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ABSTRACT: A two-dimensional differentiator is useful for edge sharpening in digital image processing. In the design of 
a differentiator, differentiator coefficients that satisfy the specification of frequency response must be approximated. 
Four mathematical techniques- the minimax method, least-squares method, nonlinear programming, and linear pro- 
gramming-can be applied to solve the approximation problem. A comparison of these four differentiators was made 
on three types of edges: the step edge, roof edge, and line edge. The procedure for edge sharpening was first to 
convolve an image with the differentiator, and then to add a certain percent of the result back to the original image. 
Results indicated that the differentiator derived from linear programming gives the highest resolution. 

INTRODUCTION 

E DGE SHARPENING TECHNIQUES are used primarily as en- 
hancement tools for highlighting object boundaries in a dig- 

ital image. A differentiator is a spatial filter for determining the 
differentiation of an image and it can be used as a sharpening 
technique for edge extraction. 

Theoretically, the differentiation of a given image can be de- 
termined by the Fourier transform of the image to the frequency 
domain, multiplying the frequency response by an operator, 
then transforming the result back to the spatial domain (Crow- 
ley and Parker, 1980). One problem with this approach is that 
adjacent images that are processed separately could exhibit dis- 
continuities when the images are joined. In order to avoid this 
problem, it is useful to design a differentiator that is a set of 
weighting coefficients based on the specifications of the fre- 
quency responses. Edge extraction is accomplished by convolv- 
ing the image with the differentiator. This approach can be 
applied directly to large data sets in digital image processing. 

Several differentiators have been determined by the finite dif- 
ference approximations of the differentiation in the spatial do- 
main. Gonzalez and Wintz (1977) indicated that the 
approximation method in the spatial domain is proportional to 
the difference in gray levels between adjacent pixels. Thus, the 
gradient assumes relatively large values for prominent edges in 
an image and small values in image regions that are fairly smooth, 
being zero only in uniform regions. Crowley and Parker (1980) 
have studied the corresponding frequency responses of several 
differentiators derived from the above approach. 

This paper evaluated differentiator design based on the spec- 
ifications of frequency responses. Four mathematical tech- 
niques - the minimax method, least-squares method, non-linear 
programming, and linear prograrnming-were applied to de- 
termine the differentiator coefficients. The common goal of these 
methods is to minimize an "objective" function wit6 or without 
constraints. The algorithms for finding the minimal value of 
each objective function can be found in the referred papers. 
Both the minimax method and the linear programming utilize 
the same algorithm, but minimize different objective functions. 
This study compared the results of the differentiator designs 
that are obtained from different types of objective functions. 
These differentiators were then applied to three data sets of 
synthetic edges to compare the resolution of results. The dif- 
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ferentiator that provided the highest resolution was applied to 
a SPOT image to illustrate the capability of the approach. 

The objective of this paper is to present a result of edge sharp- 
ening without too much mathematical detail. However, readers 
can immediately use the differentiator introduced here and write 
code for edge sharpening. References are also provided for those 
who wish further details. 

TWO-DIMENSIONAL DIFFERENTIATOR DESIGN 

The desired frequency response, H(u,u), of a differentiator is 
defined, without normalization, as (Gonzalez and Wintz, 1977) 

where u and v are spatial frequencies in radianslsample. In a 
two-dimensional discrete system, the computed frequency re- 
sponse, H1(u,v) ,  of an odd length differentiator with coefficients 
h(m,n) can be written as (Fiasconaro, 1979) 

where i= d? and 2N + 1 is the differentiator length in each 
dimension. 

The approximation problem in differentiator design is to find 
the differentiator coefficients h(m,n) that provide the best ap- 
proximation H1(u,u) to the desired frequency response H(u,u). 
The edges might be anisotropic by their nature, but the isotropic 
form of the differentiator is assumed because all directions of 
edges are considered. H(u,u) in Equation 1 is symmetric with 
respect to the line u =v; therefore, the study area of the ap- 
proximation problem may be confined to the lower triangle, 
where vsu  and Osvlu, in which u, is the Nyquist frequency. 
The differentiator coefficients h(m,n) were assumed to have the 
same symmetric characteristics, which result in a reduction in 
the number of terms to be considered in the representation of 
H1(u,v). 

