
LOBSTER: Combining Al and Database
-

Techniques for GIs
Mils I . Epvrhofi~r and Airrirczci U . Frnrrk
National Center for Geographic Information and Analysis and Department of Surveying Engineering, University of Maine,
Orono, ME 04369

ABSTRACT: The powerful logic-based concept of Prolog has been integrated with a database suitable for spatial data
handling to form a database query language that is more flexible and powerful than the currently used SQL. This
experimental implementation, called LOBS7'ER, allowed researchers to explore a number of areas of a CIS. Examples
from object-oriented modeling, geomorphology, and query optimization show the application of such a language.
Problems encountered during the application of LOBSTER include the absence of consistency checking during input of
rules and facts, and the lack of appropriate techniques to detect cyclic rule definitions. Nevertheless, the experimental
implementation showed that these techniques were extremely valuable for CIS.

INTRODUCTION

o r > ~ v s ~ ~ o r A FL.EXIRI.E and powerful program system for
~eographic information systems (GIs) is a challenging task. T,

It is particularly difficult to construct programs that can assist
users for all the different functions they expect from a CIS (Frank,
1984; Smith 1.t nl., 1987). During the past decade, advanced
methods and techniques from computer science have been in-
tegrated into CIS. The use of high-level programming languages
is conlmonplace today, and the designers of IS software use
modern software engineering techniques (Aronson and More-
house, 1983). Database management systems and their princi-
ples have been applied and the specific requirements of spatial
data handling studied (Frank, 1988). Finally, it is recognized
that some methods from artifical intelligence (A[) could be ben-
eficial for CIS (Abler, 1987; Peuquet, 1987; Robinson rt nl., 198%;
McKeown, 1987).

Computer systems are essentially formal systems that nianip-
ulate symbols according to formal rules. These systems do not
understand -in the sense that human beings' understand - the
meanings of the symbols or what they stand for. They follow
the instructions of their programs with blinding speed, but
without any "common sense." Computer systems treat forirml
rrroric1.s which consist of two parts: (1) a theory with a collection
of expressions in a formal language and (2) an agreed-upon
iritcrprctntii~rr of formal expressions which link the symbols used
in the formal system with reality. The derivation of information
is the process of proving a specific proposition within such a
theory. The best-known language for a formal model is first-
c~riirr logic which expressesjacts and rulcs in a single, formalized
matter (Callaire ct nl., 1984) and derives knowledge by using
formal rules.

The deductive power of logic inference systems is typically
used in A1 systems (Barr and Feigenbaum, 1982; Hayes-Roth ct
nl., 1983). Geographic information systems need these methods
to help integrate data from different sources into a unified sys-
tem (Robinson and Frank, 1987a). A deficiency of any AI-based
system is the quantitative difference between k~/exp;rt systems
and database management systems (Mylopoulos, 1981): while
database management systems are good for the storage of large
amounts of data elements (records) from a very few types
(structured data), AI systems store a smaller number of facts,
but of a much larger variety of types (unstructured data). In
this paper, methods from AI research are combined with data-
base management techniques to make both available to CIS. A
particular system has been implemented which allowed us to

conduct a number of experiments in promising areas for the
use of A1 in CIS.

The remainder of this paper is organized as follows: the next
section discusses the need for intelligent GIs query languages.
I'rolog, an A1 programming language, is proposed as a powerful
query language i f integrated with a database management sys-
tem. LORSSER is such a persistent language combining concepts
of the Prolog programming language with database manage-
ment techniques. The integration of DBMS and A1 language are
discussed as well as the implementation of the inference ma-
chine. The last section reports on some of our CIS test appli-
cations using LOBSTER, such as the implementation of object-
oriented abstraction mechanisms, feature extraction in geomor-
phology, and query optimization in a distributed database en-
vironment. The paper concludes with a summary of drawbacks
encountered during the use of LOBSTER as a Prolog-based query
language.

GIs QUERY LANGUAGES

The production of spatial information on demand is the nio-
tivation for spatial query languages. A qlicry lnrlgcinge is a general
means to request information about the contents of a database.
Users formulate their requests to the database by describing
their needs ("What to retrieve") and the desired representation
of the result ("How to represent the results"). A spatial qricr!y
lllrrglra,yc is a tool suitable to interrogate spatial databases.

Database query languages are tools to facilitate access to a
database and have been investigated by computer scientists for
more than a decade. The term q w r y refers to a statement
requesting data to be retrieved from a database. Query languages
are best-known with respect to (relational) databases. SQL, an
acronym for Structured Query Language (Chamberlin ct nl., 1976),
is the standard relational query language (ANSI, 1985) and enjoys
popularity in traditional database applications, such as
accounting. Based on the underlying relational data model (Codd,
1970), S ~ L deals exclusively with relations, combinations of
relations, and some "syntactic sugar" added to relational algebra,
such as arithmetic capabilities, assignment of results to relations,
and aggregate functions. Although SQL is very popular and has
been standardized, there has been criticism that SQL queries
can be difficult to understand (Luk and Kloster, 1986) and are
particularly cumbersome to use for complex engineering
applications.

The fundamental structure of SQL is the SELECT-FROM-WHERE
block. The SELECT clause determines the attributes to display;

P ~ ~ ~ ~ G R A M M E T R I C ENGINEFRING AND REMOTE SENSING,
Vol. 56, No. 6, June 1990, pp. 919-926.

0099-1 112/90/5606-9 19$02.25/0
01990 American Society for Photogrammetry

and Remote Sensing

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1990

the FROM clause describes the data sets needed to solve the
query; and the optional WHERE clause specifies constraints upon
the items to be retrieved. For example, the request for all lines
with start or end nodes within a box described by two pairs of
x- and y-values is formulated in SQL as follows:

SELECT line. id
FROM line, node
WHERE 20000 < x and x < 30000 and

25000 < y and y < 30000 and
(line. start = node.id o r
1ine.end = node.id);

Asked against a database containing the relations node and
line (Figure I), the result is a relation with the two tuples B
and C which are automatically displayed on the screen in a
tabular format.

