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A ~ s . r l < ~ c l ' :  In digital automated feature extraction, one attempts to extract symbolic informatiotl from digital images by 
assigning symbolic labels to collections of features obtained from the images. By the nature of the processes used in 
extracting the infornlation from the images, uncertainty exists concerning the properties of the extracted features; some 
of the features may result from noise and artifacts of the processing. This leads to symbolic uncertainty, lneanillg an 
uncertainty that the proper labeling has been applied. One source of error leading to this symbolic uncertainty is metric 
positional error in features extracted due to the low-level processing and the mensuration process. Here, we outline 
an approach using error propagation techniques for exploring the relationship of metric uncertainty to symbolic un- 
certainty. Although this work concentrates on the Dempster-Shafer formalism for representing evidence, it is felt that 
propagation concepts might be extended to research on other evidence representations as well. 

INTRODUCTION 

T HE M A I N  ISSUE of feature extraction to be dealt with in this 
article concerns uncertainty representation and measure. The 

low level processes (Ballard and Brown, 1982) used to extract 
edges, textures, and other low level attributes are highly error- 
prone, leading to high uncertainty in feature extraction. There 
are two types of uncertainty, symbolic and metric. Symbolic 
~rncertainty refers to uncertainty about the proper labeling of 
an object extracted from the scene. Metric uncertainty refers to 
the error in measurement of the position of a feature. There are 
three types of metric error: random error, systematic error, and 
blunders or gross errors to be discussed later. Metric uncer- 
tainty has been dealt with for a long time in photogrammetry, 
at least for points, but symbolic uncertainty is a relatively new 
problem in image understanding. In this work, the relationship 
between the two is being explored. 

The word "metric" is used in two different ways in this ar- 
ticle. In the first sense, metric uncertainty, metric refers to the 
act of performing a measurement. In another, we will speak of 
metric in the topological sense, where metric refers to an 
expression which measures a distance in some space. These 
metrics are computed from observations of some quantities and 
then used as sources of evidence. The evidence from different 
sources is then combined using some formalism to give an up- 
dated evidence which is then used to compute something called 
a belief value to decide on the synlbolic labeling. Metric uncer- 
tainty is represented by the variance in observations, and sym- 
bolic uncertainty by variance in the belief values (as well as the 
belief values themselves). Metric uncertainty is related to sym- 
bolic uncertainty by error propagation. 

The variance in the belief value can be used for the following 
purposes: 

To understand how metric error affects symbolic matching, 
To compare different metrics used as sources of evidence, and 
To help make decisions after belief values have been calculated. 

UNDERSTANDING HOW METRIC ERROR AFFECTS 
SYMBOLIC MATCHING 

In digital automated feature extraction, information is ex- 
tracted from the image and used in combination with other 
available information to assign symbolic labelings to groups of 
features in the image. In doing so, attention has not been paid 
to the fact that positional or metric error exists in the informa- 
tion extracted from the image. If the information is derived by 
functional relationships from measured quantities (parameters), 
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then it is possible to propagate error from the measured cluan- 
tities to belief values and other extracted information. 

Two systems which derive evidence needed in performing 
feature extraction through the use of functional relationships 
are SCEWO (Spatial Correspondence, Evidential Reasoning, and 
Perceptual Organization), developed at the Courant Institute of 
Mathematical Sciences under David G. Lowe (Lowe, 1985), and 
I'SEIKI (I'roduction System Environment for Integrating Knowl- 
edge from Images), developed at Purdue University under Avi- 
nash C. Kak (Andress and Kak, 1988a). 

SCERPO is designed to perhrni object recognition in the ab- 
sence of a known orientation of the object. It works on the 
fundamental premise that certain features are nearly viewpoint 
invariant, such as parallel lines and collinear lines. In addition, 
features that are in close proximity to one another will appear 
in close proximity from most viewpoints if the viewpoint clis- 
tance from both objects is greater than the separation between 
them. However, by accidental alignment, features which are 
distant from one another may appear in close proximity. To 
help account for this, as well as accidental occurrences of coli- 
near and parallel alignment, SCERI>O looks for cases of low prob- 
ability of accidental occurrences. Its metrics are measures of the 
probability of an accidental occurrence of the proximity or align- 
ment. The expression "(1-metric)" gives the probability that a 
significant viewpoint invarient feature has been found. SCERI'O 
ranks the features according to these probabilities, and then 
begins a search process for object models which have these 
features. If it finds a match, it then searches the image for fea- 
tures predicted by the object model; if it finds them, further 
updating of the probability is done by Bayesian Updating (Lowe, 
1985). 

