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objective properties of the objects being studied. To do so, the 
model must assimilate the data and make them compatible with 
the search and matching strategies to be used. Each search and 
matching strategy corresponds to a different pattern recognition 
methodology. This is the reason for the diverse approaches to 
pattern recognition (Figure 2), e.g., mathematical or statistical, 
grammatical, syntactic or structural, and heuristic or descriptive 
(Tou and Gonzalez, 1974; Mero and Vamos, 1981; Nevatia, 1982). 

The decision theoretic or statistical pattern recognition approach 
is ideally suited for image interpretation applications where the 
pat tern  classes can be described by a se t  of numerical  
measurements or features (Figure 3). The measurement vector 
is composed of the gray level or spectral properties of the classes 
considered. The power of this approach is dependent on (1) the 
availability of features that are invariant to the expected changes 
within the pattern classes, (2) the amount of discriminating 
information contained in the measurements or features, and (3) 

the  effective utilization of this information in a suitable 
classification algorithm. 

The first step in this approach is the selection and extraction 
of a set of measurements or features from the pattern classes. 
The choice of features is problem dependent. In processing 
Landsat and SPOT satellite data or airborne multispectral data, 
one can use all the available bands or any subset thereof. To 
reduce the dimensionality of the data, and to eliminate highly 
correlated spectal bands,  principal component analysis 
(Karhunen-Loeve technique) or canonical analysis are often used 
for feature (band) selection. These techniques can also be used 
when the standard band vector is augmented by measures of 
texture, elevation, or multiple image sets (Swain and Davis, 
1978; Moik, 1980; Schowengerdt, 1983; Jensen, 1986). 

The classification of the feature vectors usually takes place by 
the use of a similarity measure, such as a distance measure, a 
discriminate function, or a likelihood function (Figure 3). If a 
complete set of discriminatory features for each pattern class 
can be determined from the data, then the patterns are 
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represented by a "feature vector," and the recognition and 
classification of patterns may be reduced to a simple matching 
process or a "table look-up" scheme. To take noise and distortions 
into consideration, as well as overlapping classes, statistical 
methods have been employed. In such methods, each pattern 
class is represented by a class-conditional probability density 
function, and the classification of unknown patterns is based 
on a parametric or nonparametric statistical decision rule. To 
determine the parameter values of a decision rule or the parameter 
values and the form of the class-conditional probability density 
function, various supervised and  unsupervised learning 
algorithms have been suggested (Swain and Davis, 1978; Moik, 
1980; Schowengerdt, 1983; Jensen, 1986). K-Means and ISODATA 
are methods of unsupervised clustering that determine, on the 
basis of observed measurements, the pattern classes responsible 
for generating such measurements (Niblack, 1986). 

Statistical pattern recognition techniques have been employed 
for image classification in remote sensing for the past 20 years 
for such diverse applications as land-cover identification, tree 
species classificatibn, water pollution mapping, geologic 
classification, and thermal mapping (Lillesand and Kiefer, 1987). 
These methods, however, have been based primarily on the 
multispectral characteristics of individual pixels without 
considering spatial context, that is, relations among neighboring 
points. Thus, they result in characterization of spectral classes 
rather than object identification and description, which are at 
the core of standard photointerpretation techniques. For example, 
while individual pixels can be classified as water bodies, it is 
not possible to infer that a certain patch of pixels comprise a 
lake or river. This shortcoming is partially due to the lack of 
utilization of knowledge pertaining to the scene objects during 
the recognition and classification processes. 

As the spatial resolution of the acquired remotely sensed data 
increases (MSS, TM, SPOT), spatial context can contribute to the 
interpretation of complex objects (Figure 1). Innovative models 
have therefore been developed to take into account temporal, 
spatial, and contextual information in addition to spectral 
information (Figure 2). Temporal information was employed 
through signature extension methods that employ the change 
of spectral features over time. However, registration and 
calibration problems seriously hamper the application of these 
methods. Classification of multispectral data by extraction and 

classification of homogenous objects has been carried out by 
Kettig and Landgrebe (1976). Spatial logic techniques have been 
employed involving spectral stratification, region formation, and 
iterative classification algorithms (Merchant, 1984). Classification 
accuracies have been improved by employing ancillary map data 
such as slope, aspect, and elevation (a) before classification for 
stratification, (b) during classification by modifying the n priori 
probabilities in the maxinium likelihood classifier or as another 
layer in the classification process, and (c) for post-classification 
sorting by resolving problematic spectral classes (Hutchinson, 
1982; Richards 1.t nl., 1982; Schowengerdt, 1983; Jensen, 1986; 
Niblack, 1986). However, even these spatial/contextual 
classification methods did not address structural and semantic 
relations between features or objects, that is, the underlying 
structure of the scene represented in the image. For recognition 
of complex and structured image patterns, such as highways 
and airports, drainage patterns, and landforms, the "feature 
vector" representation and the statistical classification approaches 
are not adequate. 

The weakness of the statistical approach in classifying complex 
image patterns, as these usually appear on high resolution aerial 
images, is its inability to cope with what is thought of intuitively 
as the "structure" of the pattern. Structure has been defined as 
the configuration of elements, parts, or constituents in a complex 
entity or the interrelation of parts or the principle of organi~ation 
in a complex entity (Morris, 1979). There does not seem, though, 
to be anything in nature of reality that is structured n priori 
(Robinson and Petchenik, 1976). Structure is what is attributed 
by an expert to an arrangement of components which has more 
meaning than that obtained from simply an aggregation of the 
parts. While an image pattern may have the potentla1 for being 
regarded as having structure, the actual conception of that 
structure must be provided by an expert. 

A structural description of a,pattern can be described as an 
organization of subpatterns, objects, or elements. A subpattern 
can be again considered as an organi~ation of further subpatterns 
or objects, and s o  on.  A n  organization is a complex of 
relationships that subsist between the elements that are 
recognized. Thus, a method of recognizing a pattern is to search 
and find if a particular organization exists, that is, search for a 
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certain configuration of objects satisfying particular relationships 
(Narasimhan, 1974). Structural descriptions are often employed 
by expert photointerpreters in identifying complex image patterns 
by articulating their several features. For example, an interpreter 
can identify a certain drainage pattern as being of a certain type 
by recognizing that (1) it is composed of a main stream, from 
which issue primary tributaries, and from which main stream 
and primary tributaries issue secondary tributaries, and (2) it is 
characterized by specific attributes of and relationships among 
the main stream, and the primary and secondary tributaries 
(Argialas et al., 1988). Therefore, to recognize a drainage pattern, 
it is necessary to seek, describe, and represent syntactic and 
semantic components of the parts and the relations among them. 
Classification techniques based on such structural descriptions 
of image patterns have been proven to be more comprehensive 
schemes than classification techniques based on a per-pixel feature 
vector, which is a degenerate description, with the structural 
information not included. 

To effectively describe and represent the photointerpreter's 
knowledge, expressing the structure of complex patterns, that 
knowledge must somehow be stored and made available during 
the analysis and recognition processes. Clearly, the feature vector 
approach is not adequate for such a representation. It has been 
suggested that such knowledge can be recorded as a structural 
model, which can represent images in terms of perceived image 
structure (Pavlidis, 1977). A structural model can be used to 
guide the choice of image or object partitioning, attribute 
extraction, and classification operations. Structural models are 
based on defining primitive pattern elements and identifying 
allowable structures in terms of relationships among primitives 
and substructures that combine primitives (Kanal, 1974). 
Structural models combine domain specific knowledge about 
the scene context together with specific symbolic representation 
in order to produce a strutural description (Duda and Hart, 
1973; Rosenfeld and Kak, 1982). Any model that is at least 
incidentally concerned with decomposing a pattern into 
subpatterns (alternatively, synthesizing it from subpatterns) is 
called a linguistic (Rosenfeld and Kak, 1982), structural (Pavlidis, 
1977), or syntactic (Fu, 1974) model (Figures 2 and 3). A model 
that utilizes in any way the syntactic description of a pattern is 
called a syntax-directed, descriptive, implicit, or relational model. 
If the grammar on which such a description is based is explicitly 
directing the analysis, then the model is called syntax-controlled, 
grammatical, or explicit (Fu and Swain, 1971). 

In the grammatical or linguistic approach, patterns are 
decomposed in a hierarchical concatenation of subpatterns 
analogous to the syntactic structure of languages, and are defined 
by a formal grammar. The essence of this approach lies in the 
selection of pattern primitives and subpatterns, the assembling 
of the primitives and their relationships into pattern grammars, 
and analysis and recognition in terms of these grammars (Figure 
3). Grammatical pattern recognition has adapted the techniques 
of formal language theory, which provide both a notation 
(grammar) and an analysis mechanism (parsing), to the problem 
of representing and analyzing patterns containing a significant 
syntactic content (Fu and Swain, 1971; Fu, 1974; Pavlidis, 1977; 
Gonzalez and Thomason, 1978; Fu, 1980a; Pavlidis, 1982). 