The error between the desired and computed frequency re- 
sponses was defined as 

Four mathematical techniques were used to determine differ- 
entiator coefficients by minimizing some functions related to 
this error. Because these four methods can also be applied to 
other filter designs, the term "filter" will be used in the follow- 
ing discussion. 
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The minimax method, a popular filter design method using 
the simplex algorithm (Luenberger, 1973), can be used to design 
filters by finding the maximum absolute value of the error E(u,v) 
in the frequency domain, then minimizing it with respect to 
h(m,n) (Rabiner et al., 1975); that is, to 

Minimize M A X I E(u,v) I . (4) 

To adequately control the smoothness of the frequency response, 
the desired frequency response is sampled with a very small 
frequency interval (Steiglitz, 1979). In one-dimensional filter 
design it is possible to use the minimax method to compute 
coefficients easily, but this method becomes unwieldy for two- 
dimensional filter design as the number of frequency samples 
becomes large. 

The least-squares method can be applied to determine h(m,n), 
by minimizing the L,-norm of Equation 3; that is, to 

Minimize 

The objective function in this case is a quadratic function of the 
filter coefficients; hence, the minima can be found by taking the 
partial derivatives and setting them to zero, which leads to a 
system of linear equations and can be solved by the Marquardt 
algorithm (Marquardt, 1963). A filter designed this way is 
equivalent to the filter using a rectangular windowing method. 
However, the rectangular windowing method will lead to rippling 
phenomena if the desired frequency response H(u,v) has 
discontinuities (Oppenheim and Schafer, 1975). 

Gold and Jordan (1969) introduced a direct search method to 
the approximation problem. In their approach, the frequency 
response is specified exactly at M equidistant frequencies in 
each dimension. If the number of frequency samples is equal 
to the number of weighting coefficients, then the weighting 
coefficients can be exactly determined. However, the frequency 
responses of any two adjacent specified samples cannot be 
controlled independently and may not behave as intended. 

A previous study of filter design (Lewin and Telljohann, 1984) 
indicated that the smoothness of the freauencv response mav 
be controlled by forcing the magnitudes'of th; cohfficients to 
decrease gradually from the center of the filter to the edges. 
Pan (1988) proposed a nonlinear programming technique that 
forms a compromise between matching the desired frequency 
response with the computed frequency response, and by 
smoothing the variation between two adjacent samples. In that 
approach, an exponential weighting factor is used to control the 
magnitudes of the filter coefficients. The filter coefficients can 
be determined by minimizing a nonlinear function of h(m,n); 
that is, to 

Minimize 

where X is a vector with components h(m,n), and 

in which p, q, and z are positive constants. 
The first term, P(X), in the above objective function, is a least- 

squares term that forces the solution into satisfying the desired 
frequency response. This is done by treating the equation as a 
penalty constraint weighted by a factor p. The second term, 

Q(X), incorporates the spatial constraints weighted by factor 9.  
The larger the ratio plq, the greater the emphasis on exerting 
the accuracy of frequency response relative to the magnitude 
of variation of the filter. If q is set to zero, then the objective 
function is identical to that used in the least-squares method. 

The exponential-type function in the second term weights 
filter coefficients more when their distance is further from the 
central coefficient. The central coefficient, h(O,O), is not weighted. 
The weight z in the exponential factor is selected on the basis 
of the characteristics of the filter. Powell's (1964) nonlinear 
programming algorithm is used to find the desired vector X. 

A technique modified from Lewin and Telljohann (1984) can 
be applied to minimize the error E(u,v) while controlling the 
smoothness of frequency response. The principal advantage of 
using linear programming to solve the problem is that the 
maximum error of the computed frequency response and the 
magnitudes of the filter coefficients can be controlled 
sim~ltaneously. 

The filter coefficients are determined by minimizing a function 
of Ih(m,n)); that is, to 

Minimize R(X) 

where 

Xis a vector of h(m,n) and r is a positive constant. Before using 
the simplex method to minimize R(X), each I h(m,n) I has to be 
represented by two non-negative variables (Lewin and 
Telljohann, 1984), so that the objective function can be modified 
to be a linear function of these variables. This minimization is 
subject to the constraint, I E(u,v) 1s W(u,v), where the error 
tolerance W(u,v) is taken to be very small relative to H(u,v). 

