom-
up approaches may do, more complex images —like high-res-
olution remotely sensed data—may require heterarchical
processing rather than strictly hierarchical processing (Narasim-
han, 1974). Heterarchical processing involves the possibility of
cycling back through a hierarchy to aid further discrimination
of objects (Ballard and Brown, 1982). Heterarchic control struc-
tures are suitable for complex image interpretation tasks be-
cause such tasks can be decomposed into smaller subtasks, each
requiring some expertise, and are not necessarily performed
globally in a fixed order. A community of cooperating and com-
peting specialists (knowledge sources) and a blackboard rep-
resents such a concept (Figure 5). In such a system, the expert
who can help most toward the final task solution at any given
time is selected. It is selected because according to some crite-
rion its subtask is the best thing to do at that time. In “oppor-
tunistic pmblum solving,” L‘(n)pt'r.lli(.ln among the knowledge
specialists is achieved by assuming that whatever information
is needed is supplied by someone else. As new pieces of evi-
dence are found and new hypotheses are generated, appropri-
ate knowledge sources analyze them and create new hypotheses.
Each specialist must rely on the other specialists to supply the
information cach needs. The criteria for selection are wide and
varied and several ideas have been tried (Hanson and Riseman,
1978; Nagao and Matsuyama, 1980; Nicolin and Gabler, 1987).
Control may be provided by a single executive (scheduler), by
metarules (e.g., a universal set of rules that controls the invo-
cation of other rules), or by an a priori system of ranking (Ballard

and Brown, 1982). Practically, only parallel computer architec-
tures could run cooperative specialists, yet this process has been
simulated in a serial machine (Hanson and Riseman, 1978).

KNOWLEDGE SOURCES AND TYPES FOR IMAGE
INTERPRETATION

The traditional approach to processing remotely sensed data
for thematic map creation involves acquiring remotely sensed
data; georeferencing that data; integrating newly acquired data
within a geographic information system (GIS); classifying, ex-
tracting attributes, and labeling image objects utilizing the im-
age analysis or computer vision system and the GIs; updating
the GIs; and producing output thematic maps. The knowledge
required to perform these functions is expressed in either dec-
larative or procedural form. Known facts and relationships are
declarative knowledge. Currently, the required declarative
knowledge is provided by expert photointerpreters utilizing do-
main specific knowledge and their perceptual skills. Procedural
knowledge is most often expressed as programs and describes
how to locate, recognize, and classify features. There is a sub-
stantial amount of procedural knowledge that has been accu-
mulated. Image analysis and GIS systems are comprehensive,
encompassing thousands of lines of FORTRAN or C code. The
GIS systems are equally large and complex. There is substantial
processing required in the image analysis and pattern recog-
nition algorithms; the GIS storage, retrieval, and analysis func-
tions; and the conversion functions between different projections
and types of data. In image analysis, for example, there are
issues relating to the interaction between the segmentation al-
gorithms and the inferencing system, the selection and ade-
quacy of the segmentation algorithms, the method of forming
an optimal global interpretation of the scene, and the integra-
tion of system modules and data structures so that the system
can be improved as additional knowledge about the scene be-
comes known. The correct sequencing and selection of these
functions requires substantial knowledge for processing, analy-
sis, synthesis, and presentation of the data in a manner which
will yield best interpretation and resultant maps (Schowengerdt
and Wang, 1989).

The use of domain knowledge is critical to the development
of robust systems for automated mapping of Earth features.
Domain knowledge is designated in the following as general
knowledge, discipline knowledge, regional knowledge, and ob-
ject knowledge. The manner in which knowledge can be struc-
tured and utilized in the analysis of images is an important
consideration. In this section some means in which knowledge
can be used to guide the interpretation system are indicated.

