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ABSTRACT: An ecological land classification was developed for a complex region in southern California using geographic 
information system techniques of map overlay and contingency table analysis. Land classes were identified by mutual 
information analysis of vegetation pattern in relation to other mapped environmental variables. The analysis was 
weakened by map errors, especially errors in the digital elevation data. Nevertheless, the resulting land classification 
was ecologically reasonable and performed well when tested with higher quality data from the region. 

INTRODUCTION 

A N ECOLOGICAL LAND CLASSIFICATION is a system for sub- 
dividing land into sub-regions that are relatively homoge- 

neous with respect to one or more ecological variables (Mabbutt, 
1968; Rowe and Sheard, 1981). Often the objective is to stratify 
land surfaces for sampling, resource mapping, habitat assess- 
ment, or impact analysis (e.g., Stocker et al., 1977; Strahler, 
1981; Carleton et al., 1985). Land classifications are also used in 
ecosystem modeling over large regions to identify relatively ho- 
mogeneous sub-regions within which model parameters can be 
estimated more precisely (e.g., Band and Wood 1988). 

There are many methods of land classification ranging from 
reconnaissance and quaIitative survey to quantitative analysis 
of site data from plots or transects scattered over a study region. 
Maps of discriminant terrain variables such as vegetation, to- 
pography, and soils are often used to predict the distribution 
of land classes in unsampled areas. Classification systems have 
also been developed and refined by analyzing correspondence 
between maps of terrain variables (e-g., Phipps, 1981; Bailey, 
1983; Forman and Godron, 1986). 

The development of ecological land classifications is increas- 
ingly supported by digital satellite and terrain data that can be 
used to map land classes over large areas (e.g., Morissey and 
Strong, 1986; Franklin, 1987), and by geographic information 
systems ( G I ~ )  for digital map overlay and spatial modeling (Bur- 
rough, 1986; Berry, 1987). A potential advantage of GIs-based 
mapping of ecological land classes is that maps of terrain vari- 
ables can readily be weighted and combined to display new or 
refined classification systems. Such flexibility is important be- 
cause no single land classification is optimal for all ecological 
applications, especially when those applications span a range 
of spatial and temporal scales and include widely divergent 
purposes (Rowe and Sheard, 1981). 

Many quantitative methods have been applied to land clas- 
sification (e.g., Legendre and Legendre, 1983). A review of these 
approaches is beyond the scope of this paper. Our purpose here 
is to demonstrate the usefulness of one method that we have 
found to be especially well suited to CIS-based cartographic 
modeling (Berry, 1987) and land classification. This method, 
which we refer to as mutual information analysis (Michaelsen 
et al., 1986), was introduced by Phipps (1981) under the name 
PEGASE (Partition d'un Ensemble Geographique pour l'Analyse 
Spatiale Ecologique) as a means of determining ecological re- 
lationships among a set of overlaid chloropleth maps. The method 
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is hierarchical, divisive, and predictive in the sense that land 
classes are developed by combining maps to produce a pattern 
that most closely resembles that of a dependent mapped vari- 
able. 

We have applied mutual information analysis to classify ter- 
rain in a heterogeneous region of southern California based on 
spatial correspondence between digital maps of natural vege- 
tation and environmental variables including geology, eleva- 
tion, slope, seasonal insolation, and hillslope position. Maps of 
these variables were sampled to develop the classification. To 
measure the impact of map errors on measured association be- 
tween ecological variables, we tested the predictive capability 
of the map-based land classification system using a smaller test 
data set acquired from aerial photographs, topographic maps, 
and site visits. 

METHODS 

Mutual information analysis is a method for grouping sam- 
ples that share a set of attributes, based on the association of 
those attributes with a categorical dependent variable. For ex- 
ample, the technique could be used to classify species habitats 
defined by vegetation type and elevation zone based on the 
association of these variables with species sighting data. Simi- 
larly, vegetation environments defined by geology, soil type, 
and slope class could be identified based on the co-occurrence 
of these terrain variables with mapped vegetation classes. The 
fact that map elements are classifed with reference to a specific 
decision variable is consistent with the purposive nature of clas- 
sification. The use of categorical variables facilitates the analysis 
of thematic maps (e.g., geology, land cover, soil type), but also 
means that continuous variables such as elevation must be di- 
vided into classes. The divisive hierarchical classification struc- 
ture is consistent with the notion of scale-dependence and 
interaction of ecological factors underpinning ecological pat- 
terns (e.g., Mabbutt, 1968; Gauch and Whittaker, 1981; Naveh 
and Lieberman, 1984). 