Quel, the query language for the Ingres database management
system (Stonebraker ct al., 1976), closely imitates the tuple
relational calculus (Codd, 1972) and has the same expressive
power as SQL, i.e., any query asked in SQL can be also asked
in Quel.

The third major query language is Query-by-Example (Zloof,
1977). It supports users with skeleton tables to be filled out like
forms making the language more user friendly and easier to
learn (Reisner, 1981) than conventional one-dimensional
languages as command strings. Some additional conventions
are used, e-g., an underscore character precedes domain variables
to distinguish them from constants. Figure 2 shows the same
query as above in Query-by-Example.

CIS applications place specific demands on the expressive power
and capacity of their query languages. Conventional query
languages can certainly be used to access spatial objects stored
in databases; however, it is difficult for them to express queries
which involve particular spatial properties (Frank, 1982a;
Egenhofer and Frank, 1988; Laurini and Milleret, 1989). The
following examples demonstrate typical CIS queries and
underscore the pioblems traditional (rhlitional) que;y languages
have with their formulation and processing.

w

Frequently, GIS users ask for quantitative spatial information,
such as the distance between two objects. Traditional query
languages lack geometric concepts and do not support the
formulation of user queries with spatial terms. Users with limited
mathematical skills have difficulties in handling such a system.
For example, to retrieve not only the lines starting or ending in

point id x Y

2 22399.28 22379.72

line id start end

A 2 3

FIG. 1 . The data sets point with the attributes id, x, and y;
and line with id, start, and end.

FIG. 2. A Query-by-Example instruction to print (P.)
the lines starting or ending inside of the rectangle
(20,000 <x<30,000, 25,000 < y <30,000).

line

point

a box, but also those crossing through it, users must explicitly .
formulate complex equations for line intersections. The
requirement of such detailed mathematical knowledge makes
"pure" SQL too complex to use for spatial applications.

Another complex query in the context of a GI.? is to find the
largest connected forest area which contains a specific parcel.
This request for the transitive closure translates into the two
operations: (1) to find the parcel X and place it in a set S and
(2) to repeat-until the set S does not grow anymore-the
operation: for each parcel P in S find all its neighbors N, and if
the parcel type is forest then add N to the set S. Traditional
database query languages lack the concepts of loops and recursion
necessary to solve such queries, and, therefore, cannot be used
to formulate such queries.

Other CIS query language requirements include the graphical
representation of query results and the display of context to
make certain queries understandable (Egenhofer, 1989).

/,I
start id

PROLOG AND DATABASE MANAGEMENT SYSTEMS

end

id

A Prolog-like language may be used as a query language to
a GIS based on a database management system that can deal
with large numbers of (spatial) data records. Prolog (Clocksin
and Mellish, 1981) is an implementation of a subset of first-
order predicate logic (Gallaire et al., 1984). It is based on facts
and rules which are expressed as Horn clauses. A clause is a
canonical representation of predicates a ,,... a,,,b ,,... b,,, in the form

a,, OR a, OR . . . OR a,, IF b,, AND b, AND . . . AND b,,, (1)

x

The left hand side of the clause, called the consequent, is the
combination of all disjunctions (ORS) and the right hand side,
the antecedent, has all conjunctions (ANDs). In a Horn clause the
consequent predicates, i.e., the a,'s, are restricted to zero or one
instance, that is,

Y

a,, IF b,, AND b, AND . . . AND b,,, (2)

-
> 25.000 and < 30.000 x

The following example demonstrates the use a Prolog language
based on the set of points and lines in Figure 1. Predicates
tagged by asterisks denote the definition of clauses, while un-
tagged clauses stand for queries, and constants are capitalized,
whereas variables start with lower case.

> 20.000 and f 30.000

*line (A, 2, 3).
*line (B, 3, 8).
*line (C, 8, 2).

Given the implementation of the predicate inBox (x, y, xLow,
xHigh, yLow, yHigh), the following clauses define the rules
for the inclusion of start and end point within a box:

*linepoints (1, p) IF line (1, p, end).
*linepoints (1, p) IF line (1, start, p).
*lineInBox (1, xl, yl, xh, yh) IF linepoints (1, p), node (p, x, y),

inBox (x, y, xl, yl, xh, yh).

Prolog's inference mechanism allows then for the derivation of
the query result:

LOBSTER: COMBINING A1 AND I

A Prolog system is often viewed as a programming language,
but it also contains certain aspects of a database management
system (Kowalski, 1979), such as storage and retrieval of data
and information. The use of Prolog or similar logic programming
methods for database management have been proposed (Gallaire
and Minker, 1984). Using a I'rolog system as a database (Motro,
1984) allows users to store unstructured-or minimally
structured-facts without being aware of a database schema.
Data and tnetadata are stored in the same format, so that users
need not distinguish between and can search them the same
way. Another approach, coupling a n existing database
management system with a separate Prolog system (Vassilou 1.t
[I/., 1983), makes the potential of the Prolog programtning
language available for user interaction in an interactive
environment with existing, traditionally structured databases
(Jarke ct nl., 1984). In this combination, the database system
stores the structured data, while the Prolog system is used as
an expert system or a tool for an enhanced user interface. Such
interfaces to database management systems have been recently
integrated into some commercial Prolog systems. Specific
attention has to be paid to query processing. Performance will
seriously degrade if the inference engine frequently passes control
and data from the I'rolog system to the database and vice-versa
to process predicates one instance at a time.