General knowledge includes information about the imaging
system and processes by which the images were acquired
(ephemeris data)-including image conditions, such as latitude,
longitude, date, sensor tvpe, calibration parameters, and at-
mospheric conditions —and general knowledge about the types
of objects expected in the given image. By combining location
with global environmental, geological, and political maps, a priori
information such as large ecological communities, physio-
graphic regions and sections, and the country and the county
could easily be determined. Knowing the country or county is
important. For example, grain silos in the United States are
round, while those in Canada are square, Further, the distance
to the nearest urban area would give an indication of whether
the scene was part of a natural or manmade landscape. Know-
ing the physiographic section, one could infer the possible land-
forms found in the region. The date can also provide useful
information, because the objects one expects to find in a scene
are often dependent on the time of year. For example, it would
be futile to use the attribute “has leaves” to identify deciduous
trees if the image was obtained during the winter. Further,
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winter scenes could contain snow and ice, whereas summer
scenes would not.

Discipline specific knowledge includes information about the
spectral, temporal, and structural properties of objects, such as
their reflectance characteristics, relative size, height, shape, tex-
ture, and their decomposition and embedding in other objects;
and information about contextual and semantic constraints among
objects, such as site specification (relative location) and associ-
ations with other objects or phenomena. Having knowledge
concerning the basic physical or theoretical principles in a par-
ticular discipline increases the ability to accurately identify and
map specific features. For example, if forests are to be mapped,
then a general photointerpreter could do the job. If detailed
communities within the forest are to be mapped, a forestry
background would be required. In mapping forest communi-
ties, certain desired classes would need to be merged or sepa-
rated depending on the season of image acquistion. Forest
communities also are generally located in specific spatial ar-
rangements.

Regional knowledge about the geographic area represented
in the image includes existing maps and reports of various kinds,
literature sources, case studies, and communication with ex-
perts related to specific tasks at hand. Regional knowledge is
needed to capture region-specific details that take into account
physical, cultural, or temporal variations that deviate from the
expected conditions. Although similar environments contain
many similar objects, many objects are region dependent and,
therefore, regional knowledge adds a better definition to the
discipline knowledge. Furthermore, site-specific knowledge or
human expertise is required to refine the reasoning relative to
local exceptions or unique cases learned from experience. For
example, a marsh in Louisiana or California could be expected
to have oil wells, whereas this would not be expected in a New
England marsh. An oil processing facility on the coast is much
more likely to be located adjacent to a canal than in the middle
of a marsh. If one was searching for such a facility, then the
search should first focus on areas near canals. Si_milarl_\-', an
object located greater than 100m from a canal would probably
not be an oil facility.

A particular object can have many spatial attributes. How-
ever, some of these attributes are more powerful for identifi-
cation purposes than others. For example, shape is not a
particularly useful attribute for identifying the World Trade
Center, whereas height is. It is therefore extremely useful to
know the “most distinguishing characteristic” of on object. This
characteristic is not absolute, however, but depends on context.
For example, height would not be the most distinguishing char-
acteristic for a tall building in a city full of skyscrapers. The
most distinguishing characteristic must be derived given the
context of the specific area. The function of an object can be
used to locate and identify the object is examined. Many objects
have a wide variety of possible forms or shapes in which they
may appear in imagery, which makes it difficult to characterize
them by shape or other properties. Road networks have widely
varing geometries and sizes for example. The purpose of the
road network is to provide access to cities, residential areas, etc.
A similar statement is true for canals that provide access to
petroleum exploration platforms. Buildings and plants have
widely varying shapes. If the plant produces electricity or pe-
troleum products, there will be basic differences in the two
facilities because of their function. The function of an object can
be studied to gain additional insights into determining distin-
guishing charachteristics of objects and the manner in which
these characteristics can be used by the interpretation system.
Another factor related to objects is that certain features add
more to our understanding of a scene. Locating these objects
initially, therefore, aids in subsequent identification. For ex-
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ample, in a scene with motels, amusement parks, jetties, and
piers, the object that would add most to our contextual under-
standing might be the beach.