The exponential factor in Equation 7 has the same effect as 
that used in Equation 6. The factor r in the exponential function 
is user selected and can be adjusted to force the magnitudes of 
filter coefficients at the edges to very small numbers. 

RESULTS OF DIFFERENTIATOR DESIGN 

Theoretically, the least-squares method and nonlinear pro- 
gramming are used to solve the overdetermined problem, in 
which the number of sampled data is greater than the number 
of unknowns. In contrast, the minimax method and linear pro- 
gramming are used to solve the underdetermined problem. Fre- 
quency samples are specified at A4 equidistant frequencies along 
each dimension in the first quadrant of the uu-plane. A value 
of 5 for the differentiator size N is used in these four methods, 
but the sample size M is 6 for the least-squares method and 
nonlinear programming, and M is 4 for the minimax method 
and linear programming. 

Figure 1 shows the desired frequency responses of a differ- 
entiator (Equation I), and Table 1 lists the differentiator coef- 
ficients determined from the four methods. The sum of 
coefficients is the total of all coefficients, and should be zero for 
an ideal differentiator. The error at each sampled frequency was 
less than 0.01 percent of H(u,v). 

Because no discontinuity occurred in the desired frequency 
responses, the differentiator derived from the least-squares 
method was applicable to edge sharpening. However, the least- 
squares method may not be appropriate for filter design where 
discontinuity occurs. The parameters p, q, and z used in non- 
linear programming (Equation 6) are 1,000, 1, and 1, respec- 
tively. As shown in Table 1, the differentiator designed from 
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FIG. 1. A contour map and the corresponding perspective view 
of the frequency responses of an ideal differentiator. 

nonlinear programming is quite close to that of the least-squares 
method. 

Figure 2 shows the computed frequency responses from each 
differentiator. As shown in Figure 2a, the result from the min- 
imax method has significant "ripple" features occurring be- 
tween two specified samples. By minimizing the objective 
function as given in Equation 7, the ripple phenomenon can be 
reduced, where the parameter r was set to 1. 

The theory of linear programming states that the minimal 
value of an objective function can be determined by using only 
the same number of variables that are required to satisfy the 
constraints; the remaining variables were set to zero (Luenber- 
ger, 1973). More independent differentiator coefficients exist 
than were specified samples in this design problem; hence, six 
of the coefficients in the derived differentiator were zero. 

However, by minimizing R(X) as given in Equation 7, the 
actual size of the differentiator was reduced by 1. This cannot 
be achieved by using the minimax method or the approach 
adopted by Lewin and Telljohann (1984). The sum of coeffi- 
cients was 0.00003, where the theoretical value should be zero, 
which made the result more accurate than the other three dif- 
ferentiators. Also, the smaller differentiator size made the con- 
volution faster. 

The computational time for each method was dependent upon 
the filter size (N) and sample size (M). Because both the mini- 
max method and linear programming use the simplex algorithm 
to solve the approximation problem, the computation times of 
these two methods were almost identical, given the same filter 
size and sample data. In the example in Table 1, the compu- 
tation time was 5 seconds using either of these two methods. 
Either the least-squares or nonlinear programming method used 
34 seconds, because the required set was larger than that used 
in the minimax method and linear programming. 

APPLICATIONS 

The part of a digital image with similar gray levels can be 
thought of as a region, and an edge is the intersection of two 
adjacent regions. The edge separates regions with different fea- 
tures and is therefore useful for the identification of objects in 
images. 

Generally there are three types of edges: step, roof, and line 
edges (Nalwa and Binford, 1986). The step edge occurs when 
the gray levels of two adjacent regions vary abruptly at the 
intersection. The roof edge occurs when a gradual change in 
gray level reaches a point of inflection and then decreases in 
gray level. The line edge occurs when a narrow band of a dif- 

TABLE 1. THE DIFFERENTIATOR COEFFICIENTS DETERMINED FROM FOUR MATHEMATICAL METHODS 

- 

(1) Minimax method (sum of coefficients = 0.00006) 
n = 5  - 0.06019 0.00000 0.00000 - 0.00308 0.00000 0.00000 