The extension of a programming language with database
management capacities is frequently referred to as a /~rrslsti~ilt
/~ro~rniiriiriir~y Inirg~rngc. Persistent programming languages have
been designed and implemented as extensions of object-oriented
programming languages, such as Snialltalk (Goldberg and
Robson, 1983) and C+ + (Stroustrup, 1986), but lack the simplicity

~ ~

and inference power of a ~rolo~. language.
Standard Prolog (Clocksin and Mellish, 1981) leaves the

provision for long term storage of facts and rules to file storage.
Hence, we combined I'rolog with a database management system
to construct a /~c~rsistcitf Prolo'y. Users can store data, structured
according to the database schema, with Prolog facts and rules
in the same database represent ing unst ructured data .
Simultaneously, they can use the inference niechanism to exploit
the data.

Generally, most database management systems based on the
network or relational data model can be used to support an
inference mechanism of the form described. A database
management system then serves as a general storage and retrieval
system for clauses. This replaces the particular systems built in
present Prolog implementations. The major extension is the use
of disk storage and access methods; however, for CIS applications,
the database system niust respond to a number of specific
requirements (Frank, 1988), for example:

object-oriented database design (Dittrich, 1986),
gencrcilil;atiodspecialization as abstraction niethods (Borgicia tSt !I/.,

1984),
suitability for modeling of geometric data (Harder and Reuter,
1985) with high-level abstractions of geometric objects, operations,
and classes (Egcnhofer and Frank, 1988; Giiting, 1988), and
fast access based on spatial location (Frank, 1981).

The change in the environment-database ill lil>lr of
programming - aggravates some of the well-known problems
of Prolog:

User input of new facts and rules must be checked for consistency,
e.g., comparing the spelling of new facts against previously stored
ones; 'ind
Execution speed with large spatial data collections niust be improved
so that acccptdble response titncs can be guaranteed.

>ATABASE TECHNIQUES FOR CIS

LOBSTER

LOBS'I'ER is a persistent I'rolog interpreter (Frank, 1984) using
the I'ANDA database tnanagement system (Frank, 1982b). I'ANDA
incorporates many object-oriented concepts, such as generali-
zation and association, extensibility with user-defined abstract
data types, and spatial storage and access methods (Egenhofer
and Frank, 1989a).

LOHS'I'ER can be distinguished froni the standard Prolog im-
plementation (Clocksin and Mellish, 1981) in several aspects:

I'ersistency of rules and facts: The rules and facts users store are
kcpt on disk in a pernmancnt database a n ~ l available for any future
work. In contrast, standard Prolog demands that the used rules
and facts 'Ire loaded into main memory at the beginning of each
session.
Organi~ation of rules and facts into groups: The persistency of all
facts cind rules recluires that users some tools to o r p n i ~ t .
them so thdt they can keep track of what they had previously
defined.
Extensibility: New built-in predicates, written in a conventional
programming languages, such as Pascal, can be easily imple-
mented and integrated into the I.ooslrR environment so t h ~ t their
actucil implementation is hidden from the users.

Newer commercial I'rolog products do provide some similar
features, including access to relational database management
systems.

Central to LOBSTER is the combination of a I'rolog interface
with a database management system to allow users to store (;IS
data and use the Prolog language and interpreter for building
a cluery language. These two systems m~ts t be linked so that
the I'rolog interpreter has access to the data stored in the da-
tabase management system and so that these data may appear
as facts in the Prolo): system. The link between the two systcms

\, .
is achieved in two steps:

Operations for database access are codtd and integrated into the
I'rolog interpreter such tli'it they appear as regul,lr I'rolog precli-
c'ites, so-called l~lrilt-ills, providing a low-level ~ c c e s s t o d ' i tabc~~e
facts from Prolog; and
Mappings are defined froni the conc t~p t~~a l database, schem,~ to
Prolog predic,ltes and then implemented C I ~ I'rolog rilles using the
built-ins for database access.

In order to store facts in a database, a database schetna had to
be designed. Figure 3 shows a solution in an extended entity-
relationship diagram. The following example demonstrates how
a Prolog rule is stored in the database according to this struc-
ture. The rule

grandFather (x, y) IF father (x, xy) and father (xy, y)

is stored as a clnusc and two /~rcdicntcs (grandFather, father)
and three s!/iirl~ols (x, y, xy) . The clause consists of three ntoiirir
for~~rlrlrzi~ (grandFather (x, y) as the coirsc'lllrc~r~t atom, father (x,

arity

consequent antecedent I I

Symbol '7
variable number

variables

antecedents

FIG. 3. Database schema of LOBSTER in an extended Entity-Rela-
tionship diagram.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1990

xy) and father (xy, y) as the antecedeizt atomic formulae). For
each atomic formula, the corresponding variables are recorded
with their number in the clause (e-g., x=l , y = 2 for grand-
Father). In the clause, each variable is connected with the re-
spective symbol, either as const for a constant or boundlunbound
for a variable before and after binding it to a value, respectively.

The implementation of LOBSTER follows the Prolog method
of a depth first search and uses the facts in the order they are
encountered in the linkage of predicates, atoms, and conse-
quent clause. For use as a database retrieval system, the inter-
preter has to return with each success so the application can
use the data in any way it is necessary, i-e., the Prolog inter-
preter works as though it was a co-routine. This excludes a
simple recursive implementation of the interpreter and requires
explicit storage of the state of the interpreter during query
processing to continue the search with backtracking after a so-
lution has been found and processed. The backtracking algo-
rithm is inherently sequential, using one data element at a time,
and its formulation in a navigational data manipulation lan-
guage makes no problems. It cannot easily take advantage of
the set oriented interface of a relational database. In order to
reduce the number of physical disk accesses necessary for each
step, physical clustering of records, as provided by PANDA, is
beneficial.

APPLICATIONS

In this section, some experimental applications will be pre-
sented which were built upon LOBSTER exploiting the power of
logic programming, the database approach, and the extensibil-
ity.