KNOWLEDGE-BASED VISION SYSTEMS IN REMOTE
SENSING

Expert interpretation systems have been developed to rec-
ognize objects primarily from high spatial resolution black-and-
white images. Some aspects of these systems are discussed.
Emphasis is on computer vision and knowledge-based tech-
niques emploved for the interpretation of aerial images. No
attempt is made to provide a complete survey. Most of the
systems presented have been described in multiple papers and
reports, only a few of which are cited in this paper. The inter-
ested reader may wish to contact the system designers for cur-
rent svstem design and status.

CERBERUS was developed to structure rules pertaining to the
spectral responses in MSs channels 5 and 7 and ancillary data
such as elevation, slope, and prior land cover (Engle, 1985).
Fifty-five rules were used to distinguish among five of the seven
level 1 land-cover types. CHESHIRE, an enhanced version of CER-
BERUS, opperates in the Xerox 1108 Lisp Dandelion workstation.
This methodology was orignially developed by Erickson and
Likens (1984). They defined Landsat MSS taxonomies, through
semantic nets, defiﬁing important terms and relationships within
auxiliary data. Rule sets were constructed for urban, agricul-
ture, range, forest, water, bare classes, and a final summary
rule set. Contingency tables were used to represent relation-
ships between spectral classes and values in the ancillary data.

Wharton (1987) demonstrated a land-cover classification rule-
based system that utilized the relationships between the spec-
tral values of adjacent pixels as described by expert photointer-
preters instead of training samples. Band-to-band, category-to-
category, and category-to-background relationships are used to
quantify the color-contrast features of the knowledge base. A
hierarchical data structure was used to compute contrast values
between neighboring pixels at various levels of detail. The
methodology was demonstrated for land-cover classification from
high resolution T™ simulation data.

Civeo (1989) designed an expert system for Level [ and Level
Il land-use mapping by employing expert image analysis rules
and heuristics to classify Landsat ™M data. Knowledge from
spectral, spatial and temporal domains was addressed. Physical
principles, expert intuition, and inference induction were em-
ploved for knowledge acquisition. The rule-based system was
developed in the expert system tool EXSYS. The system con-
tained 94 Level I and 49 Level Il classification rules. The expert
system read its input data through some record structures pro-
duced from the image analysis systems. A comparison has in-
dicated that the results were superior to those achieved through
supervised per-pixel classification.

VISIONS is a computer system for interpreting natural scenes
(Hanson and Riseman, 1978). VISIONS includes two distinct par-
allel iterative segmentation algorithms: the first aggregates edges
into boundaries while the second utilizes global histograms and
a local spatial analysis procedure to form regions. VISIONS com-
putes and symbolically represents regions, boundary segments,
and two-dimensional shape attributes. Multilevel structures are
used for representing the model being built (short term mem-
ory) and the stored world model (long term memory). Schemas
(frames) classes and instances represent objects in the scene.
The nodes of the abstract hierarchy include objects, volumes,
surfaces, regions, segments, and vertices. Control strategies de-
cide which partial model in the model search space needs to
expand, which level of representation to select, and which hy-
potheses at that level need to expand. The specific processes
are focusing for goal generation, expansion for models and ob-
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ject generation, filtering for hypothesis elimination, and veri-
fication (Figure 5).

Nagao and Matsuyamam (1980) described an expert vision
system for classification of multispectral data from suburban
scenes. Characteristic regions are a focal point of the analysis
and are defined by spectral and spatial features such as color,
size, shape, and texture. Examples would be large homoge-
neous, elongated, shadow, water, and vegetated regions. Spa-
tial characteristics of these regions have provided more consistent
results than spectral properties, especially in cases of changes
in imaging conditions. A production-like system is used to in-
corporate knowledge in the svstem. It employs production rules
and image features for the image extracted at a low-level. Heu-
ristics are expressed in locational constraints and spatial ar-
rangement rules. The choice of a production system architecture
was made because of its control mechanism. The authors felt
that the adaptive activation of rules available in the production
system architecture was best suited for a generic system that
can not assume or anticipate the instantiated objects of a given
scene. Facts and events were stored in a blackboard which was
accessed by independent knowledge sources which performed
object detection. An aerial scene analysis system called SIGMA
is described by Matsuyama (1987) and by Matsuyama and Hwang,
(1987). The system utilizes frames and is based on a blackboard
model for uniform communication among independent spe-
cialist modules. SIGMA exhibits mechanisms for the focus of
attention, conflict resolution, and the correction of early seg-
mentation errors.