Conceptually, the method presumes that land surfaces are 
spatially ordered due to ecological interdependence among ter- 
rain variables. For example, geology, topography, and vegeta- 
tion are often closely coupled in natural landscapes, recurring 
in a limited number of combinations each possessing charac- 
teristic ecosystem properties of energy and mass transfer (e.g., 
Jenny, 1980; see Phipps (1981) for fuller treatment of the theo- 
retical basis for the method). To apply the method, each terrain 
variable is treated as a mosaic (i.e., chloropleth map) with no 
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gradation between mosaic elements or patches. This represen- 
tation will obviously be more or less artificial depending on the 
study region and scale of analysis. The complexity of a mosaic 
is a function of both the number of patches and the number of 
patch types. A measure of mosaic complexity is the entropy 
statistic 

where p, is the proportion of the mosaic in patch type j, j 
= 1, ... u. When an area is jointly classified by two ecological 
variables, say x and y, unless x and y are perfectly correlated, 
a more complex composite mosaic will result whose joint en- 
tropy is 

where p,, is the proportion of the mosaic where x and y are in 
states j and k, respectively. 

The joint entropy statistic is maximized when x and y are 
independent, that is, when they exhibit no spatial correspon- 
dence. The joint entropy observed when a composite mosaic is 
formed from overlaying maps of two ecological variables is gen- 
erally less than this theoretical maximum because the state of 
one variable is constrained by the state of another (e.g., vege- 
tation types confined to specific soil types or elevational zones). 
The difference between the maximum and observed entropy 
serves as a measure of the degree of correspondence between 
the two variables. This difference has also been called the mu- 
tual information (i.e., mutual entropy) shared between varia- 
bles x and y (Orldci, 1978). 

The mutual information between x and y may be estimated 
by analyzing a contingency table of jointly classified observa- 
tions of both variables taken at random over the study region. 
Spatial attributes such as patch size, shape, and neighborhood 
are generally not considered (although in principle these attri- 
butes could be encoded by location). For a large sample size N, 
the mutual information can be estimated from cell frequencies 
f,, (the number of samples where x = j  and y = k), marginal fre- 
quencies f (the number of samples where x=j) and i, (the 
number o/samples where y = k) as 

If x and y are independent of each other, l(x,y) = 0. If they are 
perfectly associated, I(x,y) equals the product of the sample size 
and the entropy of x or y (because H(x) = H(y) = H(x,y)). 21 is 
approximately X-squared distributed with (u-l)(v-1) degrees of 
freedom (Kullback 1959). 

To develop a land classification for a dependent variable y 
(e.g., vegetation), the mutual information is measured between 
y and terrain variables x,,m = 1,2, ...( e.g., geology, elevation zone). 
Samples are stratified based on the variable in x that has the 
highest mutual information with y, and the analysis is repeated 
within each stratum using the remaining variables. This divisive 
hierarchical procedure allows certain terrain variables to take 
precedence in conditioning the response of y to the remaining 
variables. 

The method produces sample strata that are more homoge- 
neous with respect to y. By stratifying a sample based on the 
variable with the highest mutual information with y, one max- 
imizes the reduction from the sample entropy (H(y)) to the total 

entropy remaining in the sample strata. The total entropy at a 
level of stratification T is 

where N is the number of observations, S is the number of strata 
at level T, and f, is the number of observations in stratum s. 
Thus, HT(y) is the sum of subset entropy measures weighted 
by stratum size. 

HT(y) can be compared to the starting sample entropy as a 
measure the redundancy between the stratification based on 
variables in x and the dependent variable y, i.e., 

In other words, Y, measures the fraction of the information in 
y that is accounted for by the stratification. 

If x is a continuous variable, it can be converted to a binary 
variable by identifying the cutpoint at which l(x,y) is maxi- 
mized. Because 21 is approximately X-squared distributed, a 
convenient stopping rule is to stop splitting the data at the point 
where 21 does not exceed some chosen level of significance. 
Another approach is to develop a very large classification tree 
and then prune it back by removing classes that do not improve 
the skill of the classification in predicting the state of new or 
subsampled observations (Michaelsen ef al., 1986). In the ex- 
ample that follows we have retained classes based on a X-squared 
significance of 0.05. 