Object-oriented modeling is an innovative approach to
designing software systems for complex situations in dealing
with real-world problems as they occur in CIS (Dittrich, 1986).
It pursues the integration of traditionally separated methods
used in DBMS, languages, - and '~ l (Mylopoulos,
1981; Brodie et al., 1984) and emplovs powerful abstraction
mechanisms, such as gencmlization (~br$da i t al., 1984), associatiot~
(Brodie, 1981), and aggregation (Smith and Smith, 1977). The
concepts of inhcritance (Goldberg and Robson, 1983; Cardelli,
1984) and propagation (Rumbaugh, 1988), originating from
programming languages, play an important role for CIS modeling
(Egenhofer and Frank 1989b). A system like LOBSTER is
particularly well-suited to demonstrate these sophisticated
abstraction mechanisms in a concise fashion. Data and metadata
are described in a uniform way so that users may easily exploit
metadata for the formulation of rules and queries.

Inheritance is a method of defining a class in terms of one or
more other, more general classes (Dahl and Nygaard, 1966),
called an i s a hierarchy (Mylopoulos and Levesque, 1984).
Properties common for a superclass and its subclasses are defined
only once - with the superclass-and inherited by all objects in
the subclass. Subclasses may have additional, specific properties
and operations which are not shared by the superclass. Figure
4 shows a generalization hierarchy with three levels of classes.
The properties of a building, such as address and owner, are
inherited to the subclass residence, and also transitively to the
sub-subclasses rural residence and urban residence.

LOBSTER has been used to prototype these concepts so that
experiments could be run in a CIS environment (Egenhofer and
Frank, 1989b). Each property of a class is expressed as a predicate
of the form p (class, property) . Generalization is described as
the is-a- predicate of the form i s a - (subclass, superclass). The
following facts describe the model depicted in Figure 4:

building Y

FIG. 4. Properties are transitively in-
herited from a superclass to all its
subclasses, the sub-subclasses, etc.

*p (Residence, Resident).
* i s 2 (RuralResidence, Residence).
*is2 (UrbanResidence, Residence).
*is-a (Residence, Building).

Inheritance is then defined by the predicate properties which
recursively derives the properties associated with a class and
all its superclasses.

*properties (class, property) IF p (class, property).
*properties (class, property) IF is-a (class, superclass),

properties (superclass, property).

All properties of the class urbanResidence can then be determined
with the predicate

properties (UrbanResidence, prop).

which the following values for the variable prop fulfill:

prop = Resident
prop = Address
prop = Owner

In aggregation and association hierarchies, two types of
property values occur: (1) values that are specifically owned by
the composite object and, therefore, and distinct and independent
from those of its components; and (2) values of the composite
object which depend upon values of the properties of all
components (Egenhofer and Frank, 1986). The mechanism to
describe such dependencies and ways to derive values is called
propa~ation (Rumbaugh, 1988). Propagation guarantees
consistency, because the dependent values of the aggregate are
derived and need not be updated every time the components
are changed. For example, the property population of the class
county is the sum of the populatioizs of all related instances of
the class settlement.

LOBSTER was used for a prototype implementation of
propagation. The following (simplified) facts describe the county
Penobscot as an aggregate of two settlements Bangor and
Orono -and some more in the rural areas- with the property
SettlementPopulation.

*p (Orono, SettlementPopulation, 10,000).
*p (Bangor, SettlementPopulation, 50,000).
*p (Orono, PartOf, Penobscot).
*p (Bangor, PartOf, Penobscot).

The population of the largest settlement in a county is derived
from the settlements as the maximum of their populations. This
dependency is expressed by the following rule, stating that the
population of a specific county is the maximum of the population
of all settlements which are part of it.

*p (Building, Address).
*p (Building, Owner).

*propagates (PartOf, SettlementPopulation,
PopulationOfLargestSettlement, Maximum).

LOBSTER: COMBINING A1 AND DATABASE TECHNIQUES FOR GIs

The generic rule for propagation is the following predicate. It
describes the value of the property of an aggregate in terms of
the values of the components using a specific aggregation
function.

*p (aggregateclass, aggregateProperty, aggregatevalue)
IF

propagates (relation, componentProperty,
aggregateproperty, operation),

p (componentClass, relation, aggregateclass),
p (componentclass, componentProperty, componentvalue),
p (operation, componentvalue, aggregatevalue).

For example, the value of the property countyPopulation is
then evaluated with

p (County, PopulationOfLargestSettlement , x).

and results in

The following experiment with LOBSTER describes how to define
complex properties that can be derived from stored base
properties. This example from geomorphology shows the
definition of complex application-related terms in a rigorous
manner so that users can understand them. These definitions
are easy to program but, more important, they make assumptions
explicit so that different experts' opinions can be discussed. The
distinction between different types of landscapes is evident for
human observers but, at the same time, they are difficult to
express in formal terms. Verbal definitions of terms in natural
language for geophysical phenomena have the substantial
drawback that they are frequently based on other expressions
which are not exactly defined, but are assumed to be generally
understood (Frank ct nl., 1986).

Symbolic processing for the extraction of geomorphologic
features from landscape models has been proposed as a basis
for formal analysis of terrain features (Palmer, 1984). This method
uses a triangulated irregular network to describe a digital terrain
model. In such a tessellation, nodes have an identifier and x,
11, and z coordinates, and edges are described by an edge-
identifier, the identifiers of the start and the end node, and the
identifiers of the left and right area. The definition of terrain
features is then based on the classification of an edge according
to the downslopes of their adjacent triangles (Frank ct a/., 1986):

an edge is corlfllrcilt if the slope of both adjacent triangles is towards
the edge;
an edge is di j7~r~11t if the slope of both adjacent triangles is off the
edge; and
an edge is trnrlsfl~re~~t if the slope of one adjacent triangle is towards
the edge and off the edge for the other triangle.

Two edges are connected if they share a common node and a
z,nlle~y is then a sequence of connected confluent edges.