The syntax of an image pattern is defined as the juxtaposition 
and concatenation of subparts. The rules governing these 
compositions are often specified by the "pattern grammar." A 
pattern grammar is composed of a set of rules of syntax which 
define the permissible or desirable relations between these 
subparts. A syntax-controlled analysis employs the syntax of 
the grammar in the analysis process. The language which 
provides the structural description of patterns, in terms of a set 
of pattern subparts and primitives and their composition relations, 

is often called "pattern description language" (Fu and Rosenfeld, 
1976). A pattern grammar characterizes a structural pattern in 
the syntactic approach, in a similar way that a measurement 
vector (spectral signature) characterizes-a pattern class in the 
statistical approach (Figure 3). 

A pattern primitive is defined by two components: a token 
or symbol from a finite alphabet, and an associated list of 
attributes consisting of logical, numerical, or vector values 
(Thomason and Gonzalez, 1981). Commonly used primitives 
include edges, lines, curves, and angles (You and Fu, 1979; Fu, 
1982a). Primitives are described by topologic and geometric 
attributes such as length, position, and orientation. Because the 
primitives do not embrace any structural information, they are 
usually derived by non-syntactic methods (Fu, 1974). The feature 
extraction problem in the statistical pattern recognition approach 
and the primitive extraction problem in the syntactic approach 
are similar in nature except that the primitives in the syntactic 
approach represent subpatterns whereas the features in the 
statistical approach may be any set of numerical measurements 
taken from the pattern (Fu, 1974). The primitive extraction 
problem is equivalent to the low-level segmentation methods 
(Marr, 1982) discussed later. 

Each pattern cIass is usually encoded as a string, tree, or 
graph, composed of primitives from the set of permissible 
primitives of the language. Then a pattern grammar is constructed 
with the property that the language it generates consists of 
sentences or patterns which belong exclusively to one of the 
pattern classes. Subsequently, this grammar is used for pattern 
classification by employing a procedure for determining whether 
or not a given pattern of unknown origin represents a valid 
statement of the language generated by that grammar. The 
procedure used to determine whether or not a string, tree, or 
graph represents a sentence which is grammatically correct with 
respect to a given language is called parsing and is performed 
by the parser or analyzer (Figure 3). One way that the parser 
may categorize the input patterns is by matching the string, 
tree, or graph of an unknown pattern against the diverse 
prototype or candidate strings, trees, or graphs (Fu, 1976; Fu, 
1980a). 

To provide a way to deal with geometrical aspects of grammatical 
inference, syntactic-semantic models were developed, through 
attributed grammars (Tsai and Fu, 1980; Fu, 1982a). In attributed 
grammars, each primitive has associated with it geometric 
attributes such as length, chord length, curvature, and symmetry, 
and the grammatical rules have a syntactic and a semantic 
component (Fu, 1982a). Learning from sample patterns, that is, 
learning a grammar from a set of sample patterns, is still in its 
early development in relation to learning capabilities which would 
be acceptable as a general tool for syntactic pattern recognition 
(Fu, 1980a). Conventional parsing requires an exact match 
between the representation of an unknown pattern and those 
generated by the pattern grammars, and thus it does not apply 
to noisy and distorted patterns. Stochastic grammars have been 
developed to take into account measurement noise, distortions, 
and ambiguity due to lack of complete knowledge about the 
characteristics of pattern classes (Fu, 1977; Gonzalez and Wintz, 
1977). To circumvent exact matching, a parsing procedure, called 
error-correcting parsing, was developed involving a selected 
similarity measure (distance measure or likelihood function) (Tsai 
and Fu, 1980; Fu, 1981). 

The grammatical approach has been viewed as two distinct 
processes - primitive extraction followed by grammatical 
description. In separating the grammatical analysis of structure 
from the extraction of primitives, each process is excluded from 
information available to the other (Watanabe, 1971; Kanal and 
Chandrasekaran, 1972). This is a weakness similar to the one 
encountered in the bottom-up segmentation methods, discussed 
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later, where the extraction of low-level objects proceeds in 
ignorance of the a priori restrictions known to the high-level 
models. 

Parsing becomes available for grammatical analysis only if the 
class of patterns of interest can be specified by a formal grammar. 
This has  been achieved with some success for restricted 
applications (Fu, 1977; Fu, 1980b; Kanal and Rosenfeld, 1981; 
Fu, 1982~). Li and Fu (1976), Fu (1976), and Brayer ct a/.  (1977) 
described a tree grammar approach which interprets highways 
and rivers in Landsat images. 

The search for grammars describing large classes of natural 
patterns has not yet been very successful (Nevatia, 1982). When 
a formal grammatical model is not explicitly used, the terms 
"ad-hoc" or "heuristic" or "descriptive" (Figure 2) are used to 
describe the image model (Kanal, 1974). Grammars can be 
employed in a heuristic capacity for generating information 
structures more than for generating the actual data structures. 
For example, labeled graphs have been used to represent 
information structures, so that each node of the labeled graph 
corresponds to an object, and is labeled with a list of property 
names and property values that hold for that object; and each 
arc between pairs of objects is labeled with a list of names and 
values of the relations that hold between that pair of objects 
(Findler, 1979; Rosenfeld and Kak, 1982; Fu, 1981; Shapiro, 1980; 
Thomason and Conzalez, 1981; Winston, 1984). Classification 
is often implemented by a series of tests that are designed to 
evaluate the occurrence or nonoccurrence of certain subpatterns 
or primitives, or certain attributes and their actual values, or 
certain combinations of them. These tests may be embedded 
within a decision tree, a rule-based system, or a hierarchical 
classification model. 

Argialas ct 01. (1988) designed and implemented structural 
models that expressed drainage patterns in terms of their 
constituent elements, their attributes, and the relationships 
among them. Eight pattern types were quantitatively described 
and classified. The methodology to classify these patterns 
consisted of drainage pattern models, hierarchical and relational 
models, attribute extraction, and classification strategies. 

An efficient pattern recognition system for aerial images 
requires integration of statistical, linguistic, and heuristic tools 
in various stages of the design. The term "hybrid system" has 
been employevd to describe pittern recognitio; systebs in which 
both numerical ktatistical. decision theoretical) and aualitative 
(structural, synta'ctic, heuristic) techniques are cdmbineh (Nadler, 
1982). Fu (1982b) identified five ways to mix the decision-theoretic 
approach and the syntactic approach. They are: decision theoretic 
followed by syntactic approach, use of stochastic languages, 
stochastic error-correcting syntax analysis, matching of stochastic 
graphs, and use of stochastic attributed grammars. In the 
decision-theoretic followed by syntactic approach, pattern 
primitives are recognized by a decision-theoretic method (Fu, 
1982b). For example, each pixel in a Landsat image can be 
classified by a decision-theoretic method, such as the maximum- 
likelihood classification rule using multispectral measurements. 
Structural (or spatial) relations among various pixels can be 
described by a syntactic method. Specifically, the structure of 
rivers was represented by trees with water-like pixels, and was 
characterized by a tree grammar. Consequently, the recognition 
of rivers from all water-like pixels was accomplished by using 
a tree automaton (Fu, 1981; Fu, 1982b). Another example of 
mixing the two approaches has been the explicit inclusion of 
semantic evaluations simultaneously with syntactic analysis by 
means of attributed grammars (You and Fu, 1979; Tsai and Fu, 
1980). 

IMAGE ANALYSIS AND COMPUTER VISION 

The domain of image analysis and computer vision extends 
beyond that of image classification, which is the core subject of 
pattern recognition techniques. It encompasses extraction of ob- 
jects, description of their structure and mutual relationships, 
and analysis of their similarities and differences with other known 
objects (Nevatia, 1982; Suen and Mori,1982). Image analysis in- 
cludes image coding, compression, enhancement, restoration, 
reconstruction, description, representation, segmentation, and 
recognition techniques. The first five techniques have been de- 
veloped since the late sixties and have traditionally been the 
concern of the field of image processing, while the last four 
have been recently evolved, primarily in association with com- 
puter vision and artificial intelligence techniques. 