We applied mutual information analysis to map ecological 
land units in a 73 krn2 region of northern Santa Barbara County, 
California (Figure 1). A brief description of the area is provided 
here. More detailed descriptions of the area can be found in 
Davis et al. (1988) and Ferren et al. (1984). 

The study region encompasses two distinctive physiographic 
regions, the Burton Mesa and the Purisima Hills (latitude 34" 
42' N, longitude 120" 27' W). The local climate is Mediterranean, 
having a strong maritime influence, cool summers, and mild 
winters. Over 90 percent of the 36 cm average annual precipitation 
falls between November and April. 

The Burton Mesa is a marine terrace covered with Orcutt 
sandstone (Figure 2), 0.5 to 40 m of weakly cemented quaternary 
aeolian sands (Dibblee. 1950). Level uvlands from 100 to 120 m 
above sea level are dissectedby streaks that have formed wide 
valleys with short steep slopes. Soils range from deep excessively 
drained sand to poorly drained shallow sand overlying iron or 
clay pans (Shipman, 1972). Most of the valley bottoms are filled 
with quaternary alluvium that is developed or under cultivation. 
Upland vegetation is mostly "sandhill chaparral," composed of 
shrubby, multi-stemmed coast live oaks (Quercus agrifolia) 
scattered among evergreen chaparral shrubs including chamise 
(Adenostoma fasciculatum), ceanothus (Ceanothus ramulosus), and 
manzanita (Arctostaphylos spp.) (Plate 1). Many upland areas 
have burned recently, or have been grazed or cleared, so that 
the sandhill chaparral is now one element in a regional mosaic 
of vegetation types that also includes introduced grassland, 
coastal scrub, chaparral, and oak woodland (Ferren et al., 1984). 
Coast live oak forest occurs near streams and steep north-facing 
slopes. Southern exposures are dominated by coastal scrub or 
chaparral species. 

The Purisima Hills border the Burton Mesa to the north and 
are a northwest-southeast trending anticline of late Tertiary 
marine sedimentary rocks ( ~ i ~ u r ;  2). Widespread surficiil 
geological formations in the studv area include the Paso Robles 
EongGmerate, the Careaga sandstone, and the Sisquoc diatomite 
and diatomaceous shale. The Upper Careagea (Graciosa member) 
is a loose medium- to coarse-grained sandstone and the Lower 
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FIG. 1. Location map of the study region with inset showing Thematic PLATE 1. Vegetation classification for the study area based on Thematic 
Mapper image (December, 1985) of the study area. lmage is in UTM Mapper Simulator Data from July, 1985. lmage covers the same area as 
projection, oriented north, 9 by 8.1 km. Dots in the upper right hand Figures 1 and 2. 
portion of the image are oil platforms in the Purisima Hills. Bright areas 
on the Burton Mesa (lower left portion of image) are residential and ag- 
ricultural areas. 

position in a drainage basin. The association of these terrain 
variables with vegetation in southern California is well 

Careaga (Cebada member) is massive fine-grained sandstone 
and siltstone. Elevations range from 225 to 450 m, and the 
topography consists of rolling hills with steep slopes and narrow 
valley bottoms. Except in valleys underlain by quaternary alluvial 
deposits, the soils are shallow and rocky over most of the Purisima 
Hills. 

Most valley floors in the Purisima Hills are cultivated and 
many slopes are actively grazed. Small oil and gas wells are the 
only activity over the remaining area, where predominant natural 
vegetation types include coast live oak forest, coast live oak 
woodland and savanna, Bishop pine (Pinus muricata) forest, 
chaparral, coastal scrub, and grassland (Plate I). Vegetation here 
is skongly associated with geGlogy and t ~ ~ o ~ ~ ~ h ~ - ( W e l l s ,  1962; 
Cole, 1980). 

Our objective was to identdy and map vegetation environments 
in the study region based on the association of mapped vegetation 
pattern and physical terrain variables including geology, 
elevation, slope angle, slope azimuth, clear-sky insolation, and 

documented (e-g. wells, 1962; Harrison et al., 1971; Steward 
and Webber, 1981). Although soil maps exist for the study area, 
we did not use them because the maps for the Purisima Hills 
are much less detailed than the geologic map and have less 
predictive value. 

Our approach to land classification presumed that actual 
vegetation cover was a reliable indicator of ecological conditions 
at a site. We did not account for historical burning, cutting, and 
grazing, although these exert a strong and persistent influence 
on vegetation pattern and weaken the association between 
vegetation and physical site variables (Wells, 1962; Davis et al., 
1988). 