I'SEIKI is designed to take image input and model input and 
establish a labeling of image features by model features. Several 
full descriptions are available (Andress and Kak, 1988a; 1988b). 
Unlike SCERPO, this system assumes that a fairly good sensor 
exterior orientation exists along with knowledge of the expected 
scene. After a successful labeling is performed, the exterior ori- 
entation can be updated. I'SEIKI stores a model of the expected 
scene represented in a hierarchical framework, starting from 
vertices and proceeding to build edges, faces, and objects, and 
then the union of all objects defines the scene. It extracts edges 
from the image, groups them into expected faces, and then gets 
evidence for labeling by computing nietrics for possible corre- 
spondences between image and model edges. 

In Figure 1, we illustrate the geometry of a match of image 
and model features in I'SEIKE. The distances D ,,<,,, and D ,,,, are 
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used in the metrics for collinearity, noncollinearity, and initial 
labeling. 

The first metric makes use of a collinearity function (Andress 
and Kak, 1988a): 

collinearity (E,, E,) = 
(D".". - D ,>c.L,) cos(e) 

Dm.,, 
(1) 

The second metric is a non-collinearity function (Andress and 
Kak, 1988a): 

D 
noncollinearity (E,,E,) = JEZ Scale (E,) sin(0) (2) 

Dl,.,, 

where Dm,, is the largest value which D ,,, , or D ,,, can take and 
E, and E, refer to Edge 1 and Edge 2, respectively. 

For computing initial basic probability assignments (BPA) a mod- 
ification of the first metric is used: 

The scale (E,) is a scale factor ranging for 0 to 1, which is a 
function of the length of E,, to limit the amount of disconfir- 
matory evidence due to noise. Both metrics range from 0 to 1. 
If E, is a model edge (i.e., E,,; for models, letter subscripts are 
used instead of numbers). On the ot er hand, the noncolli- 
nearity function provides evidence th t E, does not match E,,. 
These two metrics are computed fo / each pairing of edges 
grouped together in the image with each element of the can- 
didate face. The BPAs for each edge are then assigned: Colli- 
nearity gives evidence in favor of a match; non-collinearity gives 
evidence that a match is wrong. 

Basically what PSEIKI does is to hypothesize initial groupings, 
which it tests by first computing initial BPAs, selecting the most 
likely labeling, and then testing the labeling for corresponding 
faces and objects. Evidence is propagated up the hierarchy by 
the simple scheme that if edges are properly labeled, then that 
is evidence that the face is also properly labeled. Similarly, cor- 
rectly labeled faces comprise evidence that an object is correctly 
labeled. The process is fully described in Andress and Kak (1989b). 
For the representation of evidence, PSEIKI uses the Dempster- 
Shafer formalism (Shafer, 1976). 

Uncertainty often arises in cases where multiple sources of 
evidence, sometimes conflicting, exist. In these cases, a method 
is needed for combining these different pieces of evidence to, 
in the end, provide some updated belief value. One such mech- 
anism is the Dempster-Shafer Theory of Evidence. This does 
not concern itself with the origin of the evidence, but only that 
the evidence be expressed in a way that it has certain properties; 
for example, it is expressed as a number between 0 (no support) 
and 1 (complete support). This formalism is distinguished by 
the fact that it is not required that all belief be committed to 
either a proposition or its negation, as for example, Bayesian 
theory requires. The uncommitted portion of belief represents 
our ignorance. In some cases in which we feel we should not 
have ignorance due to the nature of evidence being collected, 
we might associate this uncommitted portion to doubt that we 
have been considering the proper set of possibilities. 

SCERPO is not concerned about ignorance because "There seems 
to be no need for an estimate of ignorance when calculating 
rankings for a search process" (Lowe, 1985). This is one reason 
Bayesian statistics were used. 

The goal of the Dempster-Shafer theory is to provide a means 
to represent and pool different sources of evidence. Generally, 
the final belief values assigned to different possibilities as a 
result of using Dempster's Rule of Combination are used in 
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FIG. 1. Geometry of an example match in PsElKl 

making some decision on which possibility to accept. In the 
simplest case, one might simply accept the possibility for which 
the belief value is highest. This would, in effect, assume that 
the evidence sources were reliable and exact. Suppose, how- 
ever, that, in addition to the evidence sources, there also exists 
a value for the variance of each piece of evidence. This may 
occur if the evidence is a value computed from observed quan- 
tities. We will look at how the variance can help in making a 
decision. 