Computer vision is the study of computational systems that 
interpret natural scenes, that is, they produce descriptions of a 
scene from digital images of that scene. The emphasis is in the 
design and implementation of effective methods that represent 
and exploit knowledge of the world and knowledge of how 
images are formed. This knowledge includes properties of sen- 
sors, geometry and irradiance relations of stereoscopic models 
(Alvertos ct al., 1989), laws of physical optics, and information 
about possible configurations in the world. Computer vision 
grew out of image analysis, pattern recognition, and perceptual 
psychology. Computer vision is often considered part of the 
field of artificial intelligence and knowledge-based systems be- 
cause it aims at building machines that behave intelligently in 
perceptual domains (Ballard and Brown, 1982). Artificial intel- 
ligence is the study of activities that require intelligence (Win- 
ston, 1984). Knowledge-based expert systems (KBES) is a field 
of artificial intelligence that emphasizes specific but difficult 
problem solving requiring domain specific knowledge (Hayes- 
Roth et a/., 1983; Harmon and King, 1985). 

In the earlier developments in image analysis, there was no 
sharp dividing line between knowledge-based (high-level, se- 
mantic) models and general purpose (low-leve1,non-semantic) 
models (Zucker ct nl., 1975), partially because the knowledge- 
based methodology was not available to provide the tools to do 
so (Figure 1). Vision systems were programmed in procedural 
languages, which did not provide for separation of declarative 
domain knowledge from search and control algorithms (Figure 
3). Procedural representations of knowledge did not provide a 
means for representing expertise in an intelligible, inspectable, 
and explicit form. With the growing need for incorporating do- 
main-specific knowledge in image analysis, and the subsequent 
development of knowledge-based techniques, the distinction 
between the non-semantic and semantic information became 
feasible (Marr, 1982). A major area of contribution of the arti- 
ficial intelligence and expert system methodologies in computer 
vision has been the study of how domain specific knowledge 
can be represented and used to control the process of extracting 
meaningful descriptors and objects from images (Horn, 1978; 
Marr, 1982). It is now possible to use hybrid programming en- 
vironments, where object-oriented programming, frames, rule- 
based programming and methods, or active values can be em- 
ployed at the appropriate level of problem representation. As 
a result, image analysis, computer vision, and artificial intelli- 
gence are inevitably and inextricably linked. 

IMAGE DESCRIPTION, REPRESENTATION, AND 
SEGMENTATION 

From a conceptual point of view, information in images can 
be described at many levels of abstractions or domains. An 
abstraction may represent the scene depicted in the image, the 
three-dimensional (3-D) objects of the scene, or the image do- 
main (Clowes, 1971). The scene domain consists of knowledge 
and models of the semantic objects depicted in the scene. An 
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object can be any relevant feature in the scene which is to be 
detected and recognized. The world domain consists o f  the rep- 
resentation of  physical objects in three-dimensional space. The 
iniage domain describes only the spatial variation o f  intensity 
obtained through the imaging geometry consisting o f  the source, 
object, and sensor. The image domain is a domain o f  observable 
facts which can be obtained from the digital image while the 
scene domain is an abstract domain in which objects are niod- 
eled and relations are defined. The world domain consists o f  
all physical objects with their surfaces and surface material which 
relate to observable properties such as reflectance and texture. 
Each object, according to the imaging geometry, will project an 
image in the image domain. The image domain is coniposed o f  
pixels, which are single points, and patches, which are com- 
posed o f  connected sets o f  pixels with some uniformity property 
such as uniform gray level or texture. In general, patches will 
have to be grouped together to indicate a surface o f  a physical 
object in the world domain. A part o f  the image, perhaps a set 
o f  patches which corresponds to an object surface, is often called 
a region. 

Another conceptual classification recognizes three levels o f  
representation: high, medium, and low (Ahuja and Schachter, 
1983). High-level representations involve highly semantic 
(meaningful) objects relating to image understanding itself. High- 
level representations allow the interpretation of  an image in 
terms o f  the goals o f  the analysis. Although high-level objects 
are the ultimate concern, even these objects must be defined 
through medium-level objects and primitives. Medium-level 
representations provide simple aggregations o f  the basic prim- 
itives. Primitives are the most basic image elements that do not 
contain any semantic information and that can be meaningfully 
and adequately incorporated in the higher level o f  representa- 
tions (Marr, 1982). 

Most approaches for obtaining an image description start with 
the primitives, and synthesize higher representations by aggre- 
gating lower-level objects to higher-level objects in bottom-up 
hierarchical procedure. The first step, in this procedure, is the 
identification and labeling o f  priniitives. Further grouping o f  
these primitives may take place, to identify higher-level, more 
meaningful objects. This process o f  partitioning or synthesizing 
an image into its constituent objects is called segmentation 
(Thomason and Gonzalez, 1981; Rosenfeld and Kak, 1982). Seg- 
mentation methods can be characterized according to the level 
o f  semantics employed into three levels: low, medium, and high 
(Figure 3). A low-level segmentation method has as input the 
grey level iniage pixels and as output the primitives such as 
edges, blobs, lines, and arcs (Marr, 1982). Low-level segmen- 
tation does not depend on one's knowledge or expectations 
about the particular situation, but on what it is possible to com- 
pute from an image. Medium-level segmentation corresponds 
to the intermediate details o f  the analysis - the nodes which 
set up partial results from the primitive elements or which de- 
compose the highest level of description into substructures (Mero 
and Vatnos, 1981). A segmentation method is considered high 
level i f  its output is the final interpretation of  the image. High- 
level segmentation approaches are more sensitive to the specific 
needs o f  recognition and to the context o f  the image (Ballard 
and Brown, 1982; Marr, 1982). 

LOW- AND MEDIUM-LEVEL SEGMENTATION METHODS 
Virtually hundreds o f  low- and medium-level image analysis 

algorithms have been proposed in the literature over the past 
20 years (Gonzalez and Wintz, 1977; Ballard and Brown, 1982; 
Pavlidis, 1982; Rosenfeld and Kak, 1982; Haralick, 1985). Not 
surprisingly, this is still an active area o f  research because o f  its 
importance as a major processing step in any practical appli- 
cation. The choice o f  one segmentation technique over another 
is dictated mostly by the characteristics o f  the problem being 

considered (Figure 4).  Data structures for representations o f  low- 
and medium-level objects have been described by Shapiro (1979) 
and Samet (1980). 

The most common operators for low-level segmentation are 
neighborhood operators which examine the value o f  a small 
neighborhood o f  pixels around a given pixel and produce a 
resultant value that is a function o f  all pixel values in the neigh- 
borhood. Low-level neighborhood operators have focused upon 
edge detection and strategies for connecting edge points into 
lines. This approach has intuitive appeal because the eye is 
sensitive to edges and humans can recognize objects from the 
object's outline (Marr, 1982). These approaches have encoun- 
tered difficulty in practice because global parameters may dic- 
tate correct interpretations. Reviews o f  edge operators and 
attempts to overcome some o f  these problems are given in Brooks 
(1978) and Peli and Malah (1982). 

Medium-level segmentation algorithms include region grow- 
ing, histogram thresholding, boundary detection, multispectral 
classification, probabilistic relaxation, and texture and shape 
analysis (~ igurk  4). Region growing methods were developid 
to overcome some o f  the problems with edge detection (Zucker, 
1976). In region growing one attempts to locate areas o f  the 
ilnage that share some uniformity property, such as uniform 
density, similarity proximity, and good continuity and closure. 
The most common property used by far is uniformity o f  gray 
level. The hope is that it is easier to locate regions with a uni- 
form property than to measure dissimilarity with edge detec- 
tors. Pavlidis (1977) described split and merge techniques for 
region formation using various methods to measure region sim- 
ilarity. A tool often used with split and merge techniques is the 
region adjacency graph. It is accessible by region label and con- 
tains, for each region, a list o f  all adjacent region labels. All the 
various thresolding methods using histograms are a form o f  
region formation (Ohlander 1.t nl., 1978; Trivedi and Harlow, 
1985; Kapur ct nl., 1985). 

Color (Ohlander ct nl., 1978), multispectral (Kettig and Land- 
grebe, 1976), and texture properties (Chen and Pavlidis, 1979) 
have been used to some extent in region formation and object 
recognition. For multispectral classification, unsupervised clus- 
tering techniques are used to partition the measurement space 
into spectrally distinct classes, followed by image labeling through 
reference to training data. Hybrid supervised and unsupervised 
approaches are also available (Schowndegerdt, 1983). The use 
o f  textural representations to supplement the spectral infor- 
niation o f  rem"tely sensed images$nerally produces improved 
accuracies (Haralick, 1979; Conners ct nl., 1984; Harlow ct nl., 
1985) Relaxation techniques have been employed to reduce ani- 
biguities in segmentation by taking into account local context. 
I'rior likelihoods are usually assigned to each pixel as belonging 
to each o f  a set o f  image objects. Further refinement o f  these 
probabilities takes place iteratively according to probabilities o f  
the neighborhood o f  each pixel. Probabilistic relaxation labeling 
techniques have been applied for the enhancement o f  rivers in 
Landsat images (Rosenfeld ct nl., 1976; Zucker, 1976). 