Vegetation was mapped following the classification system 
of Paysen et al. (1980). This system defines vegetation fonnations 
and sub-formations based on physiognomy and vegetation series 
based on dominant overstory species (Table 1). The classification 
is well suited to remote sensing applications and to semi-arid 
shrublands and woodlands, which are frequently dominated by 
one to several overstory species. We departed from the 
classification system slightly in distinguishing coast live oak 
chaparral from chaparral for chaparral vegetation that included 
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FIG. 2. Surficial geology of the study area (after Dibblee (1950)). 

10 to 20 percent oak cover (Table 1). This distinction was made 
because our studies in this area have focused on the distribution 
of this oak species (Davis, 1987; Davis et al., 1988). 

Natural vegetation was mapped using Thematic Mapper 
simulator data (resampled to 30 m resolution) collected at noon 
on 5 July 1984 (Plate 1). The first four principal components of 
the imagery (excluding TM band 6) were subjected to 
unsupervised classification, and image classes were assigned to 
vegetation types by analysts familiar with the study area (Davis, 
1987). Weighted map accuracy was 89 percent, and all natural 
vegetation classes were mapped at greater than 85 percent 
accuracy except for oak forest, which was mapped at 79 percent 
accuracy (Table 1; Davis et al., 1986; Davis, 1987). Most errors 
in mapping oak forest were confusion with dense oak woodland, 
and thus not severe. The vegetation map was co-registered in 
Universal Transverse Mercator projection to the geologic map 
by Dibblee (1950). 

Topographic parameters slope angle, slope azimuth, and local 
horizons were derived from the U.S. Geological (USGS) 30-m 
digital elevation model (DEM) for the Lompoc quadrangle using 
image processing software described by Frew and Dozier (1986). 

As a measure of drainage basin position, we calculated each 
cell's drainage area from the number of cells upstream expected 
to drain through that cell based on maps of slope and exposure. 
The procedure for calculating drainage area was a modification 
of the algorithm described by Marks et al. (1984) for delineating 
drainage basin boundaries. 

We measured the mutual information of vegetation pattern 
and maps of clear-sky insolation integrated over individual 
months of the growing season (December through June) to 
compare monthly and seasonal patterns of association. Incident 
radiation on a slope was calculated using maps of slope angle 

TABLE 1. VEGETATION CLASSIFICATION SYSTEM FOR THE STUDY 
REGION (NOT INCLUSIVE). MAP ACCURACY FOR EACH CUSS IS THE 

PROPORTION OF SAMPLES CLASSIFIED CORRECTLY IN THE TMS-DERIVED 
CLASSIFICATION SHOWN IN FIGURE 3, BASED ON 141 TEST SITES (SEE 

DAVIS (1987) AND DAVIS ET AL. (1986) FOR DETAILS). 

May Accuracy 
Class % Oak Cover Dominant Species (%I 

Coast live > 60 Quercus agrifolia 79 
oak forest Toxicodendron diversi- 

lobum 
Coast live 20-60 Quercus argrifolia 

oak woodland 
Adenostoma fasciculatum 
Arctostaphylos spp. 

Coast live 10-20 Quercus agrifolia 
oak chaparral Adenostoma fasciculatum 

Arctostaphylos spp. 
Chaparral 0-20 Adenostoma fasciculatum 

Ceanothus ramulosus 
C. impressus 
Arctostaphylos rudis 
A. purisima 

0-20 Salvia mellifera 
Baccharis pilularis 
Ericameria ericoides 
Artemisia californica 

Grassland 0-20 Bromus spp. 
Vulpia spp. 
Avena barbata 
Brassica spp. 

Conifer Forest 0-30 Pinus muricata 92 
Quercus agrifolia 
Heteromeles arbutifolia 

Coastal Scrub 

and azimuth as well as a horizon file which gave, for each cell 
in the elevation model, the angle to the local horizon in eight 
azimuthal sectors (Dozier et al., 1981). To calculate diffuse 
irradiance, a sky view factor, the ratio of diffuse sky radiance 
at a point to that on an unobstructed horizontal surface, was 
calculated from slope angle, azimuth, and horizon information 
under the approximation that diffuse irradiance was isotropic. 
For each point, reflected radiation from surrounding terrain was 
also estimated based on the difference between the sky view 
factor on an infinitely long slope (i.e., no facing terrain) and the 
calculated sky view factor at the point. Average surface albedo 
for the region was estimated as 0.14, a representative number 
for chaparral vegetation that covered a majority of slopes in the 
area (Miller et al., 1981) 

The range in elevations was small enough that the atmosphere 
was treated as the same at all locations. Monthly values for 
atmospheric transmission were estimated based on visibility data 
collected at the Vandenburg Air Force Base. Because we could 
only roughly estimate atmospheric properties that prevail in a 
particular month, the calculated insolation values were treated 
as relative rather than absolute and scaled to one-byte integers 
between 0 and 255 (e.g., Figure 3). 