These rules can be easily expressed as predicates in first-order
predicate logic and implemented in a Prolog language (Robinson
et nl., 198%); however, pure Prolog (Clocksin and Mellish, 1981)
lacks arithmetic operations, such as trigonometric functions,
necessary to calculate the slope and determine the direction of
flow over an edge. Such calculations can be easily performed
in a traditional programming language, e.g., FORTRAN or Pascal,
and then integrated with LOBSTER. The definitions given here
can be directly executed. It is not necessary to manually translate
them into code with the usual risk of introducing errors and
misunderstandings. The predicates defined are also available in
an interactive setting for experimentations.

*connectedEdge (el , e2) IF edge (e l , s, e) AND
edge (e2, s, ee) AND notEqual (el , e2).

*connectedEdge (e l , e2) IF edge (e l , s, e) AND
edge (e2, ss, e) AND notEqual (e l , e2).

*connectedEdge (e l , e2) IF edge (el , s, e) AND
edge (e2, e, ee) AND notEqual (e l , e2).

*connectedEdge (e l , e2) IF edge (e l , s , e) AND
edge (e2, ss, s) AND notEqual (e l , e2).

*confluentEdge (e) IF edgeFlow (e, In, In).
*diffluentEdge (e) IF edgeFlow (e, Out, Out).
*transfluentEdge (e) IF edgeFlow (e, In, Out).
*transfluentEdge (e) IF edgeFlow (e, Out, In).

The following two rules define a valley as a sequence of confluent
edges and draw the resulting valley using the built-in predicate
drawEdge as a co-routine:

*drawNextEdge (e) IF confluentEdge (e) AND drawEdge (e)
AND connectedEdge (e, ne) AND drawNextEdge (ne).

*drawValley (e) IF confluentEdge (e) AND drawEdge (e)
AND connectedEdge (e, ne) AND drawNextEdge (ne).

A common solution integrating multiple databases is the
definition of a unifying query language which provides users
with a view as if they dealt with a single system (Dayal, 1986).
This is a likely scenario for all those CIS which use a special
purpose data storage system for recording spatial data and a
standard database management system for non-spatial data.
Particularly important in such a distributed database environment
is the determination of an efficient query processing strategy.
The term query optini izntion refers to the process of calculating
various strategies to process a specific query and selecting a
plan which most likely provides the least expensive execution
time. Various factors must be considered, such as the size of
the database, the number of records involved in processing a
particular operation, and the time to access records which may
be distributed across different sites.

Query optimization is a n important issue in a Prolog
environment with large amounts of facts. Assume a rule of the
form

a (x, G) IF b (x, z), c (z, G).

If the first predicate b (x, z) is a large database relation then it
is not economical to use every fact stored to bind x and z , and
then to try to prove the rest of the clause. A more sophisticated
method must consider the approximate size of database relations
and the existence of access paths (Warren, 1981).

Based on the same principles as used in LOBSTER, a query
optimizer has been implemented for a distributed spatial database
(Hudson, 1989). It uses Horn clauses as an internal representation
into which the user queries are translated and then applies rules
to determine an optimal strategy. Because the sequence of
predicates within a clause is immaterial to the logic of the clause,
the predicates may be regrouped. This reordering is based on

the (estimated) size of the relation for which a predicate stands,
the estimated size of the result of a predicate,
the estimated cost of verifying a predicate, and
the physical location of the data sets so that the transfer of data
between various sites is minimized.

Query processing in logic databases (Bancilhon et nl., 1986; Sagiv,
1988) and rule-based query optimization (Freytag, 1987; Graefe
and DeWitt, 1987) are ongoing research topics.

DRAWBACKS OF A PROLOG-BASED QUERY LANGUAGE

Prolog was designed to express logical relations in a short-
lived environment where users are aware of all facts and rules
stored. Facts and rules are stored in files and users recall them

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1990

explicitly when they need them. This approach is dranlatically
different fro111 a database situation which is used over a long
tinie and users do not remember all previously entered facts
and rules. Furthermore, the database concept allows several
users to share facts and rules in a multi-user environment.

The schema definition in a database usually contains integrity
constraints to prevent users from entering data which are not
in accordance with the stated goals. This restriction is necessary
so that users and application programs may rely on certain
properties of the data. Violations of these rules produce incorrect
results or tail to find data stored. Prolog contains n o provisions
to prevent the entry of invalid or contradictory data. Simple
spelling errors in the name of a predicate while entering a rule
will make that predicate fail and the result will be "false." Such
errors are extremely difficult to detect. If the database contains
large numbers of facts, visual inspection by browsing is not
possible anymore.

If an expert system should work for a long time, integrity
constraints niust be included and new data entered must be
checked against them. Some exanlples may clarify this problem:

I'redicate names niust be checked ajiainst previously used ones.
New predicates are required to be explicitly declared by the user.
Prolog implicitly decl,lres a predicate with its first use, similar to
the creation of variables with their first use in IL&IC o r I . ~ R I I < A N
and their known problems.
In order to assist users in avoiditig redundant declarations of the
same or similar predicates (Kent, IY81), have the user cbnter a
description of the meaning of every new predicate declared. In
addition, a query niechatiisni t n ~ ~ s t be provided so that users may
examine these descriptions later.
The introduction of type constraints may help the checking of
variables in predi~~1tc.s.

In LOBS'I'ER, such assistance has been integrated and users have
found it helpful.

Systems using I'rolog inference mechanisms are not well-
protected against cyclic rule definitions, such as

a (x) IF b (x);
b (x) IF a (x);

Collections of rules established for use during a short tinie, or
used as a package and not expected to be expanded by the user,
are generally checked by the programmer against cyclic rules.

LOBS.fEl< contains some mechanisms that detect cycles;
however, checking for cyclic structures during run titlie is costly
in ternis of execution time. More appropriate techniques for the
detection of cyclic rules, for instance, during input o f new rules,
are an issue of active research in the Prolog research con~nlunity.