Levine and Shaheen (1981) describe a system applied to nat-
ural scenes. The modules of the system are low-level processes,
measure analyzer, hypothesis initializer, hypothesis verifier, fo-
cus of attention, and scheduler. These processes communicate
through long-term memory and short-term memory similar to
the blackboard architecture. The low-level processes give simple
image segmentation. The measure analyzer computes measures
over regions and other structures. The hypothesis initializer
uses region descriptions and model information in long-term
memory to generate interpretations. The hypothesis verifier uses
measures from regions, relations between regions, and hy-
potheses about regions to verify and update interpretations.
The focus of attention module recognizes situations of interest
and generates actions. The scheduler controls execution of
modules. The data are arranged in a relational database, and
the system is implemented as a rule-based system. Nazif and
Levine (1984) used a rule-based system for low-level segmen-
tation into uniform regions and connected lines. A focusing,
mechanism was employed to concentrate on “interesting” parts
of the image.

Bintord (1982) reviewed computer vision systems and de-
scribed the development of the ACRONYM system. Points are
made in this article that most systems operate on two-dimen-
sional data, use fairly simple world models, have limited seg-
mentation procedures, and use only weak descriptors of shape
and texture (Brooks, 1983). The ACRONYM system uses gener-
alized cylinders for description of 3-D shapes. The models pro-
vided a representation which is independent of viewing angle.
The user describes the classes to be interpreted in the image
and their spatial relationships to other classes and subsets of
those classes. The system first deduces the volumetric models
from the descriptions of the users and then labels their objects
in the image for which it has a consistent interpretation. The
recognition strategy is bottom-up.

McKeown ef al. (1985) described a rule-based system for inter-
pretation of airport scenes. The rule-based system interprets the
scene by building interpretations based upon an initial segmen-
tation which is produced by a region growing program. Region
properties are extracted to determine an association between
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regions and airport features. An initial confidence is calculated
to detrmine how well a region fits the feature description. Rules
are organized into classes. Initialization rules determine the goal
states, map database, class expectations, and low-level segmen-
tation. Region-to-interpretation rules create an initial hyvpothe-
sis for each region. Local evaluation rules are used to enlarge
regions. Consistency rules apply spatial and context constraints
to modify the confidence of initial fragment hypotheses. Func-
tional area rules recongize when fragment interpretations can
be grouped into functional areas such as runways, taxiways,
and tarmac. Goal generation rules recognize situations incon-
sistent with airport structure in order to prune weak fragments
from further consideration. Model generation rules assemble
functional areas into a model for the airport scene. McKeown
(1987) emploved a flexible interface for a GIs that allows quer-
ying by pointing to an image or map display.

Nicolin and Gabler (1987) designed an expert system for
interpretation of suburban scenes from low-altitude aerial
photographs. A semantic network represented declarative
knowledge in their system. The semantic network is struc-
tured by two hierarchies of relations. The first hierarchy is
the generalization and specialization relation. Inheritance oc-
curs through specialization. The other heirarchy is by the
composition and decomposition relation. This hierarchy gives
the structure of complex objects from less complex objects.
The system provides for long-term memory and short-term
memory. Long-term memory contains the generic knowledge
of the semantic net. Short-term memory contains intermedi-
ate and final results of processing steps. Processing is carried
out by a series of modules. Low-level modules determine
bright, dark, and border areas. Medium-level modules incor-
porate segmentation algorithms. High-level modules perform
object identification. The control mechanism is bidirectional:
the data-driven (bottom-up) algorithms are used when there
is no active hypothesis to direct the location of elementary
components; the model-driven (top-down) mechanism takes
over as soon as a sufficient number of image fragments have
been identified to form a hypothesis.