Goetz (1987) conducted third-order field surveys on two dense 
grids to study errors in the DEM model for the Lompoc 
quadrangle. Digital and survey elevations agreed fairly well 
(r2=0.93), but errors were amplified during the differencing 
operations needed to calculate slope and exposure (slope r2 = 
0.44, exposure 1.2 = 0.38). Errors were concentrated in areas of 
rapid change in slope and exposure such as ridges and ravines, 
and included both resolution errors (i.e., undersampling in areas 
of rapid change) and stereo-model errors (e.g., overestimating 
surface elevation in riparian corridors filled with continuous 
tree canopies). Accordingly, prior to sampling and classification 
we masked ridges and ravines, where we expected digital 
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topographic parameters to have lowest reliability (and registration 
errors between scanner data and topographic data to be most 
problematic). This was done by computing the gradient (first 
derivative) of the March insolation image and eliminating 
locations where the rate of change exceeded a subjectively chosen 
threshold. 

Each layer of the database was comprised of 81,000 900 m2 
cells. However, the variables were all highly spatially 
autocorrelated (Cliff and Ord, 1981). Analysis of the full set of 
observations would have weakened the use of the chi-square 
stopping rule, because the spatial dependence in mapped 
variables violated the assumption of sample independence. To 
avoid this problem, we sub-sampled the maps at a sampling 
density low enough so that sample values were expected to be 
independent at the average inter-sample distance. We analyzed 
a 3.5 percent random sample of the image (n = 2853), which was 
sufficiently low to remove most sample interdependence, based 
on semi-variogram analyses of the topographic variables (Oliver 
and Webster, 1986). 

Mutual information analysis was conducted using software 
developed at UCSB. We converted continuous topographic 
variables to binary variables using cutpoints where the mutual 
information between vegetation and each topographic variable 
was maximized. We retained all classes that were significant at 
X p<0.05. 

We tested the predicive value of the classification using 300 
samples identified by interpreting 1983 1:24,000-scale air photos 
(extensive ground reconnaissance in the study area confirmed 
the reliability of identifying vegetation from the photographs). 
The study region was stratified into six subregions within which 
40 to 60 vegetation stands were sampled which were at least 60 
by 60 metres in area on uniform geology (far from mapped 
boundaries) and topography. Sample neighborhood was 
randomly selected, but sample locations were sometimes adjusted 
by one or two pixels to meet the criteria of uniform vegetation 
and site conditions. The vegetation class was identified by 
photointerpretation, and the geologic and topographic parameters 
were taken from the corresponding addresses in the database 

FIG. 3. Distribution of integrated incoming solar radiation during December 
calculated from digital elevation data. Scale and orientation as in Figure 
2. Image brightness is proportional to total radiation. 

(values were checked against air photos, and topographic and 
geologic maps to confirm their reasonableness). It was not 
possible to collect ground observations of radiation and drainage 
basin position. However, it is reasonable to assume that this 
test sample of 300 sites was much more accurate than 300 samples 
taken at random from the database. 

RESULTS 

Nineteen land classes accounting for 18.5 percent of the in- 
formation in the vegetation data were identified using the stop- 
ping criterion of X-square probability less than 0.05 (Figure 4 
and Plate 2, Table 2). Figure 5 shows relative vegetation pro- 
portions in seven of the 19 land classes that had relatively low 
similarity among them and compared to overall vegetation com- 
position of the study area. Some other classes did not differ 
very much in vegetation composition, for two different reasons. 
For some divisions, the very large sample size meant that even 
slight differences in vegetation were significant (e-g., Table 2, 
classes 2,3, and 4). This is because the magnitude of the infor- 
mation statistic is proportional to sample size (Michaelsen et al., 
1986). In other instances, the vegetation in classes on different 
branches of the classification (e.g., on different rock types) was 
quite similar (e.g., Table 2, classes 4 and 9,6 and 8). This could 
occur when different combinations of substrate and topography 
provided similar site conditions for plant establishment and 
growth. Thus, the classification could have been simplified by 
merging similar classes, for example, by merging classes 15 and 
16, classes 6,8, and 10, and classes 2,3,4,9, and 11. We retained 
all 19 classes for the analyses reported here in order to provide 
consistency in evaluating redundancy statistics and the test data. 