Some Prolog programs rely 011 the order in which facts and
rules are entered into the database. Tlie order of facts should
not disturb the execution of a Prolog program in a strictly logical
sense. It niay produce the results in a different order, but the
results should be the same.

On the other hand, the order of rules is important for many
recursive rules, especially if a specific stop rule (containing a
cirt) needs to be tested and the general recursive rule follows.
For instance, the order of the two rules in the following example
is crucial to correctly formulate the notEqual-predicate. This
rule says that i f the two predicates x and y are equal, then
notEqual is false; otherwise, notEqual is true.

notEqual (x, y) IF equal (x, y), cut, fail.
notEqual (x, y) IF.

I f the order of the two rules was exchanged, the intended logic
of the operation would have been changed.

notEqual (x, y) IF.
notEqual (x, y) IF equal (x, y), cut, fail.

For any two predicates x and y the result would be true from
the clause notEqual (x, y) IF. , and the second clause would
never be tested.

It may be necessary to extend the data structure in Figure 3
to include a class ;Jrogvmtr consisting of several rules which are
maintained and used in the given order.

CONCLUSION

We conclude that a CIS query language must provide a high-
level abstraction of spatial data and geometric operations so that
a user needs no explicit knowledge about their actual imple-
mentation; extensibility so that users may define new rules,
maybe in the same system where data are stored and accessed;
and recursion and loop constructs to forniulate queries with
transitive closure.

The use of AI methods and techniques for CIS are necessary
to build flexible and powerful systems demanded by the user
conimunity. This paper reported on the integration of a specific
AI method into a CIS programming environment. The result was
LOBSIER, a persistent programming language based on Prolog.
LORS1'ER permitted us to study a number of areas in which Prolog
and database techniques could be beneficial for GIs. The use of
logic-based languages as GIS query languages has been explored
as an alternative to the currently popular SQL type query lan-
guages.

LOBSTER was found to be powerful and flexible. Like any
I'rolog-based language, LOBSTER treats data and metadata in the
same way; therefore, users may extend 1-OBSTER with appro-
priate rules whenever necessary. Furthermore, the extensibility
of LOBSTER allows for definitions based on predicates that may
be sometimes difficult to implement in a pure first-order lan-
guage. Tlie implementation of additional built-in predicates which
niay be used within the language interface proved to be crucial
for the implementation of propagation. Users gained additional
possibilities to access information in a CIS through this combi-
nation. An experimental system for geomorphologic feature de-
tection demonstrated that LOBSTER can also be used to define
specific interfaces for applications in an easy but comprehensive
way.

ACKNOWLEDGMENTS

Over the years, inany colleagues and friends of ours helped
with and contributed to the implementation of LOBSTER and we
want to thank them all. Particularly appreciated were many
discussions with Vince Robinson on the use of Al for CIS. Doug
Hudson and Bruce Palmer worked on the applications we used
as examples in this paper. The team implementing LOBSTER
included R. Michael White and Eric Carlson. This work was
partially funded by grants from NSF under grant number IST
86-09123 and the Digital Equipment Corporation. The support
from NSF for the NCClA under grant number SES 88-10917 is
gratefully acknowledged.

REFERENCES

Abler, R., 1987. The National Science Foundation National Center for
Geographic Information and Analysis. Irrtc~rrrr1tio1ral jorrvrrnl c!f Geo-
~rn l ih icn l Irrfor.~rr~ltiorr Systc,rrrs, Vol. 1 , No. 4, pp. 303-326.

ANSl American National Standards Database Committee, 1985. X3H2
Altrr~ricnrr N~iticrrrnl Sti1rrtlnrri Dotnliri.~c Ll7rr,yrrn,p S Q L .

Aronson, P., dnd S. Morehouse, 1983. The ARC/INFO Map Library: A
Design for a Digital Geographic Database. Pvoct,c~dirrgs c!f Arrto-Givto
V I , O t t ~ w a , Canada.

LOBSTER: COMBINING A1 AND DATABASE TECHNIQUES FOR GIs

Bancilhon, F., D. Maier, Y. Sagic, and J. Ullman, 1986. Magic Sets and
Other Strange Ways to Implement Logic Programs. ACM Sympo-
silrrn or1 Principles o j Database Systems, Cambridge, Mass., pp. 1-15.

Barr, A., and E. Feigenbaum, 1982. The Har~~ibook of Artqicinl Ir~telligence.
Pitman, London.

Borgida, A., J. Mylopoulos, and H. Wong, 1984. GeneralizatiodSpe-
cialization as a Basis for Software Specification. On Conceptual Mo-
delling (M. Brodie, J. Mylopoulos, and J. Schmidt, editors), Springer
Verlag, New York, N.Y., pp. 87-114.

Brod~e, M., 1981. Association: A Database Abstraction for Semantic
Modeling. 2nd International Entity-Relationship Conference,
Washington, D.C.

Brodie, M., J. Mylopoulos, and J. Schmidt (editors), 1984. On Corzccptunl
Modellrng, Perspcct~ves from Artifrclal lntellrgcr~cc, Databases, nr~d Pro-
gramrnl~~g Languages. Springer Verlag, New York, N.Y.

Cardelli, L., 1984. A Semantics of Multiple Inheritance. Ser~zantics r$ Data
Types, Lecture Notes In Conlputer Sctence, (G. Kahn, D. McQueen,
and G. Plotkin, editors), Vol. 173, Springer Verlag, New York, N.Y.,
pp. 51-67.

Chamberl~n, D., M. Astrahan, K. Eswaran, P. Griffiths, R. Lorie, J.
Mehl, P. Re~sner, B. Wade, 1976. SEQUEL 2. A Unifled Approach
to Data Definition, Manipulation, and Control. IBM lorrrr~nl of Re-
smrch arld Der~eloprnerrt, Vol. 20, No. 6, pp. 560-575.

Clocksin, W., and C. Mellish, 1981. Proyrarnnr~r~g rtl Prolog. Springer
Verlag, New York, N.Y.