Goldberg et al. (1983) have described a production rule-based
system for integrating multitemporal Landsat images for clas-
sification of forested areas. After a newly acquired image was
classified, rules based upon the present classification, the pre-
vious classification, and various measures of confidence are in-
voked by the data and a new decision is computed for each
pixel. The production rules were supplied by experts. Improve-
ments in the classification of subtle forest species were ob-
served. Automatic estimation of forest depletion by logging was
modeled by Goldberg ¢t al. (1985). The system is decomposed
into a number of specialist experts organized in a hierarchical
fashion around a series of blackboards which are used for com-
munications between the different levels. The lowest level ex-
pert provides the interface to the image processing algorithms.
Other experts included an expert for cloud-and-shadow deter-
mination, an expert for change detection, and an expert in maps
and geocoded databases. Goodenough ef al. (1987) have de-
signed an expert system in PROLOG that contains objects and a
metarule interpreter, a blackboard for intermediate results, a
scheduler, an explanation facility, and a contention arbitrator.
Control is both forward and backward. The low-level image
analysis takes place in FORTRAN. One of their applications en-
ables analysts to choose suitable features on classified T™ raster
images for matching against the stored vector based GIS data-
base. Selected image segments are transformed to bring them
into congruence with the map. Another expert system helps
the non-computer specialist to use all the tools of the system to
perform a given analysis task such as selecting suitable training
sites for spectrol classifications.
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Argialas and Narasimhan (1988a) have designed a rule-based
expert system, the Terrain Analysis Expert (TAX). Knowledge
pertaining to the landform-pattern element approach was rep-
resented in physiographic section models and landform models.
The physiographic section models represented the relations
among the sections and the landforms that can occur in them.
The landform models contained information about all the pat-
tern element values that were likely to be found in a landform,
and the likelihood of their occurrence. The system queried the
user for the certainties of the pattern element values of an un-
known site, fired appropriate rules, and reported the type of
landform that best matched the pattern elements of the un-
known site. TAX was implemented in the production system
architecture of the OPss language (Argialas and Narasimhan,
1988b. The domain-specific knowledge about terrain analysis
was separated into two components; one component consisting
of specific knowledge about landforms, stored as facts in the
working memory, and the other component consisting of the
general methodology for reasoning, stored as rules in the pro-
duction memory. To handle the uncertainties introduced during
problem solving in both the identification of the individual pat-
tern elements and the synthesis of the pattern elements in in-
ferring the landform of the site, it was judged appropriate to
associate certainty values with each pattern element value ob-
served on an aerial image and employ them in decision making.
Moreover, probability values were associated with each fact in
the models of landforms to express its strength in the identifi-
cation of a particular landform tvpe. Fuzzy sets and the Demps-
ter-Shafer theory of evidence have been applied for representing
pattern element values and combination of evidences (Narasim-
han and Argialas, 1989).

A frame-based model has been designed for knowledge rep-
resentation and problem solving in terrain analysis (Argialas,
1989a). Frames were developed to represent relations between
physiographic sections and landforms, landforms and their pat-
tern elements, and pattern elements and their associated like-
lihood of occurrence in each landform type. Frames have been
used to demonstrate inheritance of attributes from generic rep-
resentations of terrain units to their specific instantiations. Frames
have also been used to represent procedural knowledge by
embedding such knowledge in the form of attached predicates.
The methodology demonstrated the representation and reason-
ing capabilities of frames, backward and forward chaining rules,
and inexact reasoning for the interpretation of landforms from
aerial images. The Terrain Analysis Expert-2 (TAX-2) was imple-
mented in the frame- and rule-based expert system tool called
intelligence Compiler (IntelligenceWare, 1986). Class frames,
object frames, attributes, and values are a natural way to rep-
resent structure in terrain analysis, as is the specification of
inheritance hierarchies among terrain objects.