Geology and calculated insolation were the most important 
variables in the classification. The first stratification by surface 
geology was highly significant. Most importantly, nearly all 
bishop pine forest was mapped on diatomaceous shale (Classes 
15 through 18 in Table 2). The importance of geology in con- 
trolling vegetation pattern can be seen in the plot of r, against 
the number of classes (Figure 6). This function shows a large 
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FIG. 4. Ecological land classification based on mutual information analysis 
of 2853 samples from the regional database. Bold numbers identify land 
classes (cf. Table 2), numbers in parentheses are the sample size for 
each class, numbers in brackets are two times the mutual information 
statistic (4 (Equation 3) between vegetation and the stratifying variable. 
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TABLE 2. VEGETATION COMPOSITION (CLASS PROPORTIONS AND MARGIN TOTALS) OF THE 19 LAND CLASSES ~DENTJF~ED BY MUTUAL ~NFORMAT~ON 
ANALYSIS. LAND CLASS NUMBERS CORRESPOND TO THOSE IN FIGURE 2. 

Vegetation Class 

Oak Oak Oak Coastal Conifer 
Land Class Forest Woodland Chaparral Chaparral Scrub Grassland Forest Total 

1 0.600 0.040 0.160 0.140 0.060 0.0 0.0 50 
2 0.110 0.139 0.180 0.229 0.180 0.161 0.0 682 
3 0.136 0.300 0.215 0.132 0.110 0.107 0.0 317 
4 0.088 0.238 0.166 0.235 0.199 0.075 0.0 307 
5 0.141 0.155 0.085 0.141 0.197 0.282 0.0 71 
6 0.310 0.200 0.140 0.020 0.150 0.180 0.0 100 
7 0.372 0.256 0.0 0.116 0.186 0.070 0.0 43 
8 0.224 0.204 0.224 0.041 0.224 0.082 0.0 49 
9 0.068 0.209 0.126 0.236 0.246 0.115 0.0 191 

10 0.365 0.168 0.132 0.066 0.144 0.126 0.0 167 
11 0.191 0.146 0.124 0.236 0.247 0.056 0.0 89 
12 0.412 0.118 0.059 0.0 0.059 0.294 0.059 17 
13 0.0 0.0 0.114 0.057 0.329 0.429 0.071 70 
14 0.476 0.167 0.190 0.071 0.0 0.048 0.048 42 
15 0.141 0.097 0.078 0.107 0.005 0.0 0.573 206 
16 0.082 0.048 0.092 0.043 0.024 0.005 0.705 207 
17 0.0 0.038 0.160 0.028 0.038 0.047 0.689 106 
18 0.049 0.107 0.223 0.223 0.078 0.0 0.320 103 
19 0.028 0.111 0.056 0.472 0.306 0.028 0.0 36 

Total 413 456 432 454 416 304 378 2853 

PLATE 2. Distribution of ecological land classes identified by mutual in- 
formation analysis of digital satellite and terrain data. Colorlclasses leg- 
end: 1,tan; 2,light orange; 3,dark orange; 4,brown; 5,gray; 6,reddish brown; 
?,dark aqua; 8,aqua; 9,pale aqua; 10,dark purple; 11, purple; 12,magenta; 
13,light gray; 14,dark green; 15,green; 16,yellow green; 1 ?,gray green; 
18,pale gray green; 19,ivory. 

gain when the data are stratified into five geologic classes, and 
then smaller gains with further subdivision of the data based 
on topographic parameters. 

After stratifying by geology, many subsequent splits were 
based on site differences in calculated insolation for the months 
of March or December. Oak forest and conifer forest were as- 
sociated with sites receiving relatively low insolation (e.g., classes 
1,7,10,12, and 14 through 17); chaparral, coastal scrub, and 
grassland predominated in classes receiving high insolation 

18 17 13 1 6 19 2 all 
Class Number 

FIG. 5. Histograms of the relative frequency of different natural vege- 
tation classes in 7 of 19 land classes and for the study area as a whole. 
Land class numbers are as in Table 2. Vegetation class abbreviations 
are OF (oak forest), OW (oak woodland), OC (oak chaparral), C (cha- 
parral), CS (coastal scrub), CF (conifer forest) and G (grassland). 