4 0.01800 - 0.00182 - 0.00329 - 0.00253 - 0.00135 0.00000 
3 0.00000 -0.01237 - 0.00635 0.00000 - 0.00253 - 0.00308 
2 0.06410 -0.01114 - 0.01127 - 0.00635 - 0.00329 0.00000 
1 -0.45148 - 0.08412 -0.01114 -0.01237 -0.00182 0.00000 
0 2.42994 - 0.45148 0.06410 0.00000 0.01800 - 0.06019 

m =  0 1 2 3 4 5 

(2) Least-square method (sum of coefficients = 0.00081) 
n = 5 - 0.02309 - 0.00244 - 0.00211 - 0.00270 - 0.00192 -0.00216 

4 0.02298 - 0.00144 - 0.00205 -0.00233 - 0.00300 - 0.00192 
3 - 0.04573 - 0.00948 - 0.00407 -0.00162 - 0.00233 - 0.00270 
2 0.05766 - 0.00990 - 0.00982 - 0.00407 - 0.00205 -0.00211 
1 - 0.44191 - 0.08149 - 0.00990 - 0.00948 -0.00144 - 0.00244 
0 2.41943 - 0.44191 0.05766 - 0.04573 0.02298 - 0.02309 

m =  0 1 2 3 4 5 

(3) Nonlinear programming (sum of coefficients = 0.00023) 
n = 5  - 0.02303 - 0.00252 - 0.00281 - 0.00185 -0.00156 

4 0.02303 - 0.00147 - 0.00234 - 0.00301 - 0.00185 
3 - 0.04572 - 0.00944 - 0.00165 - 0.00234 - 0.00281 
2 0.05763 - 0.00989 -0.00408 - 0.00206 -0.00213 

(4) Linear programming (sum of coefficients = 0.00003) 
n = 5  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

4 0.01800 - 0.00182 - 0.00329 - 0.00253 - 0.00135 0.00000 
3 - 0.06020 - 0.01237 - 0.00635 - 0.00616 - 0.00253 0.00000 
2 0.06410 -0.01114 - 0.01127 - 0.00635 -0.00329 0.00000 
1 - 0.45148 - 0.08412 -0.01114 - 0.01237 - 0.00182 0.00000 
0 2.42995 -0.45148 0.06410 - 0.06020 0.01800 0.00000 

m =  0 1 2 3 4 5 
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FIG. 3. The four differentiators applied to a step edge. The results deter- 
mined from least-squares method, nonlinear programming, and linear 
programming were almost the same. 

FIG. 2. Contour maps and perspective views of the differentiators de- 
rived from the following methods: (a) Minimax method; (b) Least-squares 
method; (c) Nonlinear programming; and (d) Linear programming. 

ferent gray level occurs within or between regions of another 
gray level. 

The four differentiators designed were implemented on these 
three synthetic edges. Figures 3, 4, and 5 show the profiles of 
step edge, roof edge, and line edge, respectively, and the re- 
sults of convolution with each differentiator. In Figure 3, all 
differentiators have almost the same resolutions, except the dif- 
ferentiator derived from the minimax method has a wider range. 
In Figure 4, the differentiator derived from the linear program- 
ming has a finer resolution. The line edge shown in Figure 5 
has a width of 5 pixels. In fact, a line edge can be obtained by 
the subtraction of two step edges. The result was similar to the 
performance of the step edge. 

Figures 3,4, and 5 show that the differentiator derived from 
linear programming gave higher resolution when applied to 
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FIG. 4. The four differentiators applied to a roof edge. The results deter- 
mined from least-squares method and nonlinear programming were al- 
most the same. 

these three types of edges. This differentiator was demon- 
strated using a 800 by 800-pixel SPOT panchromatic image of a 
section of the Green River near Vernal, Utah (Figure 6a). The 
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30 Line Edge tests. The edge sharpening was accomplished by convolving 

4 20 
the differentiator with a given image and adding a percent of 
the result back to the original image. The techniques discussed 

e l o  in this paper can be applied to various filter designs that are 

% s - 0 n 10 14 pixel 
based on the specifications of desired frequency responses. 
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FIG. 6. The performance of a differentiator derived from linear programming on a SPOT panchromatic image. (a) Original SPOT image of a section 
of the Green River near Vernal, Utah (Copyright SPOT data CNES). (b) Edge extraction from (a). (c) Add 30 percent of (b) back to (a). (d) Add 
60 percent of (b) back to (a). 