Up to this point we have assumed that there is no error in 
our extracted parameters [O, D ,,, ,, D,,,]. In reality, of course, 
there must be error in the parameters. Let us assume we have 
errors in the vertices of our extracted edges, and further, the 
model is also imperfectly known, so we have errors there as 
well. 

We propagate the error from the vertices to the parameters 
and then from the parameters to the metrics: 

where J,, and J,,,, are Jacobians, L,, is the covariance matrix of 
the parameters, and C,,,,,, is the covariance matrix of the metric. 

For establishing the initial labelings, PsEIK~ calculates ES - col- 
linearity for the whole set of possibilities, and then assigns that 
label which has the highest belief value. The accompanying 
error propagation would provide a variance for that value as 
well. 

One can continue the error propagation through higher levels 
by propagating through Dempster's Rule, as is shown in Kretsch 
and Mikhail (1989). Having determined a variance for the belief 
values, the next sections deal with how the variance is used. 
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COMPARISON OF DIFFERENT METRICS 

The central issue of interest is the behavior of a computer 
vision system with respect to metric error. This error can be 
divided into three components: randoni error, systematic error, 
and blunders. 

Random error is that unpredictable, unavoidable component. 
It is this error which we propagate as variance. Systematic error 
is predictable error due to shortcomings in the mathematical 
model. In the case of PSEIKI, it is really systematic error that 
"drives" the process, because it is trying to find a specific sys- 
tematic error in position which will be used to update the po- 
sition of a robot. It is important, however, that this systematic 
error in position not be so severe as to prevent the proper la- 
beling needed to determine the robot's position. Also, there are 
other sources of systematic error which may be misinterpreted 
and lead to error in position. Finally, there are blunders, and 
in low-level processing there are certainly a lot of those. There 
appear to be some very interesting aspects of blunders which 
may occur in PSEIKI which contrast to blunders encountered in 
other fields of photogranimetry. PSElKl itself provides some means 
of dealing with these blunders (Kretsch and Mikhail, 1989). 

Discussion of propagation of variance in belief calculations 
would be of limited value if the belief functions were subjective 
in nature. However, in the case of PSEIKI, the belief functions 
are calculated based on observations. Thus, a variance in the 
observations will result in a variance in the belief values. This 
can be useful in providing a means of relating positional metric 
uncertainty to symbolic uncertainty. 

The first step in the PSElKl labeling process is the assignment 
of the initial labelings, using the ES-collinearity metric: The 
first step leads to the first decision made by PSEIKI, and perhaps 
the most important, deciding what the initial labelings should 
be. The immediate question arises of how one is to represent 
metric uncertainty in the image. Another question is where one 
may obtain these metric uncertainties. 

At this point we do not have known variances. We have 
decided to assume different covariance matrices and theti sini- 
ulate their respective effects on the belief calculations. Two pos- 
sibilities for the metric uncertainty representation were 
considered. In the first possibility, we might use a parameter 
covariance matrix for 0, D ,,,, ,, and D,,~,,. In this case we would 
assume that we are directly measuring 0, D,,,. ,,,, and D ,,,,,. With 
this method it seems hard to get off-diagonal terms of the co- 
variance matrix. In the second possibility, we assume that the 
vertices are the observations. This is consistent with the hier- 
archical nature of PSEIKI, in which the lowest level of the hier- 
archy is identification of the vertices. We assign covariance 
matrices to the vertices, and then proceed to do error propa- 
gation from these to the parameters to get a covariance matrix 
for 0, D ,,,,,, , and Dl,,,,.. 

There is a philosophical problem with this second represen- 
tation. The extracted segments presumably come from or cor- 
respond to a segment on some model edge. But we have no 
way of knowing to what point on the model edge our image 
vertex corresponds. All we know about the expected value of 
the position of our image vertex is that i t  should be on the model 
edge if the match is correct, and if there were no systematic 
error. Given this state of affairs, what does a variance in posi- 
tion of a vertex mean? We are assuming here that the extraction 
of the vertex with its corresponding position is an observation 
to which we are assigning a variance. This variance is related 
to the image quality which we define loosely as being a measure 
of the resolution and sharpness of the image. 