(notably classes 9,13, and 19). Vegetation pattern was associated 
most strongly with March or spring (integrated March through 
May) radiation on all rock types except for Sisquoc diatomite, 
where vegetation pattern was more strongly associated with 
December or total winter (integrated December through Feb- 
ruary) insolation. Association between vegetation and insola- 
tion was weaker for the months of April through June (Figure 
7), when higher sun angles reduce spatial variation in insolation 
created by slope, exposure, and horizon effects. For example, 
the coefficients of variation for insolation maps from December, 
March, and June declined from 8.3 to 5.5 to 3.1, respectively. 

Elevation was also a significant variable on some rock types 
in spite of the low range of elevations in the study area. In 
some cases, elevation served as a surrogate for geologic mem- 
bers of a formation. For example, the mudstone member of the 
Sisquoc shale occupied lower elevations than the diatomaceous 
member, and conifer forest occurred mostly on the latter (classes 
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FIG. 6. Information redundancy (r,, Equation 6) between vege- 
tation and the ecological land classification as a function of the 
number of classes for the database (triangles) and test data 
(squares). Points are measured values and lines are fitted curves 
described by Equation 7 in the text. 
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Time Period 
FIG. 7. Mutual information (21) of vegetation and monthly or seasonal 
insolation, where insolation is cut into two classes at the point where 
21 is maximized, for samples on Siquoc diatomite (diamonds) and 
Quaternary deposits (crosses). Winter (Win) months are December 
through February, spring (Spr) months are March through May, and 
D-M is integrated December through May. 

14 versus classes 15,16, and 17). Also, lower elevations of the 
same rock type were usually lower hillslope or riparian envi- 
ronments that were probably more mesic. Thus, south facing 
slopes at higher elevations on Lower Careaga sandstone (class 
13) were dominated by coastal scrub and grassland, whereas 
oak forest, woodland, and chaparral were relatively frequent at 
lower elevations (class 11). 

The ecological land classes were significantly associated with 
vegetation classes for the 300 test sites analyzed by aerial pho- 
tointerpretation (21=216, p<0.001), and the 19 terrain classes 
accounted for 26.67 percent of the vegetation information in the 
300 sites. This is a substantial improvement over the 18.7 per- 
cent information captured in the original training data, and we 
attribute the improvement to improved quality of the topo- 
graphic and vegetation data for the test sites. 

The relationship between r, and the number of subsets S can 
be described by the equation 

where the coefficients a,b, and c are found by a least-squares fit 
to the data (Figure 6).  The asymptote is defined by 

limit,,, r,(S) = a 

As discussed by Phipps (1981), the asymptote is of theoretical 
interest as an estimate of the full association of vegetation and 
terrain based on the established hierarchical scheme. The rela- 
tionship between rT and T for the sample from the database has 
an estimated asymptote of 0.196, or 19.6 percent (a=0.2136, 
b=0.0827, c=0.103), while for the test data the asymptote is 
approximately 0.275 (a = 0.3108, b= 0.1156, c=  0.210). The dif- 
ference is due largely to the higher mutual information content 
of topographic variables and vegetation for the test data. This 
is shown by the greater gains in redundancy with further sub- 
division of the geologic strata for the test data versus the sam- 
ples from the database (Figure 6). 

DISCUSSION 

Ecological land classifications have been developed for many 
regions and at many scales. When suitable classifications al- 
ready exist, the main uses of digital satellite and terrain data 
will be in mapping known land classes over areas of interest. 
There are many regions and applications for which suitable land 
classification schemes may not exist. In these instances, carto- 
graphic modeling such as demonstrated here, that is, GIS-based 
sampling, classification, and mapping, may actually contribute 
to defining regional ecological land classes. We are not sug- 
gesting that cartographic modeling can substitute for field sam- 
pling in developing ecological land classification systems. 
However, the types of cartographic analyses conducted here 
complement traditional field survey methods by measuring as- 
sociations or testing field results with many more random sam- 
ples and at larger spatial scales than can practically be collected 
in the field. 

The usefulness of the land classification scheme that we de- 
veloped for the study area depended on both cartographic and 
ecological considerations as well as complex interactions be- 
tween the two. The cartographic considerations included the 
resolution, accuracy, and biasof terrain maps, and these in turn 
depended on the classification systems used to map categorical 
variables and on the precision at which continuous variables 
were measured. For example, here we used seven vegetation 
classes defined by vegetation structure and dominant overstory 
species. Different results may have been obtained with a dif- 
ferent classification scheme or had dominant understory species 
been analyzed (e-g., Carleton et al., 1985; Davis et al., 1988). 