Shape-the forin of  an object-is one of  the most important 
interpretation elements. Many natural and manmade interpre- 
tative features such as deltas, oxbow lakes, and drainage pat- 
terns are named from distinctive shapes and forms. Shape 
analysis consists o f  producing a description o f  the form o f  an 
object that can be used for identification, grouping, or further 
processing o f  the object (Shapiro, 1980). Shape analysis tech- 
niques can be divided into structural and nonstructural tech- 
niques. Nonstrurtural techniques describe a shape as a vector 
o f  scaler features. For example, the boundary o f  the shape can 
be expressed as a function - the function approximated by a 
Fourier series - and the coefficients o f  the Fourier series used 
for shape descriptors (Gonzale~ and Wintz, 1977). A structural 
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FIG. 4. Potential combinations of image interpretation techniques 

description of the shape of an object consists of primitives, sub- 
parts, properties of the subparts and of the whole, and rela- 
tionships among the subparts. Structural descriptions of shape, 
like those described earlier under grammatical models, tend to 
be more robust than nonstructural descriptions and can de- 
scribe more complex objects (Shapiro, 1980). 

HIGH-LEVEL (KNOWLEDGE-BASED) SEGMENTATION 
METHODS 

High-level segmentation utilizes whatever domain-specific 
knowledge is available about the class of scenes that it is to 
"understand." Domain-specific knowledge has many forms, in- 
cluding descriptive definitions of entities, concepts, and objects 
and their relationship to each other and criteria for making de- 
cisions. With the fusion of artificial intelligence techniques in 
computer vision, knowledge representation started to shift from 
procedural to declarative forms. A procedural representation of 
a fact is a set of instructions that, when carried out, arrive at a 
result consistent with the fact, while a declarative representa- 
tion of a fact is an assertion that the fact is true. Usually, in the 
procedural instructions, there is no explicit statement of a fact. 
The fact is contained only in the list of results of the procedure. 
Several declarative and hybrid knowledge representation meth- 
ods, such as semantic nets, predicate logic, rules, frames, and 
blackboards, have been employed for processing semantic in- 
formation in computer vision (Figure 3). Symbolic problem solv- 
ing methods, such as modus ponens, resolution, and inexact 
reasoning, have been employed for drawing inferences (Ballard 
and Brow, 1982). Control schemes such as forward and back- 
ward chaining, depth first, and breadth first search are em- 
ployed for controlling attention during problem solving (Hayes- 
Roth ct nl., 1983). 

A semantic network can be used to represent declarative 
knowledge. An entity (node) of the network represents general 
objects, and arcs represent relationships between objects (Ballard 
and Brown, 1982). A token or instance of a node is a specific 
example of the general type. This is described by an 1s-A link 
or arc. For example, a road might be a node and a road in a 
specific location would be an instance of the object (Harlow et 
nl., 1986). This results in a copy being made of the node which 
describes this specific example. This might include specific values 
for the properties of the node, for example, the width of the 
road. Another special arc or link is the a-kind-of or AKO link, 
which indicates generalization (Winston, 1984). For example, a 
car is a-kind-of vehicle. Properties in a semantic net are inherited 
th rough  t h e  AKO link. Semantic networks  a re  stat ic 
representations and require an algorithm to operate on the 
network to generate and evaluate inferences. 

Knowledge representation in first-order predicate logic 
provided the basis for logic programming languages such as 
PROLOG. The formalism permits expression of facts and rules. 
Simple declarative facts can be expressed as instantiated 
predicates (relations) and rules as "predicate X if predicates A, 
B, C." Reasoning is implemented as depth-first search and 
backward chaining (backtracking). Inferences (deductions) are 
made by the resolution principle. Predicate calculus offers 
consistency, formality, and expressiveness. However, no  
hierarchical framework exists in which rules can be embedded, 
and reasoning is strictly monotonic. Logic programming does 
not readily provide means for handling defaults and exceptions 
as frames-do. 
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as a frame instance. that is. the slots are filled to determine if 

The most widely used schemes for knowledge representation 
are rule-based systems (Harmon and King, 1985). Among the 
architectures of rule-based systems, the production system 
architecture has been most popular (Brownston et R I . ,  1985). 
It is a simplified version of the blackboard architecture 
discussed below. A production system consists of a knowledge 
base and an inference engine. The knowledge base consists 
of data (objects, facts, goals) and rules. Data are stored in the 
working memory, which serves as a global database of symbols 
representing facts and assertions. The set of rules constitute 
the program's core, which is stored in the production memory 
(Winston, 1984). Each rule has a condition part, which consists 
of one or more antecedent clauses, and an action part, the 
consequent, which may create or modify working memory 
elements. The inference engine of the system determines which 
rule instantiations are relevant to a given working memory 
configuration and assembles them in a conflict set. The 
inference engine then uses a conflict resolution strategy to 
fire one or more rules from the conflict set. Some of the 
strategies followed for selection of a rule are recency of the 
working memory element involved in the condition part of 
the rule, and specificity of the rule measured by the number 
of condition elements (Brownston et al., 1985). 

There are two ways that rules can be used in a rule-based 
system: forward chaining ( O P S ~  like) and backward chaining 
(PROLOG like). In forward chaining, rules are matched against 
facts to establish new facts or hypotheses. In backward chaining, 
the system starts with what it wants to prove and tries to establish 
the facts it needs to prove it. This matching of rule conditions 
to the facts produces what are called "inference chains." The 
inference chains indicate how the system used the rule to make 
the inference, and they can be represented in an AND/OR tree. 
The methods of selecting and firing rules in forward-chaining 
rules is different from those of backward chaining rules. 

Rules are appropriate for image interpretation because a major 
part of domain-specific knowledge results from empirical 
associations (heuristics) developed through years of experience 
in a particular area, which may be expressed as heuristic rules. 
However, representing knowledge as  a n  unordered a n d  
unstructured set of rules has certain disadvantages. For example, 
one cannot easily express the structure of the domain in terms 
of taxonomic, or part-whole, relations that hold between objects 
and between classes of objects. Frames provide for such a 
mechanism. 

Frames (scripts of schemata) are  structural models for 
representing stereotyped objects or situations (Minsky, 1975). 
A class frame is a collection of all the relevant information that 
describes a class of objects. An object or instance frame is a 
collection of all the relevant information that describes an 
individual or instance of a class frame. A frame has slots that 
contain properties and relationship information about classes 
and objects as well as procedural attachments. The slots specify 
what we expect to know about an object class and how we 
expect to acquire it. The number and type of slots are fixed 
when the frame is defined. Procedural attachments or active 
values are rule sets or procedures associated with the slot of a 
frame which must be invoked before a value can be assigned 
to or read from that slot. Thus, they behave like "demons" 
monitoring changes and uses of the values. These attachments 
may contain links to other frames, slot values, predicates, 
procedures, and hypotheses or conjectures about other objects 
or classes. Frames can control the invocation of knowledge 
sources (large rule sets) within the frame context of a blackboard 
system. Once a frame is hypothesized, it is invoked or instantiated 

the frame matches the object being considered. 
The hierarchies of a vision system as described by Kanade 

(1977) can be expressed in a frame system in an explicit manner. 
These hierarchies are a processing unit hierarchy, a detail 
hierarchy, and a composition hierarchy (Figure 5). Within the 
image domain the processing unit hierarchy refers to the size 
of the areas in an-image such as pixels or regions. 
The detail hierarchy, which is in both the scene and image 
domains, refers to the precision of description. The description 
may range from crude to very detailed. In the scene domain 
this might be the precision of shape descriptors. In the image 
domain this may be the resolution of the data. The composition 
hierarchy includes part-of relations, such as object to subobject 
designations. Complex objects are represented as compositions 
of simpler objects, thus creating a composition hierarchy. The 
recognition of a complex object involves the recognition of its 
component parts such that the constraints of the frame are 
satisfied. 

Frames can contain both declarative (property values) and 
procedural knowledge (procedural attachments) which is 
important in a combination top-down and botton-up control 
strategy. The procedural information is useful for guiding the 
search process for instances of the object class. A procedural 
approach is most useful when the structure of the image is well 
known so that the operators and their sequencing can be 
determined. This is the same class of scenes in which a top- 
down approach is most useful. When the scenes have great 
variablility in structure, then the analysis process will be more 
data driven. In this situation, large numbers of variables will 
have to be computed and verified, which complicates the control 
in a procedurally oriented process. A declarative approach will 
have advantages in this situation. In a top-down search a frame's 
hypothesis provide parameters to the subframes. In a bottom- 
up search the hypothesis expectations can restrict the subframes 
which can invoke the frame as a supergoal. Verification is done 
by matching of the knowledge base to the data. One uses image 
features computed from the input data to find candidate objects, 
and then one attempts to match the expectations of each candidate 
object to the image features. That is, one uses image features 
to reference into a frame which limits the expectation of the 
next step in the analysis. This allows one to selectively activate 
knowledge. 