We decided to use simulation to deal with the research issues. 
Basically most of the siniulation involved introducing a Y,, ma- 
trix constructed from assumed trf and tr: for each vertex and a 
correlation coefficient p between the vertex x and !/ coordinates, 
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and then propagating this covariance matrix through the belief 
calculations to get a tr:,-,,,,,, (variance of ES-collinearity). We 
worked in an arbitrary unit system, in which we picked vari- 
ances in the range from 0 to 0.10, in a roughly 3 by 3 unit area. 
If  the arbitrary unit is inches, for example, this approximates 
an image frame. In addition to variances, other parameters such 
as the length of the image segment, the tuning parameter D,,,,,,, 
and were varied to study their relationship to trp,-,-,,, and 
Es-collinearity. The studies performed are fully described in 
Kretsch and Mikhail (1989). 

In addition to the variance and the expected value of a metric, 
another important statistical property is the distribution. We 
assume here that the vertices have normal distributions. Find- 
ing the actual distributions of the vertex points would involve 
a deep study of the edge detection, skeletonization, and data 
reduction's effect on the stochastic properties of the vertices. 

Two methods for finding the distribution of the metric were 
considered. In the first, we attempt to propagate the distribu- 
tions of the vertices to find the distribution of the metric. The 
method is described in Anderson (1958) and Mikhail (1976). In 
this method, we first establish the functional relationships and 
the inverse relationships. In this case, it turns out that the in- 
verse relationships do not exist. 

So we decided to use the second technique, Monte Carlo 
simulation, to find the distribution of the metric. The specific 
metric we chose to look at is ES-collinearity. In this case, we 
took as our starting point the example in Figure 1. 

We generated a nornially distributed function with the same 
mean and variance as the ES-collinearity example in Figure 1 
and plotted it with a dashed line along with the distribution of 
ES-collinearity which we computed by Monte Carlo methods 
(Kretsch and Mikhail, 1989) and show this in Figure 2.  In this 
figure, the difference between the two is very noticeable. The 
distribution of Es-collinearity has less scatter than a normal 
distribution, i.e., its variance is reduced, resulting in a narrower 
atid higher distribution, as would be expected. 

Of course, one of the most important issues we wished to 
address was the relationship of metric uncertainty to symbolic 
uncertainty. We decided to explore this through simulation for 
several reasons. First, we have no knowledge of what the true 
variances of the image edge positions are. Because at least some 
of this error derives from low level image processing, a very 
detailed study would be required to find out. Second, through 
simulation we have control over the error, being sure that only 
the errors which we have introduced enter into our result. 

We concluded that the belief metric chosen responds linearly 

Monte Carlo Simulation 

FIG. 2. Distribution of ES-collinearity along with normal 
distribution. 
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to changes in the image and model variances. Indeed, analysis 
of the mathematical derivations shows that the metric chosen 
only affects the J,,,, terms, which help determine the slope of 
the line. So any metric will have a linear relationship, the dif- 
ference between metrics will lie in the slopes of their respective 
rr: ,,,,,, to positional d. relationships. 

To understand the variance of extracted feature parameters, 
we must look very closely at the digital processes used to extract 
those parameters. The processes to be examined are the pre- 
processing phase where pixel to symbol conversion takes place 
and the data reduction module where deletion of some vertices 
take place. 

MAKING DECISIONS AFTER BELIEF VALUES HAVE BEEN 
CALCULATED 

If one choice clearly stands out from the rest, then the vari- 
ance of the possibility selected should make no difference. If 
there is one outstanding candidate for selection, or none, then 
the variance may mean nothing at all. The case of interest is 
when two belief values are nearly the same, as Dungeon (1988) 
has pointed out. 

Suppose we have two possibilities, A and B, and Bel(B) > 
Bel(A) where Bel(B) is the belief value for B and Bel(A) is the 
belief value for A. Normally, under these circumstances, B would 
be selected. Different selections might be made if other selection 
criteria were used. 

For example, suppose it was desired to select that possibility 
which was most likely to exceed a certain threshold T. Although 
B exceeds A, that is, B probably exceeds A, the probability of A 
exceeding T can be greater than the probability of B exceeding 
T. 