Much of the predictive skill of the classification was due to 
the strong influence exerted by surface geology. From a carto- 
graphic perspective, this macro-scale terrain variable could be 
accurately resolved and co-registered with other variables at 30- 
m resolution. On the other hand, 30-m resolution elevation data , 

were too coarse to reliably reconstruct rnicrotopography in the 
study region. Masking of regions in which the DEM was most 
sensitive to sampling resolution increased the measured asso- 
ciation between vegetation and topographic variables, but had 
the undesirable effect of systematically removing distinctive en- 
vironments such as ridges and riparian areas from the analysis. 
To improve the analysis, these need to be digitized directly from 
air photos or topographic sheets and stored as a separate var- 
iable in the database. 

An important test of the land classification is whether it is 
consistent with existing ecological studies for the region. Sup- 
port for the classification is provided by existing observations 
of the study area and similar Mediterranean ecosystems. The 
strong association of vegetation and geology, notably the as- 
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sociation of bishop pine forest with north-facing slopes on Sis- 
quoc diatomite, was described by Cole (1980). The distribution 
of vegetation types with respect to solar radiation are what one 
would expect based on physiognomy and documented drought 
relations. For example, coast live oak forest, which was asso- 
ciated with more mesic classes, usually occurs on mesic sites in 
chaparral landscapes (e.g., Griffin, 1973; Campbell, 1980; Cole, 
1980). Coastal scrub, which was associated with high insolation 
classes, is characteristic of more xeric substrates and topo- 
graphic positions (e.g., Harrison et al., 1971; Cole, 1980; West- 
man, 1983). Our analysis also suggests that oak woodland and 
oak chaparral are very similarly distributed with respect to to- 
pography. This is consistent with observations by Wells (1962) 
and Davis et al. (1988) that coast live oak cover increases during 
fire-free intervals on many chaparral-covered sites in the study 
area, and on these sites chaparral is probably sera1 to woodland 
(Wells, 1962; Davis et al., 1988). 

The use of digital topographic data to model monthly and 
seasonal radiation patterns has produced interesting results, 
although the generality of these results needs further testing 
using elevation data of higher resolution and quality and better 
atmospheric data. Most importantly, vegetation pattern in this 
example was more strongly associated with maps of winter or 
spring radiation than with maps of slope orientation that ne- 
glected horizon shading effects or with maps of integrated an- 
nual radiation. Differences in correlation between monthly 
radiation and plant species' distributions have also been doc- 
umented for forest species by Kirkpatrick and Nunez (1980). 
These differences possibly reflect differences in the sensitivity 
of establishment or growth of the canopy species to seasonal 
patterns in radiation-related parameters such as soil tempera- 
ture, evapotranspiration, or total photosynthetically active ra- 
diation (Kirkpatrick and Nunez, 1980). 

The success of a land classification ultimately depends on its 
onsite explanatory power, utility, or predictive skill (Goodall, 
1966). The data used here to test the classification are less than 
ideal because the topographic variables were not measured di- 
rectly. Nevertheless, the fact that the ecological land classifi- 
cation had high predictive skill when tested with high quality 
map data and air photos is encouraging. The fact that the clas- 
sification accounted for only one-fourth of the vegetation infor- 
mation in the test data is neither surprising nor discouraging. 
The vegetation pattern in the test area is extremely complex, 
reflecting land use and fire histories as well as variations in 
geology, soil, and topgraphy. Also, the maps used in the analy- 
sis supplied an imperfect model of the terrain variables. In spite 
of these limitations, the classification was sensible based on 
previous ecological surveys in the region and showed reason- 
able predictive skill. 

In summary, the classification technique described by Phipps 
(1981) and here called mutual information analysis has proven 
to be useful for an application of geographical information sys- 
tem software to ecological land classification. The technique is 
one of a variety of algorithms that have been developed for 
predictive classification (see Legendre and Legendre, 1983; Brei- 
man et al., 1984) and its main advantages in the context of GIs 
applications are the specification of a categorical dependent var- 
iable, the use of categorical independent variables, and the re- 
lationship of the resulting association measure to a well-known 
statistical distribution (X-squared). In this application, the method 
has been usefully applied to digital remotely sensed and terrain 
data to identify terrain classes that were associated with vege- 
tation pattern. 
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