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ABSTRACT: Most recent research in remote sensing has focused on the canopy vegetation characteristics with little 
attention given to the associated understory. The objective of this study was to examine the feasibility of detecting the 
presence or absence of vegetated understory for varying canopy closures within the Sierran mixed conifer zone using 
the high spectral and spatial resolution of Landsat Thematic Mapper (TM) data. Canopy and understory density and 
composition were measured in the field for 60 plots within a USGS 7.5 minute quadrangle map. The TM image was 
classified using an unsupervised classification approach. The TM band combinations evaluated include (A) 2,3,4; (B) 
2,3,4,7; (C) 1,3,4,5; (D) 2,3,4,5,7; (E) 2,4,5; and (G) 4,5,7. The forested areas were stratified into three categories of 
canopy closure: sparse (<30percent), moderate (30 to 70 percent) and dense (>70percent). In each of the canopy classes, 
presence or absence of vegetated understory was then determined using spectral response pattern analysis. All of the 
ground data were then used to assess the accuracy of the classification for each of the seven band combinations. Any 
TM band combination including band 5 produced equally accurate canopy and understory classification results. Overall, 
the accuracy of understory presence or absence ranged from 55 to 69 percent. 

INTRODUCTION 
ESOURCE MANAGERS are required to identify, map, assess, 

R a n d  manage vegetation communities so that multiple-use 
objectives, as defined in the Multiple Use and Sustained Yield 
Act (1960), are achieved. Maps derived from satellite imagery 
have been used to quantify natural resources over large areas 
for the purpose of identifying and evaluating timber resources 
(Fox et al., 1983; Franklin et al., 1986) wildlife habitats (Lyon, 
1983: Stenback et al., 1987); watershed resources (Smith and 
Blackwell, 1980; Khorram and Katibah; 1984), and fire potential 
(Sadar et al., 1982; Burgan and Shasby, 1984). However, the 
focus on overstory conditions in these satellite-derived maps 
has limited their applicability to the resource manager (De- 

1 Steiguer, 1978; Mayer 1984). In addition, previous studies have 
not made actual measurements of understory properties. 

From a resource management perspective, the understory 
represents a critical component of a forest ecosystem. Knowl- 
edge of herbage and browse production, as well as composition, 
enables the wildlife manager to identify areas of suitable habi- 
tat. Erosion potential, evapotranspiration rates, and water qual- 
ity are also influenced by understory conditions. Understory 
conditions also affect seedling survival, as well as the prescrip- 
tion for any burning activity. 

If a methodology using TM data can be developed to char- 
acterize the understory, an additional component of the spectral 
response from a particular area can be explained. In the past, 
the understory has been treated as"noise," as it confused the 
expected spectral response from the forest overstory. Improve- 
ments in spectral and spatial resoultion in the TM sensor suggest 
that the understory component can now be examined, partic- 
ularly because the first five bands of the TM sensor were de- 
signed specifically to sense the biophysical properties of 
vegetation (LiIlesand and Kieffer, 1979). Therefore, the purpose 
of this paper is to investigate the utility of Landsat TM data for 
detecting the presence of vegetated understory within the Sier- 
ran mixed conifer zone. 

LITERATURE REVIEW 
Few remote sensing studies of coniferous forests have inves- 

tigated the spectral characteristics of both understory and over- 
story (i.e., the canopy) in terms of the contributions of each to 
the recorded pixel value. When the canopy is open, the result- 
ant spectral signal is a combination of the response from the 

canopy and whatever occupies the area under the canopy (Cur- 
ran, 1980: McCloy, 1980). Several agricultural studies have in- 
vestigated the effect of soil background, shadowing and plant 
spacing to the response signal of a crop (Kauth and Thomas, 
1976; Richardson and Wiegand, 1977; Westin and Lemme, 1978). 
However, the agricultural techniques were applied to environ- 
mental conditions that rarely exist in the forest ecosystem (flat 
terrain, uniform soils, homogeneous crops, etc.). 