This is an example of where knowledge of the variance of a 
random variable, in this case, the belief values Bel(A) and Bel(B), 
provide additional information which can impact our decision. 
To actually perform the calculation, the distribution functions 
must be known. If we assume that the distribution is normal, 
the mean and variance completely define it. Because we gen- 
erally assume that our observations are normally distributed, 
the assumption is not always unreasonable. However, as the 
next example will show, for some decision criteria, the distri- 
bution does not matter. Where distribution does matter, we 
must propagate distributions through the metrics and uncer- 
tainty calculations. 

Suppose we normally select that possibility with the highest 
belief value. Could the variance and distribution information 
alter this initial decision strategy? Let us first treat our calculated 
beliefs as we would an observation, by assuming in the absence 
of any other information that our calculation represents the ex- 
pected value of the belief, and that these belief values are in- 

E(Bel(X)) = Bel (X) (calculated) 

and for our case 

Given this, it can be shown (Kretsch and Mikhail, 1989) that 

Thus, if one desires the choice with the probability of having 
the highest belief value, B is the proper choice, given the as- 
sumptions above, regardless of the distribution. 

INTERPRETATION OF RESULTS 

What does the variance in the belief values tell us about our 
symbolic matching? In the case of SCERPO, the main effect would 
be on the search strategy. SCERPO would seem to be rather 
robust with respect to metric error for two reasons; first, from 

ERlNC & REMOTE SENSING, 1990 

the results above, the ranking is not affected by distribution 
and, hence, variance; and second, even if an error in ranking 
is made, it is likely that this will decrease the efficiency of the 
search, but not the outcome unless the error leads to settling 
on a wrong but not inconsistent solution. 

For PSEIKI, we might start to answer the question by looking 
at the effect of variance in the vertex positions. An error in 
position can only make a correct match appear worse. But an 
error in position could increase the belief value assigned an 
incorrect match. 

A more important result that may be derived from the vari- 
ance in the belief value is the threshold that should be used in 
determining if a label is correct or not. Both SCERPO and PSEIKI 
use a threshold at some point in their evidence accumulation 
process. The lower the variance, the higher the threshold should 
be. For zero variance, meaning perfect metric feature extraction 
-i.e., no errors in positions of vertices between the image and 
the model in world space - the threshold should be 1. 

At this point we have developed the necessary error propa- 
gation theory and using it have simulated error propagation 
through the assignment of initial BPAs in PSEIKI. The results of 
these simulations have given us some idea of how the metrics 
are affected by error in the imagery. This helps meet one of our 
first goals, that is, determining the behavior of the metrics. 

Perhaps the most important contribution of this work is that 
it forced a re-evaluation of what considerations must go into 
choosing a metric. We feel that considering the stochastic prop- 
erty of the metrics using error propagation techniques is a def- 
inite contribution in both choosing metrics and understanding 
their performance. 

CONCLUDING REMARKS 

In this work we have explored the effect of metric error on 
symbolic error. We have demonstrated that this can be done by 
implementing an example on the first step of PSEIKI. 

Further work can be done at both ends. On the one hand, a 
study is needed to identify what the true metric error is. This 
study might be done in two ways or a combination of both: 
first, to carefully study and model the low level image process- 
ing techniques to see what error they introduce; and second, 
attempt to determine error (accuracies and precision) by em- 
pirical studies. In the combination of the methods, we might 
verify our theoretical studies of low-level processing by empir- 
ical studies. By empirical studies, we mean measuring known 
control features under known circumstances to determine what 
error has been introduced by the system. 

One of the possible future enhancements of PSEIKI is incor- 
porating the ability to change model panels, and use this ability 
for automatic target recognition (Andress and Kak, 1988a). It is 
this potential capability which makes PSEIKI interesting for map- 
ping purposes. The ability of PSEIKI to establish a labeling of 
corresponding feature elements in imagery and then provide 
an overall belief value for the match could be used to automate 
some of the processes of extracting those cultural features of 
interest that can be represented by models. Examples of such 
features may be buildings and power transmission towers. Much 
work remains to be done in this area. 

This approach of error propagation may also be applied to 
other representations, such as the maximum entropy method. 
Different interpretations from those used in Dempster-Shafer 
analysis may have to be developed, but the issue of relationship 
between metric uncertainty to symbolic uncertainty will remain. 

At any rate, error propagation has made available more in- 
formation which can be used in the feature extraction process. 
This information combines the development of photogramme- 
tric data reduction developed over many years with the emerg- 
ing image understanding field. 
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