Because of their structure, frame systems are useful for image 
interpretation because expectat~ons about the form, relations, 
and recognition procedures of the objects play an important role 
in image interpretation. 

In the organization of a "blackboard system architecture" 
(Figure 5), each node in the object hierarchy has a package of 
"how-to" knowledge, specific to that node, which is often 
represented in the form of a cluster of rules called knowledge 
sources (Engelmore and Morgan, 1988). Usually, there is no 
need for a uniform mechanism which operates on  some 
description of the knowledge within each knowledge source, 
but, rather, each knowledge source has different kinds of 
knowledge and different mechanisms for carrying out  its 
reasoning (Chandrasekaran, 1983). The generated solution 
elements by the independent knowledge sources are recorded 
on the blackboard or short term memory (STM). The "blackboard," 
like the working memory of a production system, is a global 
database for recording solution elements generated during 
problem solving (Figure 5). At any given time the several 
knowledge sources that contribute to the solution of the problem 
communicate only by writing on the blackboard. Blackboards 
have mechanisms associated with them for invoking pattern 
directed procedures (active values or  demons)  and  for 



COMPUTATIONAL IMAGE INTERPRETATION MODELS 

IMAGES a MAPS d 
MODEL SEARCH SPACE 

IS-A Hierarchy (instance-class) 
AKO Hierarchy (class-subclass) 
Part-of Hierarchy 
Classification Hierarchies 
Other Conceptual Hierarchies i 

PROCEDURE I 
Georeferenc~ng 
Preprocessing 
Feature Extractlon 
Class~f~cat ion 
Edge Extractlon 
Segmentation 
Region Growlng 
Lane and Curve Detection 
Boundary Analysis 
Shape Analysis 

CONTROL 
Wh~ch KS, When and How Applied 

Hierarchical or Heterarchical Structure 
Hypothesize Test Paradigm 

Hypothesis' lnltializatlon 
Focusina: Goal Generation 
~ x p o n s ! i n  Model Generot~on 
Exoanslon Oblect Generat~on 
Verificat~on: Consistency Enforcer 

7 
AGENDA SCHEDULER OF POTENTIAL ACTIONS 

I 
Deduced or Instantiated Object Classes I Objects, Frames, Schemes I Frame Classes I 

KS Existence 
K S  Purpose 
K S  Interact ion 

1 Part ia l  and Final 
Plans. Goals, Hypotheses 

KSs 
Logic Assertions 
Rule Sets  
Procedures/Active 

VOlUSS 
L I I 

S T M  LT M Modular Knowledge Saurces(KS) 
Imoge Specific Doma~n Speci f ic  (Product~on Memory) 
d lick board w h a t - i s  Descriptions HOW-to Processes - 

KNOWLEDGE REPRESENTATION 

FIG. 5. A blackboard architecture model for image interpretation. 

synchronizing their activities (Hanson and Riseman, 1978). Often 
potential actions awaiting execution are recorded in the agenda 
of the blackboard. A scheduler can be used for selecting the 
knowledge source to be executed at a given time by determining 
which pending action from those stored in the agenda should 
be executed next. A consistency enforcer maintains a consistent 
representation of the emerging solutions (Hayes-Roth et nl., 1983). 
This niay take the form of likelihood revisions or a belief 
maintenance system that combines the information obtained 
from tlie different hiowledge sources. Several belief maintenance 
systenis have been proposed; some are heuristic and some have 
a theoretical basis. Fuzzy logic (Zadeh, 1978) and the Dempster- 
Shafer theory (Shafer, 1976) are examples of systems with a 
theoretical base. 

The distribution of knowledge among various specialists 
(knowledge sources) niodularizes the knowledge base in a natural 
way. The criteria for distribution, that is, deciding which piece 
of knowledge should go in what knowledge source, is problem 
dependent. Separation of the various types of knowledge in 
separate knowledge sources is desirable because it provides 
modularity; however, it does complicate the problem of control 
and conimunication. 

INFERENCE AND CONTROL STRATEGIES FOR IMAGE 
SEGMENTATION 

A knowledge-based image interpretation system can be con- 
ceptualized as being composed of preprocessing, segmentation 
and classification procedures, a knowledge base of models and 
how-to knowledge, a database of facts and hypotheses pertain- 
ing to the current image, and an inference and control system 
(Figure 5). The segmentation and classification procedures are 
used to extract image features and to label and describe mostly 
edgesand regions. The role of the inference system is to se- 
quence or select the models in the knowledge base, match the 
extracted iniage features against the models, resolve conflicts, 
and track the inferences. The function of the control portion of 
the inference engine is to decide how to start the reasoning 
process with all its facts and rules, and how to resolve conflicts 
and decide which rules to fire among conflicting rules that are 
ready to fire. Three control strategies are often employed: top- 

down, bottoni-up, and a combination of the first two strategies. 
This terminology has its origin and was adapted from gr'itm- 
matical pattern recognition and formal language theory in anal- 
ogy to grammatical parsing that takes place in a top-down or 
bottom-up manner. In a top-down approach, one starts with an 
assumption or hypothesis about the objects on the image 'incl 
their appearance. Each hypothesis is then deconiposed into 
subhypotheses and so on. The lowest level hypotheses must 
then be verified by extracting iniage features. Matches are niadt~ 
at lower levels of tlie hierarchy to determine if the hypotht~ses 
are valid. If the hypotheses are not valid, another Iiypotliesis 
is chosen at the higher level of the hierarchy. 

Top-down processing is goal directed processing. High-level 
goals generate subgoals until one can solve the goals and then 
back the results up  the hierarchy. A number of iniage interpre- 
tation systems that employ a top-down stategy have been de- 
veloped to analyze chest radiographs (Harlow, 1973; Harlow 1.t 

nl., 1976). A top-down approach works for this class of scenes 
because they are highly structured, that is, there is available 
certain n priori information about the expected image objects 
and their relations. If n 11r.iori or auxiliary information is available 
about the scenes of concern, then one can presumably generate 
a set of meaningful goals or hypotheses to pursue, and a top- 
down approach is appropriate. Top-down analysis is similar in 
spirit to backward-chaining in an inferencing system which proves 
goals by seeking to prove their subgoals. In general, a pure top- 
down approach is not suitable for images with a large amount 
of variablility in their structure such as aerial images. 

Most image interpretation systems use a bottom-up strategy, 
a process which begins at the bottom of the hierarchy with the 
identification and examination of fine detail, e.g., cars and houses, 
and attempts to identify more general entities such as residen- 
tial areas by recognizing appropriate groupings of the snialler 
objects. One usually starts by segmenting the image to find 
homogeneous regions or lines that correspond to objects at the 
lowest level. Local properties are usually used to produce the 
low-to medium-level segmentation, and no resource to senian- 
tics is made. Simple properties of scene geometry and gray level 
contrast between object and background typify the process (Bal- 
lard and Brown, 1982; Marr, 1982). The low- and niediuni-level 
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segmentation process is in general difficult to perform correctly. 
Even if a good segnientation is achieved, the segnietited image 
often contains less information than the original image. The lost 
information might be important ill obtaining the best high-level 
interpretation of the scene. The analysis is driven by the data 
at tlie lowest level. Bottom-up analysis is siniilar in spirit to 
forward chaining in a n  inferencing system which derives con- 
sequences from established results. 

A bottom-up approach has the following limitations: 

The segmentation of tlie scene is based entirely upon image fea- 
tures obtained froni segmentation algorithms which have rele- 
vance only to the information a t  the lowest levels of the hierarchy 
in the scene domain. These operators use little or no information 
froni the scene doniain, which makes arbitrarv inter~retations and 
errors likely. Because little context is utilized, an extensive search 
process is rerluired to locate regions which might correspond to 
the low-level objects in the scene doniain and for matching all tlie 
low-level objects to synthesize high-level objects. 
The objects in the scene domain whicli can be explicitly verifier1 
in the image donlain correspond to low-level objects. This means 
coniplex models in the scene cannot be directly verified, and in- 
dependent evidence cannot be gathered a t  intermediate levels of 
the hierarchy for a belief maintenance system. 
Because explicit models for high-level objects and their relation- 
ships cannot be verified with ini'igc featurc.~, the objects at high 
levels in the scene domain hierarchy must be verified by defining 
relationships on lower level objects. After one has obtained inter- 
pretations of low-level objects from image clues, one c'in then infer 
the interpretations trf the objects at hight,r Ic~vc~ls in the hit,r'irchy. 