Mintzer (1989) designed an expert system for landform iden-
tification. An expert system shell - Knowledge Engineering
System (KES)—was used to encode domain-specific knowledge
relating photo-identifiable features to specific landforms. The
resulting interactive software system identifies individual land-
forms observed in stereo aerial photography based on a set of
key pattern elements elicited from the terrain analyst. This sys-
tem contains a large knowledge base, and it is almost in the
stage of an operational system.

[nterpretation systems have progressed so that the inferenc-
ing and control mechanisms are quite complex. The segmen-
tation algorithms used with image interpretation systems for
the most part have changed little. There has been improvement
in obtaining interpretation of the outputs of these segmentation
algorithms with better inferencing systems. It is clear that, to
achieve the analysis of complex aerial scenes, substantially more
complex systems are needed.

S INTERPRETATION MODELS BE3

AN OVERVIEW AND OUTLOOK

Knowledge-based image interpretation can upgrade the state
of image analysis capabilities from brute force mathematical and
statistical approaches to analysis techniques based on interpre-
tation logic and heuristics. Statistical and analytical algorithms
will be applicable in expert interpretation systems, but as low-
and medium-level labeling techniques selected and controlled
by conceptual reasoning. In creating an image interpretation
system, a number of problems must be addressed: the selection
and adequacy of the segmentation and classification algorithms,
the interaction between the segmentation/classification algo-
rithms and the inferencing system, the method of forming an
optimal global interpretation of a scene, and the integration ot
system modules and data structures so that the system can be
improved as additional knowledge about the scene becomes
known (Figure 4). There is no general theory for selecting the
measurements, features, description, representation, segmen-
tation, recognition, and classification techniques needed for the
implementation of generic interpretation systems. Although some
aspects of these problems have elegant theoretical formulation,
the state-of-the-art is strictly problem dependent. Heuristic fea-
tures are largely responsible for almost all the practical pattern
recognition systems to date. Feature and attribute selection rely
on the past experience, engineering intuition, and domain spe-
cific knowledge of the designer. One can only hope to select
some of the possible discriminatory features or attributes. At-
tribute selection processes may be validated but are not easily
optimized. Segmentation and classification methods are se-
lected and evaluated in light of their performance in a given
application based on experimentation and judgment. There is
a lack of universal and context independent segmentation and
classification techniques. The choice of one segmentation or
classification technique over another is dictated mostly by the
peculiar characteristics of the problem being considered. At this
point it seems that task dependent approaches are necessary
for high level image interpretation. In most cases, the designer
constructs the hierarchical/relational organization, semantic net,
or production grammar based on domain knowledge and his
experience (heuristic knowledge). For successtul interpreta-
tions, very detailed specific knowledge of the scene being ana-
lyzed is required. Automatic inference or induction techniques
are needed to assist knowledge elicitation. It is likely that in the
foresecable future the human will be a part of the analysis, and
one must consider augmenting his functions with reliable image
analysis components as they become available.

The analysis and interpretation of remotely sensed images at
a high level of detail is a complex task. Although some re-
searchers have produced promising results, more research is
required before interpretation systems can be usefully and cost-
effectively applied to problem solving in remote sensing. Sub-
stantial research is required to define how image interpreters
perform their job and to formalize this process before it can be
automated. If we cannot formalize how analysts go about their
tasks, we cannot automate their procedures. It seems that fund-
ing is highly justifiable in pursuing these research issues. From
an educational point of view, computer vision and expert sys-
tem courses need to be integrated in to remote sensing, map-
ping, and computer and information management curricular
(Argialas, 1989b). Students trained through such curricula will
be at the core of the professional community that will imple-
ment and use such hybrid geo-information systems,
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