Codd, E., 1970. A Relational Model for Large Shared Data Banks. Corn-
ri~rrr~icatior~s of tlte ACM, Vol. 13. No. 6, pp. 377-387.

-, 1972. Relational Completeness of Data Base Sublanguages. Dntn
Base Syste~rls (R. Rustin, editor), Prentic Hall, Englewood Cliffs,
N.J., pp. 65-98.

Dahl, 0.-J., and K. Nygaard, 1966. SIMULA-An Algol-based Simu-
lation Language. Corninur~rcntiorrs of the A C M , Vol. 9, No. 9, pp.
671478.

Dayal, U., 1986. Query Processing in a Multidatabase System. Query
Processrrlg i r~ Dntnbnse Systerns (W. Kim, D. Reiner, and D. Batory,
editors), Springer Verlag, New York, N.Y., pp. 81-108.

Dittrich, K., 1986. Object-Oriented Database Systems: The Notation and
The Issues. Ir~ternntror?nl Workshop in Oblcct-Orrcr~tcd Dntabnsc Systrrns
(K. Dittrich and U. Dayal, editors), Pacific Grove, California, IEEE
Computer Society Press, Washington, D.C., pp. 2-4.

Egenhofer, M., 1989. Spatial Query Lar~gunps. PhD thesis, University of
Maine, Orono, Maine.

Egenhofer, M., and A. Frank, 1986. Connection between Local and
Regional: Additional 'Intelligence' Needed. FIG XVIll. I~~terr~ntiorml
C o r ~ g r i ' . ~ ~ ~f Surz~eyors, Con~rnissior~ 3, Lnrrd Ir~fc~rrnntiorr S!ystrn~s, To-
ronto, Ontario, Canada.
, 1988. Towards a Spatial Query Language: User Interface Con-

siderations. 14tk lr~terrzntror~nl Cor!fc~rer~cc or1 Very Large Data Bases,
(D. DeWitt and F. Banc~lhon, editors), Los Angeles, California, pp.
124-133.

-, 1989a. PANDA: An Extensible DBMS Supporting Object-Ori-
ented Software Techniques. Ir~fc~rrnnhk-Fachbc~r~c/~tc, Vol. 204, Sprin-
ger-Verlag, New York, N.Y., pp. 74-79.

-, 1989b. Object-Oriented Modellng in GIs: lnheritance and Prop-
agation. AUTO-CART0 9, Nir~tlt 111tcrrlntior-la1 Synrposiurn 011 COIII-
p~rtcr-Assrsted Cartography, Baltimore, Maryland, pp. 588-598.

Frank, A., 1981. Applications of DBMS to Land lnformation Systems.
Scz~er~th Ir~ternational Cor~fererlcc orr Very Large Dnta Bases, (C. Zaniolo
and C. Delobel, editors), Cannes, France, pp. 448-453.

-, 1982a. MAPQUERY-Database Query Language for Retrieval of
Geometric Data and its Graphical Representation. ACM Conrprrter
Graphics, Vol. 16, No. 3, pp. 199-207.

-, 1982b. PANDA-A Pascal Network Database System. Fqt11 Syrn-
;~osiiuiz or1 Srnnll Systems, (G.W. Gorsline, editor), Colorado Springs,
Colorado.

-, 1984. Extending a Database with Prolog. First Ir~t~~rr~atiorzal Work-
shop or1 Expert Dntbnse Systerrrs (L. Kerschberg, editor), Kiawah Is-
land, South Carolina, pp. 665476.
, 1988. Requirements for a Database Management System for a

GIs. Plzatogra~nrr~etric Er~girli~~~rir~g nrrd Rcrrrotc Serlsirl~, Vol. 54, No.
11, pp. 1557-1564.

Frank, A., B. Palmer, and V. Robinson, 1986. Formal Methods for the
Accurate Definition of some Fundamental Terms in Physical Ge-
ography. SCc(~rld lr~tcrr~ntior~al Syrtrposi~rrn on Spatial Data Hnndlir~g (D.
Marble, editor), Seattle, Washington, pp. 583-599.

Freytag, J., 1987. A Rule-Based View of Query Optimization. SIGMOD
Coi~erer~ce, San Francisco, California, pp. 172-180.

Gallaire, H., and J. Minker (editors), 1984. Logic nrld Dnta Bases. Plenum
Press, New York, N.Y.

Gallaire, H., J. Minker, and J.M. Nicholas, 1984. Logic and Databases:
A Deductive Approach. ACM Corrlputirlg Surz~eys, Vol. 16, No. 2,
pp. 153-185.

Goldberg, A., and D. Robson, 1983. Srnalltnlk-80. Addison-Wesley Pub-
lishing Company, Reading, Mass.

Graefe, G., and D. DeWitt, 1987. The EXODUS Optimizer Generator.
SIGMOD Cot~fercnce, San Francisco, California, pp. 160-171.

Ciiting, R., 1988. Geo-Relational Algebra: A Model and Query Lan-
guage for Geometric Database Systems. Adzinnces i r~ Database Tech-
riology- EDBT '88, Ir~tcrrrationnl Coizfcxrence 011 Extendirtg Dntabnsi7
Techr~olo~y (J.W. Schmidt, S. Ceri, and M. Missikoff, editors), Ven-
ice, Italy, Lecture Notes in Computer Science, Vol. 303, Springer
Verlag, New York, N.Y.

Harder, T., and A. Reuter, 1985. Architecture of Database Systems for
Non-Standard Applications (in German). Irlf~rrnatik Facl~krickte, Vol.
94, Database Systems in Office, Engineering, and Science (A. Blaser
and P. Pistor, editors), Springer Verlag, New York, N.Y., pp. 253-
286.

Hayes-Roth, F., D. Waterman, and D. Lenat, 1983. Building Expcrt Sys-
tons. Addison-Wesley Publishing Company, Reading, Mass.