In general, it is important not to constrain a vision system to 
a pure top-down or bottom-up approach. O n e  needs a vision 
system which incorporates both goal- and data-driven analysis. 
Havens and  Mackworth (1983) developed a hierarchical scene 
analysis system to overcome the limitations of bottom-up and 
top-down approaches. At each nocle of the hierarchy a scheme 
or fratne was proposed to model each abstract object. This sys- 
tem provided for procedural knowledge at  each node to guide 
the search for instances of objects. Nagao ancl Matsuyania (1980) 
suggested a trial and error recursion between bott;)ni-up seg- 
mentation ancl the top-down recognition to reach tlie best re- 
sults. 

While, for siniple images, hier,irchical top-down or bottoni- 
LIP approaches tliay do, more complex images-like high-res- 
olution reriiotely sensed  d a t a - m a y  require  lieterarchical 
processing rather than strictly hierarchical processing (Narasim- 
han, 1974). Heterarcliical processing involves the possibility of 
cycling back through a hierarchy to aid further discrimination 
ot objects (Ballard and Brown, 1982). Heterarchic control struc- 
tures are suitable for complex iniage interpret'ition tasks be- 
cause such tasks can be decomposed into snialler subtasks, each 
requiring some expertise, and are not necessarily performed 
globally in a fixed order. A coniniunity of cooperating and com- 
peting specialists (knowledge sources) citid '1 blackboard rep- 
resents such a concept (Figure 5). In such a system, the expert 
who can help most toward the final tdsk solution at any given 
time is selected. It is selected because accorcling to some crite- 
rion its subtask is the best thing to do at that time. In "oppor- 
tunistic problem solving," cooperation among the knowledge 
specialists is achieved by assuming that whatever information 
is needed is supplied by someone else. As new pieces of evi- 
dence are found and new hypotheses are generated, appropri- 
ate knowledge sources analyze then1 dnd create new hypotheses. 
Each specialist must rely on the other specialists to supply the 
information each needs. The criteria for selection are wide and 
varied and several ideas have been trieci (Hanson and R i ~ e n i ~ i n ,  
1978; Nagao and Matsuyania, 1980; Nicolin and Cabler, 1987). 
Control may be provided by CI single executive (scheduler), by 
metarules (e.g., a universal set of rules that controls the invo- 
cation of otlier rules), or by an n pr.ii1r.i system of ranking (Ba1Icird 

and B r ~ w n ,  1982). Practically, only parallel computer architec- 
tures could run cooperative specialists, yet this process has been 
simulated i t 1  a serial niachine (Hanson and Riseman, 1978). 

KNOWLEDGE SOURCES AND TYPES FOR IMAGE 
INTERPRETATION 

The traditional approach to processing retiiotely sensed data 
for tlieniatic map  creation involves acquiring remotely sensed 
data; georeferencing that data; integrating newly acquired data 
within a geographic information systeni ((;IS); classifying, ex- 
tracting attributes, and labeling iniage objects utilizing the ini- 
age analysis or computer vision system and the CIS; updating 
the (;IS; and producing output  thematic maps. The knowledge 
required to ierforni these iunctions is expr;ssed in either die- 
larative or procedural form. Known facts and relationships are 
declarative knowledge. Currently, the required declarative 
knowledge is provided by expert photointerpreters utilizing do- 
main specific knowledge and their perceptual skills. Procedural 
knowledge is most often expressed as  programs and  describes 
how to locate, recognize, and classify features. There is a sub- 
stantial amount  of procedural knowledge that has been accu- 
mulated. Iniage analysis and  (;IS systems are comprehensive, 
encompassing thousands of lines of FORTRAN or C code. The 
(;IS systems are eclually large and complex. There is substantial 
processing required in the iniage analysis and pattern recog- 
nition algorithms; the CIS storage, retrieval, and analysis func- 
tions; and the conversion functions between different projections 
and types of data. In iniage analysis, for example, there are 
issues relating to the interaction between the segmentation al- 
gorithms dnd the inferencing system, the selection and  ade- 
clu'icy of tlie segmentation algorithms, the method of forming 
an optimal global interpretation of the scene, and the integra- 
tion of systeni modules anci data structures so  that the systeni 
can be improved as  additional knowledge about the scene be- 
comes known. Tlie correct seclue~icing and selection of these 
functions requires substantial knowledge for processing, analy- 
sis, synthesis, and presentation of the data in a manner which 
will yield best interpretation and resultant maps (Schowengerdt 
and Wang, 1989). 

The use o f  clomain knowledge is critical to the development 
of robust systems for automated mapping of Earth features. 
Doniain knowledge is designated in the following as  general 
knowledge, cliscipline knowledge, regional knowledge, and  ob- 
ject knowledge. The manner in which knowledge can be struc- 
tured and u t i l i~ed  in the analysis of images is a n  important 
consideration. In this section some means in whicli knowledge 
can be used to guide the interpretation system are indicated. 

Generd  knowlecige iricludes information about the imaging 
systeni and processes by which the images were acquired 
(ephemeris data)-including image conditions, such as  latitude, 
longitude, date, sensor type, calibration parameters, and at- 
mospheric conditions-anci general knowledge about the types 
of objects expected in the given iniage. By combining location 
with global environmental, geological, and political maps, n priori 
information such  a s  large ecological coniniunities, physio- 
graphic regions and sections, and the country and the county 
could ecisily be determined. Knowing the country or county is 
important. For example, grain silos in the United States are 
round, while those in Canada are square. Further, the distance 
to the nearest ~ ~ r b a n  area would give a n  indication of whether 
the scene was part of a natural or matimade landscape. Know- 
ing tlie physiogr'ipliic section, one could infer the possible land- 
forms found in the region. Tlie date can also provide useful 
information, because the objects one expects to find in a scene 
are often clependent on the time of year. For exaniple, it would 
be futile to use the attribute "has leaves" to identify deciduous 
trees if  tlie image was obtained during the winter. Further, 
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wlnter scenes could contain snow and ice, whereas summer 
scenes would not. 

Discipline specific knowledge includes information about the 
spectral, temporal, and structural properties of objects, such as 
their reflectance characteristics, relative size, height, shape, tex- 
ture, and their decomposition and embedding in other objects; 
and information about contextual and semantic constraints among 
objects, such as site specification (relative location) and associ- 
ations with other objects or phenomena. Having knowledge 
concerning the basic physical or theoretical principles in a par- 
ticular discipline increases the ability to accurately identify and 
map specific features. For example, if forests are to be mapped, 
then a general photointerpreter could do the job. If detailed 
communities within the forest are to be mapped, a forestry 
background would be required. In mapping forest communi- 
ties, certain desired classes would need to be merged or sepa- 
rated depending on the season of image acquistion. Forest 
communities also are generally located in specific spatial ar- 
rangements. " 

Regional knowledge about the geographic area represented 
in the image includes existing maps and reports of various kinds, 
literature sources, case studies, and communication with ex- 
perts related to specific tasks at hand. Regional knowledge is 
needed to capture region-specific details that take into account 
physical, cultural, or temporal variations that deviate from the 
expected conditions. Although similar environments contain 
many similar objects, many objects are region dependent and, 
therefore, regional knowledge adds a better definition to the 
discipline knowledge. Furthermore, site-specific knowledge or 
human expertise is required to refine the reasoning relative to 
local exceptions or unique cases learned from experience. For 
example, a marsh in Louisiana or California could be expected 
to have oil wells, whereas this would not be expected in a New 
England marsh. An oil processing facility on the coast is much 
more likely to be located adjacent to a canal than in the middle 
of a marsh. If one was searching for such a facility, then the 
search should first focus on areas near canals. Similarly, an 
object located greater than lO0m from a canal would probably 
not be an oil facility. 

A particular object can have many spatial attributes. How- 
ever, some of these attributes are more powerful for identifi- 
cation purposes than others. For example, shape is not a 
particularly useful attribute for identifying the World Trade 
Center, whereas height is. It is therefore extremely useful to 
know the "most distinguishing characteristic" of on object. This 
characteristic is not absolute, however, but depends on context. 
For example, height would not be the most distinguishing char- 
acteristic for a tall building in a city full of skyscrapers. The 
most distinguishing characteristic must be derived given the 
context of the specific area. The function of an object can be 
used to locate and identify the object is examined. Many objects 
have a wide variety of possible forms or shapes in which they 
may appear in imagery, which makes it difficult to characterize 
them by shape or other properties. Road networks have widely 
varing geometries and sizes for example. The purpose of the 
road network is to provide access to cities, residential areas, etc. 
A similar statement is true for canals that provide access to 
petroleum exploration platforms. Buildings and plants have 
widely varying shapes. If the plant produces electricity or pe- 
troleum products, there will be basic differences in the two 
facilities because of their function. The function of an  object can 
be studied to gain additional insights into determining distin- 
guishing charachteristics of objects and the manner in which 
these characteristics can be used by the interpretation system. 
Another factor related to objects is that certain features add 
more to our understanding of a scene. Locating these objects 
initially, therefore, aids in subsequent identification. For ex- 

ample, in a scene with motels, amusement parks, jetties, and 
piers, the object that would add most to our contextual under- 
standing might be the beach. 

KNOWLEDGE-BASED VISION SYSTEMS IN REMOTE 
SENSING 

Expert interpretation systems have been developed to rec- 
ognize objects primarily from high spatial resolution black-and- 
white images. Some aspects of these systems are discussed. 
Emphasis is on computer vision and knowledge-based tech- 
niques employed for the interpretation of aerial images. No 
attempt is made to provide a complete survey. Most of the 
systems presented have been described in multiple papers and 
reports, only a few of which are cited in this paper. The inter- 
ested reader may wish to contact the system designers for cur- 
rent system design and status. 

CERBERUS was developed to structure rules pertaining to the 
spectral responses in MSS channels 5 and 7 and ancillary data 
such as elevation, slope, and prior land cover (Engle, 1985). 
Fifty-five rules were used to distinguish among five of the seven 
level I land-cover types. CHESHIRE, an enhanced version of CER- 
BERUS, opperates in the Xerox 1108 LISP Dandelion workstation. 
This methodology was orignially developed by Erickson and 
Likens (1984). They defined Landsat MsS taxonomies, through 
semantic nets, defining important terms and relationships within 
auxiliary data. Rule sets were constructed for urban, agricul- 
ture, range, forest, water, bare classes, and a final summary 
rule set. Contingency tables were used to represent relation- 
ships between spectral classes and values in the ancillary data. 

Wharton (1987) demonstrated a land-cover classification rule- 
based system that utilized the relationships between the spec- 
tral values of adjacent pixels as described by expert photointer- 
preters instead of training samples. Band-to-band, category-to- 
category, and category-to-background relationships are used to 
quantify the color-contrast features of the knowledge base. A 
hierarchical data structure was used to compute contrast values 
between neighboring pixels at various levels of detail. The 
methodology was demonstrated for land-cover classification from 
high resolution TM simulation data. 

Civco (1989) designed an expert system for Level I and Level 
I1 land-use mapping by empliying expert image analysis rules 
and heuristics to classify Landsat TM data. Knowledge from 
spectral, spatial and temporal domains was addressed. Physical 
principles, expert intuition, and inference induction were em- 
ployed for knowledge acquisition. The rule-based system was 
developed in the expert system tool EXSYS. The system con- 
tained 94 Level I and 49 Level I1 classification rules. The expert 
system read its input data through some record structures pro- 
duced from the image analysis systems. A comparison has in- 
dicated that the results were superior to those achieved through 
supervised per-pixel classification. 

VISIONS is a computer system for interpreting natural scenes 
(Hanson and Riseman, 1978). VISIONS includes two distinct par- 
allel iterative segmentation algorithms: the first aggregates edges 
into boundaries while the second utilizes global histograms and 
a local spatial analysis procedure to form regions. VISIONS com- 
putes and symbolically represents regions, boundary segments, 
and two-dimensional shape attributes. Multilevel structures are 
used for representing the model being built (short term mem- 
ory) and the stored world model (long term memory). Schemas 
(frames) classes and instances represent objects in the scene. 
The nodes of the abstract hierarchy include objects, volumes, 
surfaces, regions, segments, and vertices. Control strategies de- 
cide which partial model in the model search space needs to 
expand, which level of representation to select, and which hy- 
potheses at that level need to expand. The specific processes 
are focusing for goal generation, expansion for models and ob- 
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ject generation, filtering for hypothesis elimination, and veri- 
fication (Figure 5). 

Nagao and Matsuyamam (1980) described an expert vision 
system for classification of multispectral data from suburban 
scenes. Characteristic regions are a focal point of the analysis 
and are defined by spectral and spatial features such as color, 
size, shape, and texture. Examples would be large homoge- 
neous, elbngated, shadow, water, and vegetated regions. spa- 
tial characteristics of these regions have provided more consistent 
results than spectral properties, especially in cases of changes 
in imaging conditions. A production-like system is used to in- 
corporate knowledge in the system. It employs production rules 
and image features for the image extracted at a low-level. Heu- 
ristics are expressed in locational constraints and spatial ar- 
rangement rules. The choice of a production system architecture 
was made because of its control mechanism. The authors felt 
that the adaptive activation of rules available in the production 
system architecture was best suited for a generic system that 
can not assume or anticipate the instantiated objects of a given 
scene. Facts and events were stored in a blackboard which was 
accessed by independent knowledge sources which performed 
object detection. An aerial scene analysis system called SIGMA 
is described by Matsuyama (1987) and by Matsuyama and Hwang 
(1987). The system utilizes frames and is based on a blackboard 
model for uniform communication among independent spe- 
cialist modules. SIGMA exhibits mechanisms for the focus of 
attention, conflict resolution, and the correction of early seg- 
mentation errors. 

Levine and Shaheen (1981) describe a system applied to nat- 
ural scenes. The modules of the system are low-level processes, 
measure analyzer, hypothesis initializer, hypothesis verifier, fo- 
cus of attention, and scheduler. These processes communicate 
through long-term memory and short-term memory similar to 
the blackboard architecture. The low-level processes give simple 
image segmentation. The measure analyzer computes measures 
over regions and other structures. The hypothesis initializer 
uses region descriptions and model information in long-term 
memory to generate interpretations. The hypothesis verifier uses 
measures from regions, relations between regions, and hy- 
potheses about regions to verify and update interpretations. 
The focus of attention module recognizes situations of interest 
and generates actions. The scheduler controls execution of 
modules. The data are arranged in a relational database, and 
the system is implemented as a rule-based system. Nazif and 
Levine (1984) used a rule-based system for low-level segmen- 
tation into uniform regions and connected lines. A focusing 
mechanism was employed to concentrate on "interesting" parts 
of the image. 

Binford (1982) reviewed computer vision systems and de- 
scribed the development of the ACRONYM system. Points are 
made in this article that most systems operate on two-dimen- 
sional data, use fairly simple world models, have limited seg- 
mentation procedures, and use only weak descriptors of shape 
and texture (Brooks, 1983). The ACRONYM system uses gener- 
alized cylinders for description of 3-D shapes. The models pro- 
vided a representation which is independent of viewing angle. 
The user describes the classes to be interpreted in the image 
and their spatial relationships to other classes and subsets of 
those classes. The system first deduces the volumetric models 
from the descriptions of the users and then labels their objects 
in the image for which it has a consistent interpretation. The 
recognition strategy is bottom-up. 

McKeown cf 01. (1985) described a rule-based system for inter- 
pretation of airport scenes. The rule-based system interprets the 
scene by building interpretations based upon an initial segmen- 
tation which is produced by a region growing program. Region 
properties are extracted to determine an association between 

regions and airport features. An initial confidence is calculated 
to detrmine how well a region fits the feature description. Rules 
are organized into classes. Initialization rules determine the goal 
states, map database, class expectations, and low-level segmen- 
tation. Region-to-interpretation rules create an initial hypothe- 
sis for each region. Local evaluation rules are used to enlarge 
regions. Consistency rules apply spatial and context constraints 
to modify the confidence of initial fragment hypotheses. Func- 
tional area rules recongize when fragment interpretations can 
be grouped into functional areas such as runways, taxiways, 
and tarmac. Goal generation rules recognize situations incon- 
sistent with airport structure in order to prune weak fragments 
from further consideration. Model generation rules assemble 
functional areas into a model for the airport scene. McKeown 
(1987) employed a flexible interface for a GIS that allows quer- 
ying by pointing to an image or map display. 

Nicolin and GabIer (1987) designed an expert system for 
interpretation of suburban scenes from low-altitude aerial 
photographs. A semantic network represented declarative 
knowledge in their system. The semantic network is struc- 
tured by two hierarchies of relations. The first hierarchy is 
the generalization and specialization relation. Inheritance oc- 
curs through specialization. The other heirarchy is by the 
composition and decomposition relation. This hierarchy gives 
the structure of complex objects from less complex objects. 
The system provides for long-term memory and short-term 
memory. Long-term memory contains the generic knowledge 
of the semantic net. Short-term memory contains intermedi- 
ate and final results of processing steps. Processing is carried 
out by a series of modules. Low-level modules determi?e 
bright, dark, and border areas. Medium-level modules incor- 
porate segmentation algorithms. High-level modules perform 
object identification. The control mechanism is bidirectional: 
the data-driven (bottom-up) algorithms are used when there 
is no active hypothesis to direct the location of elementary 
components; the model-driven (top-down) mechanism takes 
over as soon as a sufficient number of image fragments have 
been identified to form a hypothesis. 

Goldberg ct al. (1983) have described a production rule-based 
system for integrating multitemporal Landsat images for clas- 
sification of forested areas. After a newly acquired image was 
classified, rules based upon the present classification, the pre- 
vious classification, and various measures of confidence are in- 
voked by the data and a new decision is computed for each 
pixel. The production rules were supplied by experts. Improve- 
ments in the classification of subtle forest species were ob- 
served. Automatic estimation of forest depletion by logging was 
modeled by Goldberg et al. (1985). The system is decomposed 
into a number of specialist experts organized in a hierarchical 
fashion around a series of blackboards which are used for com- 
munications between the different levels. The lowest level ex- 
pert provides the interface to the image processing algorithms. 
Other experts included an expert for cloud-and-shadow deter- 
mination, an expert for change detection, and an expert in maps 
and geocoded databases. Goodenough et al. (1987) have de- 
signed an expert system in PROLOG that contains objects and a 
metarule interpreter, a blackboard for intermediate results, a 
scheduler, an explanation facility, and a contention arbitrator. 
Control is both forward and backward. The low-level image 
analysis takes place in FORTRAN. One of their applications en- 
ables analysts to choose suitable features on classified TM raster 
images for matching against the stored vector based data- 
base. Selected image segments are transformed to bring them 
into congruence with the map. Another expert system helps 
the non-computer specialist to use all the tools of the system to 
perform a given analysis task such as selecting suitable training 
sites for spectrol classifications. 



COMPUTATIONAL IMAGE INTERPRETATION MODELS 

Argialas and Narasimhan (1988a) have designed a rule-based 
expert system, the Terrain Analysis Expert (TAX). Knowledge 
pertaining to the landform-pattern element approach was rep- 
resented in physiographic section models and landform models. 
The physiographic section models represented the relations 
among the sections and the landforms that can occur in them. 
The landform models contained information about all the pat- 
tern element values that were likely to be found in a landform, 
and the likelihood of their occurrence. The system queried the 
user for the certainties of the pattern element values of an un- 
known site, fired appropriate rules, and reported the type of 
landform that best matched the pattern elements of the un- 
known site. TAX was implemented in the production system 
architecture of the OPS5 language (Argialas and Narasimhan, 
1988b. The domain-specific knowledge about terrain analysis 
was separated into two components; one component consisting 
of specific knowledge about landforms, stored as facts in the 
working memory, and the other component consisting of the 
general methodology for reasoning, stored as rules in the pro- 
duction memory. To handle the uncertainties introduced during 
problem solving in both the identification of the individual pat- 
tern elements and the synthesis of the pattern elements in in- 
ferring the landform of the site, it was judged appropriate to 
associate certainty values with each pattern element value ob- 
served on an aerial image and employ them in decision making. 
Moreover, probability values were associated with each fact in 
the models of landforms to express its strength in the identifi- 
cation of a particular landform type. Fuzzy sets and the Demps- 
ter-Shafer theory of evidence have been applied for representing 
pattern element values and combination of evidences (Narasim- 
han and Argialas, 1989). 

A frame-based model has been designed for knowledge rep- 
resentation and problem solving in terrain analysis (Argialas, 
1989a). Frames were developed to represent relations between 
physiographic sections and landforms, landforms and their pat- 
tern elements, and pattern elements and their associated like- 
lihood of occurrence in each landform type. Frames have been 
used to demonstrate inheritance of attributes from generic rep- 
resentations of terrain units to their specific instantiations. Frames 
have also been used to represent procedural knowledge by 
embedding such knowledge in the form of attached predicates. 
The methodology demonstrated the representation and reason- 
ing capabilities of frames, backward and forward chaining rules, 
and inexact reasoning for the interpretation of landforms from 
aerial images. The Terrain Analysis Expert-2 (TAX-2) was imple- 
mented in the frame- and rule-based expert system tool called 
intelligence Compiler (IntelligenceWare, 1986). Class frames, 
object frames, attributes, and values are a natural way to rep- 
resent structure in terrain analysis, as is the specification of 
inheritance hierarchies among terrain objects. 

Mintzer (1989) designed an expert system for landform iden- 
tification. An expert system shell-Knowledge Engineering 
System (KES) - was used to encode domain-specific knowledge 
relating photo-identifiable features to specific landforms. The 
resulting interactive software system identifies individual land- 
forms observed in stereo aerial photography based on a set of 
key pattern elements elicited from the terrain analyst. This sys- 
tem contains a large knowledge base, and it is almost in the 
stage of an operational system. 

Interpretation systems have progressed so that the inferenc- 
ing and control mechanisms are quite complex. The segmen- 
tation algorithms used with image interpretation systems for 
the most part have changed little. There has been improvement 
in obtaining interpretation of the outputs of these segmentation 
algorithms with better inferencing systems. It is clear that, to 
achieve the analysis of complex aerial scenes, substantially more 
complex systems are needed. 

AN OVERVIEW AND OUTLOOK 
Knowledge-based image interpretation can upgrade the state 

of image analysis capabilities from brute force mathematical and 
statistical approaches to analysis techniques based on interpre- 
tation logic and heuristics. Statistical and analytical algorithms 
will be applicable in expert interpretation systems, but as low- 
and medium-level labeling techniques selected and controlled 
by conceptual reasoning. In creating an image interpretation 
system, a number of problems must be addressed: the selection 
and adequacy of the segmentation and classification algorithms, 
the interaction between the segmentation/classification algo- 
rithms and the inferencing system, the method of forming an 
optimal global interpretation of a scene, and the integration of 
system modules and data structures so that the system can be 
improved as additional knowledge about the scene becomes 
known (Figure 4). There is no general theory for selecting the 
measurements, features, description, representation, segmen- 
tation, recognition, and classification techniques needed for the 
implementation of generic interpretation systems. Although some 
aspects of these problems have elegant theoretical formulation, 
the state-of-the-art is strictly problem dependent. Heuristic fea- 
tures are largely responsible for almost all the practical pattern 
recognition systems to date. Feature and attribute selection rely 
on the past experience, engineering intuition, and domain spe- 
cific knowledge of the designer. One can only hope to select 
some of the possible discriminatory features or attributes. At- 
tribute selection processes may be validated but are not easily 
optimized. Segmentation and classification methods are se- 
lected and evaluated in light of their performance in a given 
application based on experimentation and judgment. There is 
a lack of universal and context independent segmentation and 
classification techniques. The choice of one segmentation or 
classification technique over another is dictated mostly by the 
peculiar characteristics of the problem being considered. At this 
point it seems that task dependent approaches are necessary 
for high level image interpretation. In most cases, the designer 
constructs the hierarchicaVrelational organization, semantic net, 
or production grammar based on domain knowledge and his 
experience (heuristic knowledge). For successful interpreta- 
tions, very detailed specific knowledge of the scene being ana- 
lyzed is required. Automatic inference or induction techniques 
are needed to assist knowledge elicitation. It is likely that in the 
foreseeable future the human will be a part of the analysis, and 
one must consider augmenting his functions with reliable image 
analysis components as they become available. 

The analysis and interpretation of remotely sensed images at 
a high level of detail is a complex task. Although some re- 
searchers have produced promising results, more research is 
required before interpretation systems can be usefully and cost- 
effectively applied to problem solving in remote sensing. Sub- 
stantial research is required to define how image interpreters 
perform their job and to formalize this process before it can be 
automated. If we cannot formalize how analysts go about their 
tasks, we cannot automate their procedures. It seems that fund- 
ing is highly justifiable in pursuing these research issues. From 
an educational point of view, computer vision and expert sys- 
tem courses need to be integrated in to remote sensing, map- 
ping, and computer and information management curricular 
(Argialas, 1989b). Students trained through such curricula will 
be at the core of the professional community that will imple- 
ment and use such hybrid geo-information systems. 
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Inter-Society Color Council 
Call for Papers 

The Inter-Society Color Council and the Technical Association of the Graphic Arts will cosponsor 
a conference on the difficulties encountered when comparing images presented in different media that 
are intended to simulate each other or another image. It will address such topics as color space 
transformations, ambient conditions, viewing geometry, surface properties, and adaptation. The 
conference will be technical in nature and will consist of invited and contributed papers emphasizing 
the exchange of information and discussion. Papers of a commercial nature will not be accepted. 

Contributed papers will consist of a 30-minute presentation. Those wishing to contribute should 
submit a title and abstract (not exceeding 750 words) by March 1, 1991. Authors will be notified of 
acceptance by June 1, 1991. Send title and abstract, including name, affiation, address, and daytime 
telephone number to: 

Milton Pearson, RIT Research Corp., 75 Highpower Rd., Rochester, NY 14623 
Telephone 716-475-5290; FAX 716-475-2361 