Cover type and stand structure of the forest overstory have 
been investigated using remotely sensed data, where structural 
properties include crown closure, basal area, leaf area index, 
and tree size (Fox et al., 1983; Sjpanner et al., 1984; Franklin e f  
al., 1986; Peterson et al., 1986). In these studies, the effect of 
the understory was acknowledged, but it was not related quan- 
titatively to the reflectance response. Using the lower spatial 
and spectral resolution MSS data, Mayer and Fox (1981) describe 
the effect that a brush understory has on the spectral curve for 
poorly stocked mixed conifer and ponderosa pine stands. Their 
lowest classification accuracy was for poorly stocked mixed con- 
ifer stands (56 percent). This forest class often had a high peak 
in MSS band 6 (700 to 800 nm) which they attributed to the 
highly IR-reflective brush understory. Because their objective 
was to identify conifer species groupings, they used this infor- 
mation to rule out that spectral curve (with a higher peak in 
MSS band 6) as a representative spectral signature, rather than 
as a separate class associated with an understory. Their findings 
do support the idea that the understory's contribution to the 
pixel value can be quantified, particularly when plotted as a 
function of canopy density (percent stocking) for each of the 
MSS spectral bands. 

Sadowski and Malila (1978), using reflectance modeling, 
demonstrated that canopy reflectances for increasing vegetation 
densities differed dramatically depending on spectral band, base 
material, and vegetation type. However, they conclude that "only 
the sparse overstory situations produced sufficient variation in 
reflectance as a function of understory condition to offer hope 
of direct Landsat sensing of understory conditions." Their em- 
pirical results were also based on MSS data. With the higher 
spectral and spatial resolution of the TM sensor, understory de- 
tection is more feasible. TM signals are averaged over 0.22 acres, 
instead of the one acre MSS resolution. Depending upon the 
spatial orientation of the stand, the TM sensor offers a better 
opportunity to look between tree canopies. 
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It has been suggested that remotely sensed data of finer spa- 
tial resolution has an increased level of "scene noise" (or vari- 
ance which may degrade classifier performance (Sadowski and 
Malila, 1978; Wierson and Landgrebe, 1979). The conclusions 
from a forested region investigated in northern Idaho with The- 
matic Mapper Simulator (TMS) data indicate that the variance 
within their scene was primarily due to the structural charac- 
teristics of the forest canopy (Spanner et al., 1984). They rec- 
ommended that future work should further define the 
contribution of specific forest canopy structural properties to 
scene variance. As a follow up to the Idaho experiment, an 
analysis of forest structure in Sequoia National Park using TMS 
data was reported by Peterson et al. (1986). The results from 
this study suggest a strong spectral contribution to the total 
reflectance from smaller trees that are present in forest gaps. It 
is this type of sensitivity to forest structure which suggests the 
utility of TM data for detecting the presence of vegetated un- 
derstory. Peterson et al. (1986) also discovered a saturation effect 
in the response from the clustering of older trees; it is expected 
that the contributing response from an associated understory 
may be obscured in this situation. 

METHODS 

The study area for this investigation was the uSGS 7.5-minute 
Meadow Valley quadrangle within Plumas County in northern 
California (Figure 1). This area is part of the Sierra Nevada 
mixed conifer forest cover type (Society of American Foresters, 

1980). Forest structure in this cover type is typically multi-lay- 
ered. Dominant overstory species include white and red fir (Abies 
concolor and A. magnifica), ponderosa, Jeffrey, and sugar pines 
(Pinus ponderosa, P. jefieyi, and P. lambertiana), Douglas fir (Pseu- 
dotsuga menziesii), and incense cedar (Calocedrus decurrens). When 
openings occur in the overstory, vegetated understory is more 
prevalent (Kosco, 1980). The understory is predominated by 
brush; conifer and hardwood seedlings; and many species of 
grass and forbs. Specific brush species include deerbrush (Cean- 
othus sp.), manzanita (Arctostaphylos sp.), chinquapin (Castan- 
opsis sp.), tanoak (Quercus sp.), bitter cherry (Prunus sp.), and 
gooseberry (Ribes sp.). Granitic outcroppings, exposed ultra- 
mafic soils, and mine tailings are also common throughout the 
area. 

For the vegetation analysis, 60 plots were selected randomly 
from the Meadow Valley quadrangle using a stratified systematic 
unaligned sampling scheme (Ayeni, 1982). These plots were 
previously established from an earlier study by DeGloria (1986). 
These plots were useful for this study because of the earlier 
data collected on associated soil types and terrain conditions. 
DeGloria (1986) also had identified each plot on 1:24,000-scale 
aerial photography. Canopy closure was assessed using U.S. 
Forest Service tree crown desity scales, where each plot was 
categorized as having a canopy closure class of sparse (<30 
percent), moderate (30 to 70 percent), or dense (>70 percent). 

Understory conditions were measured in August 1986. The 
method for collecting the understory information (species 
composition and density) was the line-intercept method (Deusar 

CALIFORNIA 

FIG. 1. Meadow Valley Study Area (after DeGloria, 1986) 
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and Shugart, 1978). Understory vegetation (brush, seedlings, 
saplings, and pole trees) and exposed base materials (rock, bare 
soil, and litter) were recorded to the nearest cm as they intercepted 
two 50-metre transects positioned perpendicular to each other 
at the plot center. Orientation was dependent on slope: one 
transect ran parallel to the slope, the other perpendicular. This 
orientation accounts for vegetation variability as it relates to 
local topographic conditions. In the event of multiple layers of 
understory, the species that overtopped the others was recorded. 
The assumption was made that the overtopped vegetation has 
a greater effect on the understory's radiance .contribution because 
it is that which is "seen" by a nadir-looking sensor. For purposes 
of this initial investigation, each plot was summarized in terms 
of the presence or absence of vegetated understory, where 
"presence" was defined as greater than 50 percent vegetated 
cover. It is recognized that transect sampling may over-sample 
the center of an area. However, it is a very convenient method 
for sampling on slopes. 

Landsat Thematic Mapper (TM) digital imagery was acquired 
28 July 1986. A subscene of the study area was extracted. All 
image processing was performed on the University of California, 
Berkeley-Remote Sensing Research Program's SUN 
microcomputer using ELAs digtal image processkg software. 
Using an unsupervised avvroach with a maximum likelihood 
classrfier, seven classific~~ons were generated utilizing the 
following TM band combinations: 

(A) Bands 2,3,4 
(B) Bands 2,3,4,7 
(C) Bands 1,3,4,5 
(D) Bands 2,3,4,5,7 
(E) Bands 2,4,5 
(F) Bands 3,4,5 
(G) Bands 4,5,7 
Selection of the seven band combinations was based on 

recommendations published in the literature and from past 
experience. For example, the first combination was selected for 
comparison with MSS results (Mayer and Fox, 1981). TM band 
combinations that provided the greatest spectral separation for 
forested areas were then selected. Band combination (C) provided 
the best overall separability for a forested area in a study by 
Latty and Hoffer (1980). This study also found that using more 
than four bands did not improve classification accuracy 
substantially. Thus, band combinations (A), (B), and (D) were 
selected for comparing the effects of an increased number of 
bands on classification accuracy. In addition, the last three band 
combinations (E, F, and G) were evaluated to see what effect 
reducing the quantity of TM data had on the classification 
accuracies. In addition, band combinations representing 
continous portions of the electromagnetic spectrum were 
emphasized because the slopes between bands were known to 
be key features in the labeling process (Mayer and Fox, 1981). 
Thermal band 6 was not investigated because of its low spatial 
resolution. 

No registration and therefore no resampling was performed 
on the data to insure that all of the spectral variability within 
the study site was preserved (Verdin, 1983). The unsupervised 
classification approach was selected for this initial examination. 
This approach-was considered the most appropriate because it 
characterizes the full range of svectral variability in the data and 
is not dependent on tra&ing Geas. 

IMAGE CLASSIFICATION 
Labeling each cluster within each of the seven band 

combinations was accomplished in two steps. The first step 
involved labeling the cluster by canopy closure class. Using the 

display device, each cluster was isolated and categorized into 
one of the three canopy closure classes (i.,e., sparse, moderate, 
or dense) or identified as "non-forest." Spatial and spectral 
vatterns of each cluster were examined in conjuction with the 
Lorresponding orthophoto to aid in the labeling process. 
Familiarity with the Meadow Valley quadrangle faciliated the 
canopy density labeling. 

The second step involved labeling each cluster by presence 
or absence of vegetated understory. Each cluster's spectral 
response curve was graphed and grouped according to the 
canopy cover class it was assigned to in step one. Distinct patterns 
existed in the graphs corresponding to the sparse and moderate 
canopy cover classes. It was hypothesized that the variation in 
the graphs associated with these two canopy cover classes was 
indicative of variations in understory conditions. 

The spectral response patterns were used for identifying key 
features indicative of each understory class. Key features include 
(1) the slopes between successive bands, particularly between 
TM bands 2 and 3, and TM bands 4 and 5; and (2) the range of 
spectral values in each band. Because the image processing 
software, ELAS, does not save the rescaling constants, the actual 
DN (digital numbers) are not represented. Radiance values would 
have been useful to compute for comparison with past results 
(Peterson et al., 1986), but these values also could not be 
determined from the rescaled values reported by ELAS. However, 
comparisons can be made with the shape of the spectral response 
curve, particularly with the study by Mayer and Fox (1981). 

Examples of the spectral response patterns associated with 
each of the four classes are shown in Figures 2 and 3. These 
patterns were created by taking the mean cluster value in each 
band for each class, in each of the seven classification 
combinations (Table 1). Mean standard deviations (STD) were 
also computed by taking the means of each sample STD in each 
band for each class, in each of the seven classifications. 

Examples of key features are more evident in the mean spectral 
response patterns corresponding to the sparse canopy conditions 
(Figure 2). For example, presence of vegetated understory was 
characterized by a negative slope between bands 2 and 3 whereas 
a positive slope indicated an absence of understory. When the 
slopes were the same, slopes between bands 4 and 5 could be 
evaluated. Peaks in band 4 were representative of a vegetated 
understory condition, and peaks in band 5 and 7 were associated 
with the absence of vegetated understory. However, the larger 
standard deviations corresponding to TM band 5 also indicate 
greater classification confusion. 

In analyzing the range of spectral values corresponding to 

TM BAM 
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FIG. 2. Mean Spectral response patterns for sparse canopy with under- 
story present and absent. 
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TABLE 1. MEAN SPECTRAL RESPONSES FOR EACH CLASS 

Thematic Mapper Band: 1 2 3 4 5 7 
- - -- - -- 

Sparse Canopy- 
Understory Absent: 
Mean: 
Mean STD: 
Sparse Canopy- 
Understory Present: 
Mean : 
Mean STD: 
Moderate Canopy- 
Understory Absent: 
Mean: 66 25 24 58 28 13 
Mean STD: 3 1 3 8 8 4 
Moderate Canopy- 
Understory Present: 
Mean: 65 27 21 69 38 15 
Mean STD: 1 3 5 8 9 6 

FIG. 3. Mean spectral response patterns for moderate canopy with un- 
derstory present and absent. 

each band, different spectral thresholds were set depending 
upon the canopy cover class under investigation. Every attempt 
was made to remain consistent in the labeling decisions between 
each of the seven classifications. In general, the emphasis was 
on the slopes between bands rather than the actual ELAS spectral 
response value. 

Fifty-one of the 60 field plots were used as the reference data 
for testing the classification accuracy (note: the other nine plots 
were either under cloud cover or in the dense canopy cover 
class). Each canopy-understory class had 14 plots, with the 
exception of the sparse canopy-understory absent class which 
had nine plots. Each field plot was registered to the raw image 
so that the corresponding cluster value could be extracted. A 3 
by 3 window was centered on each plot and the most frequently 
occuring cluster value was selected as representative of that 
plot. This procedure was used so as to minimize misclassification 
of plots due to registration errors. In the case of a tie, the value 
of the centered cluster was extracted. 

An error matrix was generated for each of the seven band 
combinations for the overstory classification (density) and for 
the understory classification (presence or absence). A measure 
of overall performance accuracy (percent correct) was computed 
for each matrix. In addition, another measure of agreement, 
Kappa, was computed for each matrix. The Kappa statistic 
incorporates the off-diagonal elements (i.e., error) of the error 
matrix into the accuracy measure. It also allows one to perform 
a statistical test between error matrices to determine which are 
significantly different (Congalton et al., 1983). This technique 
was used to statistically determine which band combinations 
were best for detecting forest understory. 

RESULTS 

Table 2 presents the results for the overall performance ac- 
curacies and Khat values (i-e., computed Kappa statistic) for the 
overstory classification. Table 3 presents the results for the un- 
derstory classification. TM band combination 2,3,4,5,7 resulted 
in the highest overall accuracy for both overstory and unders- 
tory classifications (86 percent and 69 percent, respectively). 
However, TM band combinations 1, 3,4, 5 and 4,5, 7 also tied 
for highest overstory and understory classifications, respec- 
tively. In contrast, the lowest accuracies were associated with 
band combinations 2,3,4,7 (71 percent and 55 percent respec- 
tively). 

Overall 
Classification 

Band Combination Accuracy KHAT 

- 

overa l l  
Classification 

Band Combination Accuracy KHAT 

TM 2,3,4,5,7 68.6 37.9 
TM 4,5,7 68.6 37.3 
TM 1,3,4,5 66.7 33.6 
TM 3,4,5 66.7 29.5 
TM 2,4,5 64.7 29.5 
TM 2,3,4 60.8 22.0 
TM 2,3,4,7 54.9 7.9 

Kappa analysis resulted in lower accuracies; however, the 
rankings agreed with those achieved with the traditional ac- 
curacy assessment approach. The Kappa test also indicated that, 
for measures of overstory, only band combination 2,3,4,7 was 
significantly different than the rest of the combinations. Ap- 
plied to compare understory classifications, the Kappa test con- 
cluded that none of the seven band combinations were 
significantly different. It might appear surprising that the Khat 
values for the band combinatin 2,3,4,7 is not significantly dif- 
ferent (8 percent for understory). This may be attributed to the 
small sample size (n = 51) and to the small 2 by 2 matrices (where 
overstory was either classified as sparse or moderate,and un- 
derstory was either present or absent), resulting in a loss of 
statistical power. The two band combinations that ranked last 
in classification accuracy for both overstory and understory did 
not incIude band 5; this suggests the importance of this partic- 
ular band for forest canopy-understory classification. Unfortu- 
nately, the range of accuracies associated with understory 
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classification (55 to 69 percent) are not encouraging. However, 
presence of vegetated understory was more accurately classified 
in sparse canopy conditions, confirming the results of past stud- 
ies cited earlier in this paper. 

Although the results of the Kappa analysis show no signifi- 
cant differences between understory classifications, there are 
significant differences in individual spectral bands. The mean 
spectral response patterns for each canopy-understory class 
(Figures 2 and 3) reveal the significant differences between un- 
derstory presence and absence for the individual TM bands 3,4,5, 
and 7 in the sparse canopy graph (Figure 2). This information 
is useful in selecting the optimum bands for classifying un- 
derstory presence and absence. 

DISCUSSION 
The acquisition date of the TM image is considered to be the 

critical factor controlling the level of classification obtainable. 
The August image date selected may not reflect the vegetated 
understory's "peak" contribution to the pixel value. For further 
investigations, this analysis could be repeated using different 
acquisition date, selected on the basis of the dominant canopy 
and understory phenology. However, the August date was con- 
sistent with the date selected for the McCloud study by Mayer 
and Fox (1981), a geographically similar area. 

Misclassification could also be attributed to registration er- 
rors. Each classification was performed on the raw unregistered 
TM image; thus, finding the corresponding field plot location 
was difficult at times. This task was accomplished by registering 
a 1983 UTM-registered TM scene for the same area along with 
the digitized field plot locations to the raw 1986 image. The 3 
by 3 window was used to extract the corresponding cluster 
d u e s  which minimized misregistration errors: 

Another consideration for future investigations is the selec- 
tion of threshold values. Presence of vegetated understory was 
identified in the reference data-set as those plots exhibiting 
greater than 50 percent vegetated understory. Higher densities 
may need to be present (i.e.,>70 percent) before detection is 
feasible. 

Vegetation composition, both in the overstory and unders- 
tory, should also be evaluated. Because there were not any pure 
stands of a particular overstory species, a mixed spectral re- 
sponse was expected, characteristic of the Sierran mixed coni- 
ferous forest. Some stands were dominated by particular species, 
and this could have influenced the spectral response observed. 
Similarly, areas were encountered where there was a domi- 
nance of a particular understory vegetation (i.e., manzanita and 
fir seedings). However, stratifying the area in terms of these 
dominant vegetation cover types would have resulted in even 
smaller samples sizes per class. Instead, the reference data were 
collapsed into the most general classes: sparse or moderate 
overstory associated with the presence or absence of vegetated 
understory. For future studies, it is recommended that this 
analysis be performed using pure stands with homogeneous 
understory vegetation (such as in platations where brush con- 
trol is practiced versus areas where it is not). Spectral influences 
from the atmosphere, slope, and aspect should also be inves- 
tigated. However, the spectral values did not appear to be in- 
fluenced by shadowing effect, particularly within the sparse 
and moderate canopy cover classes, since low values in the 
infra-red bands were not encountered. 

The seven band combinations selected also may not be op- 
timum for understory detection. In addition to the specific TM 
band combinations selected, the number of bands should be 
more thoroughly investigated. Accuracies associated with the 
three-band combinations did not rank the highest. Thus, the 
added spectral information provided by additional bands may 
be needed for increased classification accuracy. The inclusion 
of more bands (greater than three) is useful from a labeling 

standpoint because it allows for greater interpretation of the 
spectral response patterns, especially when bands are contin- 
uous (i.e., TM bands 2,3,4,5,7). The tradeoff is the resultant 
increase in processing time. The analysis of change in spectral 
values from band to band (i.e., slopes) was more helpful than 
separate examination of means alone. 

The importance of TM band 5 is apparent in the reported 
classification accuracies. The spectral region of this band (1.55 
to 1.75 pm) is known to be responsive to leaf moisture content 
(Lillesand and Kiefer, 1979). Although leaf moisture content 
was not a measured variable, we can speculate that TM band 5 
is responding to the combined canopy and understory moisture 
contents, when the understory is present. In retrospect, a band 
combination excluding TM band 4 also should have been ex- 
amined. TM band 4(0.76 to 0.90 pm) is an indicator of vegetation 
biomass (Lillesand and Kiefer, 1979). Thus, classification accur- 
acies could have been significantly reduced without the inclu- 
sion of this band as well. 

CONCLUSION 

With the tremendous developments in satellite technology, 
particularly the spatial and spectral improvements of the TM 
sensor, it is essential that the potential of the high resolution 
imagery be evaluated. A methodology has been presented here 
using an unsupervised classification approach in conjunction 
with spectral response pattern analysis for evaluating the spec- 
tral contribution from vegetated understories. In this initial in- 
vestigation, TM band combinatin 2,3,4,5,7 ranked the highest 
for classification of overstory and understory, and TM band 
combination 2,3,4,7 ranked the lowest. The added spectral in- 
formation provided by TM band 5 appears to be the key ingre- 
dient. Overall, the classification accuracies for understory were 
low (55 to 69 percent). A detailed classification using TM im- 
agery needs to be performed in an area of more uniform can- 
opy-understory condition to fully assess the potential of this 
technology. This future work should concentrate on studying 
individual spectral band responses to various biophysical phe- 
nomena as well as band combinations. 
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I MULTIPURPOSE CADASTRE: TERMS AND DEFINITIONS I 

I 
I 

This booklet presents a list of "core" terms and definitions that represent a good beginning to a common vocabulary I 
I for use in GIS/LIS. It also includes terms used in automated mapping, facilities management, land records I 

I modernization, natural resource management systems, and multipurpose land information systems. 
I 

I 
I I 

Send in this order form to own Multiouroose Cadastre: Terms and Definitions for only $5. I 

I I 

1 Stock #4808, Method of Payment: - Payment Enclosed - Mastercard - VISA - I 
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j Send all orders to ASPRS, P.O. Box 1269, Evans City, PA 16033, Call 412-772-0070, or FAX to 412-772-5281. I 
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I All checks must be in US dollars payable to the US. COD orders aren't accepted. Prices are subject to change 
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j without notice. I I 
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