Hudson, D., 1989. A Unifying Database Formalism. ASPRSIACSM All-
r~lrnl Corlz1er1tiorl, Baltimore, MD, pp. 146-153.

Jarke, M.,]. Clifford, and Y. Vassiliou, 1984. An Optimizing Front-End
to a Relational Query System. Arri~rml Meetirrg ACM SIGMOD (6.
Yormark, editor), Boston, Mass., pp. 296-306.

Kent, W., 1981. Data Model Theory Meets a Practical Application. Sczl-
crrt/~ Interr~ntionnl Corlfi'rt~r~ci~ 011 Very Large Dntn Bases (C. Zaniolo and
C. Delobel, editors), Cannes, France.

Kowalski, R., 1979. Llgicfor Problern Solzrir~g. Elsevier Science Publishing
Co., New York, N.Y.

Laurini, R., and F. Milleret, 1989. Solving Spatial Queries by Relational
Algebra. AUTO-CART0 9, Nirrtl~ Ir~tcrr~ational Syrrrposiur~ or1 C ~ I I I -
111rter-Assisted Cartography, Baltimore, Maryland, pp. 426-435.

Luk, W., and S. Kloster, 1986. ELFS: English Language From SQL. ACM
Trar~sactior~s or1 Database Systerils, Vol. 11, No. 4, pp. 447-472.

McKeown, D., 1987. The Role of Articial Intelligence in the Integration
of Remotely Senses Data with Geographic Information Systems.
IEEE Trar~sactior~s 011 Geoscio~ce nrzd Rernote Serlsing, Vol. 25, No. 3,
pp. 330-348.

Motro, A., 1984. Browsing in a Loosely Structured Database. Ari~zunl
Mrct i ir~ ACM SIGMOD (B. Yormark, editor), Boston, Mass., pp.
197-207.

Mylopoulos, J., 1981. An Overview of Knowledge Representation. SIC-
M O D Record, Vol. 11, No. 2.

Mylopoulos, J., and H. Levesque, 1984. Generalization/Specialization
as a Basis for Software Specification. 011 Cor~ceptual Modelling (M.
Brodie, J . Mylopoulos, and I. Schmidt, editors), Springer Verlag,
New York, N.Y. pp. 3-17.

Palmer, B., 1984. Symbolic Feature Analysis and Expert Systems. Ir~ter-
rlnticriral Sytlr/xaium on Sp t ia l Dntn Hanil l i ,~~, Zurich, Switzerland,
pp. 465-478.

Peuquet, D., 1987. Research Issues in Artifical Intelligence and Geo-
graphic lnformation Systems. lrtt~rr~ntior~nl Geographic 111forrrmtiorl
SystCrrls (IGIS) Syn~posi~rri~: The Resenrclz A g r ~ d n , Arlington, Virginia,
pp. 119-127.

Reisner, P., 1981. Human Factors Studies of Database Query Lan-
guages: A Survey and Assessment. ACM Corrrprrtirrg S i i r z~~ys , Vol.
13, No. 1, pp. 13-31.

Robinson, V., and A. Frank, 1987. Expert Systems for Geographic In-

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1990

formation Systems. Plrotoyrnr~~rrzetric Errgirreerirr~ nrrd Rertrotc Serrsing,
Vol. 53, No. 10, pp. 1435-1441.

Robinson, V., A. Frank, and H. Karimi, 1987. Expert Systems for Geo-
graphic Information Systems in Resource Management. Al Appli-
cntio~rls irr Nntrrrnl Resource Management, Vol. 1, No. 1, pp. 47-57.

- -

liumbaugh, J., 1988. Controlling Propagation of Operations using At-
tributes on Relations. In: OOP-SLA '88, San Diego, California, pp.
285-296.

Sagiv, Y., 1988. Optimizing DATALOG Programs. Fourrdntior~s of De-
d ~ c t i z ~ e Dntnbnscs n~ ld Logic Progrnrrrrniri~ (J . Minker, editor), Morgan
Kaufmann, Los Altos, California, pp. 659-698.

Smith, J.M., and D.C.P. Smith, 1977. Database Abstractions: Aggre-
gation. Corrrrnur~icntioirs of the ACM, Vol. 20, No. 6.

Smith, T., D. Peuquet, and S. Menon, 1987. KBGIS-11: A Knowledge-
Based Geographical Information System. Interirntiorrnl \orrrrrnl of Geo-
cyrnphicnl Irrfornratiorr Systems, Vol. 1, No. 2, pp. 149-172

Stonebraker, M., E. Wong, and P. Kreps 1976. The Design and Imple-
mentation of INGRES. ACM Trnrrsnctiorrs or1 Dntnbnsc S!/sh.rirs, Vol.
1, No. 3, pp. 189-222.

Stroustrup, B., 1986. Tlre C + + Prc~~yrnnrrrriirg Lnrgirngr. Addison-Wesley
Publishing Company.

Vassilou, Y., J . Clifford, and M. Jarke, 1983. How Does an Expert Sys-
tem get its Data? Nirrtlr Irrterrrntiorml Cor!fi.rc.rrc~~ orr Vov/ L n < i ~ Dntn
Bnses (M . Schkolnick and C. Thanos, editors), Florence, Italy, pp.
70-72.

Warren, D., 1981. Efficient Processing of Interactive Relational Database
Queries Expressed in Logic. Sci~~rrtlr Irrtt~rrratior~nl Corrft~r~~r~cc or1 Vcr!j
h r g c Dntn Bnscs (C. Zaniolo and C. Delobel, editors), Cannes, France,
pp. 272-281.

Zloof, M.M., 1977. Query-by-Example: A Database Language. IBM Sys-
tans lourrrnl, Vol. 16, No. 4, pp. 324-343.

(Accepted 18 January 1990)

NEW CONCEPT IN PHOTOGRAMMETRY

For further information contact:

