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ABSTRACT: Discrimination of sea ice classes using texture statistics derived from the conditional joint probability density 
functions of the grey level co-occurrence matrix (GLCM) is reported on. Univariate and multivariate analyses are used 
to describe the separability of synthetic aperture radar (SAR) sea ice feature space. Impact of the conditional parameters 
S (interpixel sampling distance) and a (orientation), and the effect of adaptive filtering, are measured for distributions 
arising from five GLCM texture statistics. Results show that the effects of 6, a, and adaptive filtering are captured in 
each texture statistic's distribution. Multivariate classification accuracies are dependent on the number of texture sta- 
tistics used in computation of the discriminant functions, and whether training or cross validation sets are used. 
Maximum discrimination is obtained when three texture statistics are used with a parallel to the look direction and 6 
at an interpixel sampling distance of one. 

INTRODUCTION 

T HE 1990s COULD BE CONSIDERED the decade of synthetic ap- 
erture radar (SAR). Over the next five years three orbital SAR 

sensors will be launched: RADARSAT (Canada), ERS-1 (Europe), 
and JERS-1 (Japan). The imagery from these orbital platforms is 
expected to contribute significantly to a variety of resource man- 
agement applications. Of particular relevance to this study are 
the plans to use data from these sensors for measurement and 
monitoring of sea ice. Within the international sea ice com- 
munity these data will provide information on a range of issues 
from real time ice breaker tactical support to assessment and 
monitoring of climate change in the polar regions. Considering 
that RADARSAT is expected to have downlink rates between 80 
and 105 megabits per second (N. Denyer, ERS-1 Project Man- 
ager, Canada Centre for Remote Sensing, pers. comm.), the 
requirement for semi-automated feature extraction (at the very 
minimum) is evident. 

In this paper we investigate the potential of a particular tex- 
ture algorithm for discrimination of SAR sea ice classes. Various 
approaches to scene understanding using tone andfor texture 
for SAR sea ice classifications are reviewed. A candidate texture 
algorithm is selected and evaluated, using rigorous statistical 
testing, for a variety of ice classes in a single scene. We believe 
that such testing is a necessary component of algorithm eval- 
uation, and is particularly important for inter-algorithm com- 
parisons. 

SAR BACKSCA~ERING FROM SEA ICE 

Tone is created in a SAR image by point measurements of the 
backscattering coefficient ( 8 )  and is largely a function of the 
size interrelationships between the radar wavelength and the 
scattering elements within a single pixel footprint. Texture refers 
to the spatial variation of tonal elements as a function of scale 
(Haralick et al., 1973). Within a digital image a homogeneous 
texture field consists of a spatial arrangement of grey levels 
which are more homogeneous (as a unit) within than between 
texture fields. 

The image data consists of a backscattering signal convolved 
with a coherent fading signal (Ulaby et al., 1986). Fading is the 
constructive and destructive interference of coherent 
electromagnetic radiation. The results of fading are manifested 
in digital imagery as speckle, which is visually recognized as 
an increased frequency of light and dark pixels in what should 
be a relatively homogeneous grey level field. The statistics of 
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coherent fading are well understood (Ulaby et al., 1986). If we 
account for tiie fading component of image variance, the 
remaining image texture is primarily a function of the near surface 
characteristics (e.g., in the case of sea ice: ice roughness, bubble 
density, temperature, snow cover, and brine volume). Image 
texture provides information which can be directly correlated 
with observable physical characteristics because different suites 
of these characteristics are associated with different ice types. 

The texture component of d from sea ice is a combination of 
surface and volume scattering. Although seasonality has a large 
impact on the dielectric properties of sea ice and its snow cover 
and, therefore, a", a winter sea ice scene is largely dominated 
by surface scattering from young ice forms and volume scattering 
from the bubble matrix in the upper layer of multi-year ice forms 
(Kim et al., 1985; Ulaby et al., 1986). With the onset of melt, 
surface characteristics and the dielectric properties of the ice/ 
snow change, resulting in si@cant changes in the radar return 
from a given ice type (Livingstone e f  al., 1987). 

System parameters such as frequency, polarization, and 
incidence angle also play an important role in the amount of 
backscattered radiation that is received by the SAR antenna, and 
on the spatial arrangements of the grey levels (i-e., texture) in 
the sAR scene. Modeling studies have provided valuable 
information on the optimal radar parameters for sea ice. Although 
a detailed account is beyond the scope of this paper, excellent 
reviews are available on the relative merits of system parameters 
(Kim et al., 1985), seasonality (Livingstone et al., 1987), and the 
contribution of different sea ice geophysical parameters (Ulaby 
et al., 1986) to sea ice backscatter. 

TONAL AND TEXTURAL SEPARATION OF SAR SEA ICE CLASSES 

Both tonal and textural information are available for 
discrimination of SAR sea ice classes. Regardless of the features 
used, a SAR sea ice classification scheme should, at the very 
least, be machine assisted. In addition, the algorithm should be 
robust to classifications of a variety of ice features, from the 
simple (discrimination of multi-year ice), to the complex 
(seasonally adjusted discrimination of a full range of ice types 
from nilas to multi-year). In this section we review some of the 
pioneering work on tonal and textural classifications specific to 
SAR imagery of sea ice. 

Before 1978, optical processing was the standard form for 
creating a SAR image from the signal data. This analog method 
was not sufficiently reproducible to allow classifications based 
solely on the backscattering coefficient (d) .  With the advent of 
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digital processing techniques, and general improvements in radar 
imaging science, inter-image calibration has risen to a level where 
the calibration between images from the same sensor may be 
as close as 1dB (Raney, 1989). Given this high level of relative 
calibration, we can now consider the possibilities of a universal 
classification scheme. 

SAR tonal statistical distributions were explored by Lyden et 
al. (1984). They investigated the assumption that the sampling 
distributions of tone for first-year and multi-year ice could provide 
a means of parametric discrimination of these ice types. Even 
within a single image the statistical separations of these ice types 
were poor. Shuchman e f  al. (1989) provide a detailed analysis 
of tone and the utility of modeling these distributions as a method 
of classification. Comparison between these distributions, and 
a "general co-occurrency matrix" texture measure, indicated that 
no improvement in discrimination is realized with the 
computationally more intensive texture measures. Unfortunately, 
no statistical precision measures were provided, and comparative 
analysis was restricted to visual interpretation of scatterplots. 
Further analysis by these authors is in progress, and they suggest 
that more quantitative evidence on the relative differences 
between tonal and textural measures will be forthcoming 
(Shuchman et al., 1989). 

Variations on simple image tone have also met with some 
success. Burns et al. (1982) used a median filter to reduce the 
contribution of fading to the overall image variance. By taking 
the deviation about the mean of a convolution window, it was 
possible to represent the texture contained within that window, 
independent of the contribution of coherent fading. Heolbaek- 
Hansen (1989) found that local variance of a filtered image 
provided a marginal improvement in classification accuracies 
over using just tone. Barber (1989) found that using deviations 
about the center pixel (Irons and Petersen, 1981) of a convolution 
window provided statistically separable signatures between first- 
year and multi-year ice forms. New ice could not be separated 
from first-year and land could not be separated from multi-year. 
In each of these studies, it was apparent that the separation of 
young ice from multi-year ice was not difficult. The problem 
occurs in separating similar scattering surfaces (i.e., first-year 
rough versus first-year smooth or multi-year rough versus multi- 
year smooth). 

In an attempt to separate the visually distinct textures within 
a SAX image, analysts began using digital algorithms which made 
use of more complex representations of texture. One such 
technique considers the computation of a co-occurrence matrix 
(also denoted as the grey level co-occurrence matrix or GLCM). 
This approach considers the spatial orientation of grey levels 
within a convolution window and has met with some success 
in a variety of remote sensing applications (Weszka e t  al., 1976; 
Shanmugan et al., 1981; Ulaby ef  al., 1986; Pultz and Brown, 
1987; Barber and LeDrew, 1989). Holmes et al. (1984) found that 
point statistics from the grey level co-occurrence matrix (GLCM) 
could provide discrimination of first-year, first-year ridged, multi- 
year, and multi-year rough sea ice. Classification accuracies, 
however, were on the order of 50 to 60 percent, lower than 
what could be considered operationally useful. Shokr (1989) 
conducted a preliminary investigation into the application of 
five texture statistics from the GLCMs. He found that these texture 
statistics were more robust to changes in tone between image 
dates and sensor frequencies when compared with simple tone. 

In recent work by the authors (Barber et al., 1990) analysis of 
the robustness of tonal versus GLCM textural classifications of 
sea ice were evaluated using data from two coincident images 
of Mould Bay, NWT. These analyses showed that tone was not 
as robust to variations in grey level created by differences in 
the look direction of the SAR when imaging the same ice surface. 
The robustness of tone versus texture was evaluated by 

generating the classifier in one image (calibration data) and then 
directly applying it to the second image (validation data). 
Discriminant functions generated from multiple GLCM texture 
statistics provided consistently better agreement between the 
calibration and validation data sets than did tone. 

The results of the tonal and textural classifications reviewed 
above are conclusive only within the limited range of conditions 
from which they were computed (i-e., image date, specific frequency 
and polarization, etc). Given the importance (and immediacy) of 
a digital S A R  sea ice classification algorithm, the literature provides 
a surprisingly limited amount of tangible information which can 
be used in selecting an appropriate classification scheme. We suspect 
the primary cause is that, historically, SAX imagery (particularly 
imagery with concurrent surface validation data) were limited in 
availability. There are, however, several commonalities apparent 
within these pioneering studies: 

It is generally regarded that a monotonically invariant classifier is 
required because of SAR calibration problems (Luther et al., 1982; 
Lyden et al., 1984; Holmes et al., 1984) and because of backscatter 
reversals with seasonal change (Livingstone et al. ,  1987). 
Improvements in the absolute and relative calibrations of aerial 
and future orbital SARS means that a tonal classification component 
will become increasingly important. Modeling efforts (Kim et al., 
1985; Drinkwater and Crocker, 1988), an attempt to implement a 
d look-up table for classifications at the Alaska SAR facility (Holt 
et al., 1989) based on measured tonal distributions (Shuchman et 
al., 1989), and the RIPLIB (Radar Image Processing LIBrary) concept 
proposed by Shokr (1989) for the ERS-I algorithm at the Ice Centre, 
Environment Canada, are valuable additions to the traditional, 
scene dependent, empirical digital image classification algorithm 
research. 
Previous research suggests that tonal classifiers are as accurate as 
textural classifiers but not as robust to differences in tone created 
by changes in look direction of the SAR imagery (Barber et al., 
1990). A rigorous statistical analysis of the precision of either 
approach has, however, not been adequately addressed, either 
within a single scene or between scenes. 
The utility of multivariate classifications using either, or both, tone 
and texture have not been adequately explored. 
Texture measures, either as local variance measures or as spatial 
grey level dependence methods, require further investigation 
(Holmes et al., 1984; Lyden et al., 1984; Burns and Lyzenga, 1984; 
Shokr, 1989; Hirose, 1989; Barber, 1989). The most promising 
features of these measures are their invariance to monotonic 
transforms of the grey level distributions within and between SAR 
images and the ability to measure a diiectionally dependent texture 
component. 
The research conducted to date is limited by a lack of imagery of 
the same scene from different seasons concurrent with surface 
validation data. Modelers are attempting to predict the type and 
range of backscattering we can expect from different ice types in 
different seasons, but empirical investigations, which are required 
to validate these findings, are limited in time (i.e., results are 
extrapolated to general conditions for a given season and geographic 
location). This deficiency will soon be rectified with the launch of 
ERS-1 in 1991 and through continued analysis of in s i t u  data 
coincident with aerial and orbital SAR imagery of sea ice from 
different regions and seasons. 
Results from the classification of a single image cannot be considered 
a universal truth. General trends are emerging, but universality 
of an algorithm for consistent separation of SAR sea ice feature 
space, or the extraction of geophysical properties of sea ice, is not 
imminent. 

In this analysis we focus on the utility of second-order texture 
measures for classification of ice types in SAR imagery. There 
are many approaches to second-order texture measures including 
statistical, structural, stochastic, and frequency domain analysis 
(Burns and Lyzenga, 1984; Sun and Wee, 1982; Conners and 
Harlow, 1980b; Weszka et al., 1976; Haralick et al., 1973). 
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Statistical approaches make use of grey level probability density 
functions (pdf). The pdf is usually computed as the conditional 
joint probability of pairs of pixel grey levels in a local area of 
the image. The grey level co-occurrence matrix (GLCM) (Haralick 
et al., 1973), grey level run lengths (Galloway, 1975), and the 
neighboring grey level dependence matrix (Sun and Wee, 1982) 
are examples of statistical approaches to texture analysis. 

Structural approaches exploit the notion of a texture primitive. 
These approaches generally consist in finding a texture primitive, 
extracting a set of features which characterize this primitive, 
then defining a placement rule for these primitives within the 
texture field of the image (Conners and Harlow, 1980b). 

Stochastic approaches assume that texture fields can be 
estimated probabilistically based on a particular statistical model. 
The most commonly used models are based on Markov Chains 
(Hassner and Sklansky, 1980) or multidimensional random fields 
(Wechsler and Kidode, 1979). 

Frequency domain analysis is based on the Fourier transform. 
Analysis is conducted in the frequency domain on the power 
spectra of the image. This approach is often called PSM (power 
spectrum method) (Conners and Harlow, 1980a). A variety of 
methods have been developed to separate different textures 
based on their power spectra (Roan and Aggarwal, 1987; D' 
Astous and Jernigan, 1984; and Matsuyama et al., 1983). 

With this multitude of approaches, and a general consensus 
among researchers that spatial information is important in feature 
classification, comparative studies have been conducted to 
determine which approach provides the best separation of feature 
space. Weszka et al. (1976) compared a frequency domain 
approach with first-order statistical measures and second order 
grey level co-occurrence probabilities. They found that the spatial 
domain approaches provided more precise classifications (both 
first-order difference measures and second-order grey level 
probabilities) than the frequency domain analysis. In a follow- 
up study, Conners and Harlow (1980a) conducted a rigorous 
theoretical analysis of the relative effectiveness of frequency 
domain analysis (power spectrum method, PSM), grey level co- 
occurrence matrices (GLCM) (Haralick et al., 1973), grey level 
difference metrics (GLDM) (Weszka et al., 1976), and grey level 
run lengths (GLRL) (Galloway, 1975). Conners and Harlow used 
synthetic texture fields based on Markov random fields. A major 
focus of the paper was to quantify the differences in each of 
the methods through all stages of the texture analysis, including 
a measure of the information content in the intermediary texture 
matrices versus the point statistics obtained from these matrices. 
They found that a significant loss of information occurs when 
a single point estimate is derived from the probability matrices 
(e.g., contrast, entropy, dissimilarity, etc.). Conners and Harlow 
(1980a) were able to ordinate the effectiveness of these four 
measures into GLCM, GLDM - and depending on the textures 
- GLRL, and PSM. Although these comparative analyses were 
not computed using sea ice texture fields, we feel the results of 
these analyses warrant a detailed evaluation of the GLCM, in 
particular, for separation of SAR sea ice classes. 

GREY LEVEL CO-OCCURRENCE MATRICES (GLCMS) 

Throughout this study we evaluate texture statistics derived 
from grey level co-occurrence matrices (GLCMs). A GLCM consists 
of a matrix which provides the conditional joint probabilities of 
all pairwise combinations of pixels within a computation window 
(W,,,,,). The co-occurrence of grey levels represent the probability 
of any two pairs of grey levels occumng, conditional on the 
interpixel sampling distance (6) and orientation ( a ) used for 
computation. Algebraically this can be expressed as Equation 1 
where C, is defined in Equation 2 following Haralick et al. (1973): 
i.e., 

where P is the frequency of occurrence of grey levels i and j. 
Summation over n refers to the total number of pixel pairs, 
which is dependent on the parameter 6 and the subscripts n 
and m from W,, . 

In the following analyses an eight-bit image has been quantized 
to four to reduce computation time. Selection of the appropriate 
quantization level is essential to the precision of the texture 
classifier. Quantization will have a direct bearing on how much 
information is available for separation of the ice types. Kim et 
al. (1985) estimates a 20 dB difference between multi- and first- 
year ice under winter conditions at X band frequencies. Holmes 
et al. (1984) used a three-bit quantization for these conditions. 
In this study we have used a larger quantization, which requires 
more processing, in an effort to determine if more dynamic 
range will improve classification. 

The texture statistics represent a single spatial measure of the 
image texture from which the GLCM is computed. Each texture 
statistic is considered a point estimate because it provides a 
single measure of the total information content of the GLCM. 
Five commonly used texture statistics (Barber and LeDrew, 1989; 
Pultz and Brown, 1987; Conners e f  al., 1984; Shanrnugan et al., 
1981) are used here: 

Uniformity 

Correlation 

Entropy 

Dissimilarity . 

Contrast 

where 

ax= the standard deviation of row i, 
a, = the standard deviation of column j, 
px= the mean of row i, 
py = the mean of column j, and 
n = the number of pixel pairs in the image at (a,6). 

In this study we assess the characteristics of these texture 
statistics (point estimates) for discrimination of SAR sea ice 
features. Evaluation of each texture statistic, considered separately 
('UNIVARIATE ANALYSIS'), provides comparative information on 
the discriminability of each texture statistic for separation of sea 
ice types. A multivariate evaluation, where several texture 
statistics are considered simultaneously ('MULTIVARIATE 
ANALYSIS'), is conducted through a linear discriminant analysis 
(LDA). This provides a means of evaluating the utility of the 
complimentary information contained within each additional 
texture statistic for discrimination of SAR sea ice types. Tests are 
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conducted to determine the impact of the GLCM conditional 
parameters 6 (interpixel sampling interval), a (orientation), and 
adaptive filtering on textural discrimination in SAR images of 
sea ice. 

UNlVARlATE ANALYSIS 

The objective of this section is to describe the distributions of 
each texture statistic (Equations 3 to 7) within each of four ice 
types (new ice, first-year ice, multi-year ice, and land; Figure 
1) and to determine if these distributions provide significant 
discrimination of ice types. We also evaluate changes in the 
distribution of the texture statistics due to the interpixel sam- 
pling interval (4, orientation (a), and adaptive filtering of SAR 
imagery. Specifically, two research questions are addressed: 

(1) What is the effect of the interpixel sampling variable 6 and ori- 
entation variable a on the distribution of each texture statistic? 

(2) What is the effect of adaptive filtering on the distribution of the 
texture statistics? 

A Sea Ice and Terrain Assessment Radar-l (STAR-I) (Nichols 
et al., 1986) SAR image (Figure 1; Mould Bay, NWT, 3 March 
1984) from the Canadian Radar AgeIType Algorithm Group 
(CRAGTAG) standardized image dataset, was used to create four 
images (Figure 2): two original 6m (seven look) and two, 6m 
adaptively filtered (6mf). This scene was acquired at incidence 
angles between 68.5 degress and 78.9 degrees at X-band frequency 
and HH polarization. The sub-images are computed for an 
approximately two-degree incidence-angle range. Figures 1 and 
2 are oriented with north to the top of the image; east and west 
are reversed (this is the standard format of digital STAR-1 imagery). 

Filtering was considered necessary because of the contribution 
of coherent fading to image texture in the STAR-1 SAR scene. The 
6mf images were produced using an adaptive filter (Equation 
8) described in Durand et al. (1987) where the subscript nk denotes 
a 3 by 3 window and "hom" a homogeneous texture class. 

All ice classes were selected using a 25 by 25 window located 
randomly in the filtered and unfiltered sub-images (Figure 2). 
Surface validation was supplied by the Atmospheric Environment 
Service Ice Branch. During sample selection a subarea was 
accepted if it represented a homogeneous sample of an ice type 
of interest. This process was repeated without replacement until 
15 homogeneous replicates of four ice types (new ice {NW, 
first-year ice {FU}, multi-year ice {m}, and land {LAND) were 
obtained. The GLCMs used in this analysis were computed on 
four-bit images at interpixel sampling distances ( 8 = 1,5,9) and 
orientations (a = On, 45', 90'). The a= 0" is parallel to the range 
dimension of the scene (Figure 2). The mean and standard 
deviations for each of the texture statistic distributions were 
graphed to show separation of ice classes within each of the 
texture statistics (Figure 3). 

Assessment of the first research question was conducted using 
analysis of variance (ANOVA). Differences attributable to 6 and 
a were assessed using Scheffe's post hoc test for differences of 
factor means. This test determines the relative contribution of 
all pairwise combinations of factors to a significant F statistic. 
All variable sets were tested for the distributional assumptions 
of the parametric ANOVA . In all cases but one the assumptions 
were met. For the texture statistic 'Contrast' and class 'LAND', 
the variables were not sufficiently homoscedastic and were 

FIG. 1. Synthetic Aperture Radar image of Mould 
Bay, NWT (3 March 1984). Study sites are de- 
noted by the white boxes (Figure 2). The four ice 
classes used in this study are overlain. Flight di- 
rection, look direction, and incidence angles are 
presented. 



SAR SEA ICE DISCRIMINATION 

transformed by their square root before conducting the ANOVA. 
Interpretation of these post hoc results is specific to whether 
differences arise due to 6 or a. If there is no difference in 6, 
then a saving in computation time can be realized by computing 
the GLCMs at a larger interpixel sampling distance. This assumes 
that 6 =1 provides maximum information. The pairwise 
combinations are between the interpixel sampling distances 1, 
5, and 9. Because SAR backscattering is predominantly a function 
of surface roughness for young ice types, and the combination 
of volume and surface scattering in multi-year ice types, 
directionality of a texture statistic may provide meaningful 
information-on discrimination of texture dasses based o n t h e  
scattering structure relative to the radar range dimension. With 
young ice types this may be caused by the orientations and 
relative frequencies of small scale deformation. With multi-year 
ice forms, backscatter directional dependence may be created 
by the orientation of hummocks and the corresponding drainage 
networks of the melt ponds. 

The second research question was designed to determine 
whether there is a significant difference between texture 
measurements of adaptively filtered and unfiltered replicates of 
the four ice types. Adaptive filtering reduces the local variation 
of a texture class as a function of the local mean. If the 
distributions are significantly different, then filtering can be 
considered to provide different information which may (or may 
not) be useful in classification. A series of two-tailed t-tests were 
conducted to measure the difference between the orieinal and 

RESULTS 
The potential for using a single texture statistic for SAR sea 

ice classification is a function of the mean and standard deviation 
of that statistic's distriiution (Figure 3). Separability is a function 
of the mean ( X axis; Figure 3), precision of this separation is a 
function of the standard deviation (Y axis; Figure 3). As the 
relative standard deviation increases, the precision of any 
particular separation will decrease. It is apparent that each of 
the texture statistics provides different relative amounts of class 
separation. 

Research Question One 
What is the effect of the interpixel sampling variable 8 and 

orientation variable a on the distribution of each texture statistic? 
The symbol 5, in the painvise comparison colums (Tables 1 

and 2) denote a significant difference between the title pair. The 
P value provides a measure of the significance of the analysis 
of variance. Specifically, the P value is the probability of 
concluding that there is a significant difference between the 6 
or a pairs when in reality there is not (Type I error). In terms 
of hypothesis testing, we reject the null hypothesis that the a 
and 6 pairs are equal for all Type I errors which are greater than 
the P value. The ANOVA tests the distributional differences 
between the three variables which arise from different a and 8 
for each texture statistic. There are four general results available 
from interpretation of Tables 1 and 2: 

filtered texture statistic distributions of 15 replicates 7rom the Correlation and entropy are the least sensitive of the five texture 
four ice classes. statistics to 6 (higher P values; Table 1) 

Land and multi-year ice are more sensitive to changes in S than 
first-year ice and new ice (lower P values; Table 1). 
All the texture statistic are more sensitive to changes in a than to 
changes in S (higher P values in Table 1 than Table 2). 
There is evidence to suggest that 0" and 45" orientations are more 

I I - I 
similar than the other p&se combinations of a for the ice classes 
tested (lower frequency of significant differences for these pairs 
compared with the other pairs; Table 2). 1 Research Question Two 

What is the effect of adaptive filtering on the distribution of 

I 
- 

the texture statistics? 
Results of the t-tests indicate that information due to filtering 

TABLE 1. DIFFERENCES DUE TO THE INTERPIXEL SAMPLING INTERVAL 
(6 = 1, 5,  AND^) 

Statistic Ice Type P value lvs5 lvs9 5vs9 
- 

GLCM a 
Uniformity First-Year Ice 0.260 Orientations New Ice 0.060 

Land 0.003 
Multi-Year Ice 0.001 

§ § 
S § 

Correlation First-Year Ice 0.060 
New Ice 0.530 

FIG. 2. TWO study sites, extracted from Figure 1 (white boxes). Left side 
of the plate denotes the original imagery (6m; 7-look) and the right side 
shows the filtered imagery (also 6m; 7-look). These sub-images are ori- 
ented to the flight direction of the aircraft. Orientations of the GLCM pa- 
rameter (a) are denoted between the sets of images. An a = O o  is parallel 
to the look direction of the SAR. The ice types extracted from each scene 
are denoted. 

Entropy 

Dissimilarity 

Land 
Multi-Year Ice 
First-Year Ice 
New Ice 
Land 
Multi-Year Ice 
First-Year Ice 
New Ice 

Contrast 

Land 0.000 
Multi-Year Ice 0.000 

5 § 
§ § 

First-Year Ice 0.000 
New Ice 0.001 

S § 

Land* 0.000 
8 

Multi-Year Ice 0.000 
§ § 
§ § 

§ 

*This ANOVA was conducted on square root transformed variables 
to stabilize variances between the three levels of 6 (see methods). 
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Entropy

Tnele 2. DtrreReruces Due ro rHE ORlENrArloN PARAMETER (o=0' '
45'.  AND 90").

Stat is t ic  Ice TyPe P value 0" vs 45'  0 'vs 90'  45" vs 90'

Uniformity First-Year Ice 0.000
New Ice 0-000
Land 0.000
Mult i-Year Ice 0.000

Correlation First-Year Ice 0-000
New Ice 0-327
Land 0.000
Multi-Year Ice 0.000

Entropy First-Year lce 0.000
New Ice 0.002
Land 0.000
Mult i-Year Ice 0.000

Dissimilari iyFirst-Yearlce 0.000

FtG. 3. Mean and standard deviation ot 15 rep-
licates from five texture statistics of four ice
classes.

Tnale 3. T-TEsr RESULTS Fnol,,l THE DtrreReNce BerweeN ORtotrueL
(Onrc) nr.ro FtLrEneo (Frr-r) lce CL-qsses Ustruc Eecs oF THE FlvE

TexruRe Srnrtsrtcs

Texture Mean

Ice Type Statistic (Orig-Filt) t value P' valuess
ss
ss
ss
ss

first-Year Ice

New Ice

Multi-Year Ice

Uniformity
Correlation
Fn trnnrr

Dissimilarity
Contrast

Uniformity
Correlation
E n r v n n r r

Dissimilarity
Contrast

Uniformity
Correlation

Dissimilarity
Contrast

Uniformity
Correlation
Entropy
Dissimilarity
Contrast

9.r2 0.0001
9.49 0.0001

-0.105 -5.95 0.0001
s.06 0.0002
8.47 0.0001

9.540
0.109

ssss
ss

J

ss
ss
ss
ssss
ss
ss
ss
ss
ss

0.167 "18.24 0.0001
0.191 12.38 0.0001

- 0.183 .- 10.8s 0.0001
6.807 5.64 0.0001
0.153 13.06 0.0001
0.116
0.'1.20

Mult i-Year Ice 0.000

Contrast First-Year Ice 0.000

New Ice
Land

0.000
0.000

0.000
0.000

R
J

J

J

5

s

- 0.032 - 4.45 0.0005
140.130 3.77 0.0021

0.117 1,4.75 0.0001
0.221 18.45 0.0001
0.619 71..27 0.0001

- 0.0s3 -7.26 0.0001
53.130 17.75 0.0001
0.140 1.5.29 0.0001
0.204 26.59 0.0001
0.473 72.92 0.0001

New Ice
Land'
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is captured bv each of the texture statistics. The P value indicates

the s' ienif icance level of the dif ferences betlveen the original and

fi l tere? distr ibutions for each texture stat ist ic within a part icular

ice class (Table 3). Mean refers to the average difference between

the orieinal minus the filtered distributions (recall that there are

15 sam"ples, each with 625 pixels, in each distr ibution)'  The t

value i i  the stat ist ic which ls computed when comParing the

two distributions. with the exception of new ice, the dissimilarity

texture stat ist ic was the most sensit ive to the effect of adaptive

filtering (largest t value). The low P values for all ice types a.nd

texture"stadslics tested, indicate that the effect of adaptive filtering

is highly significant (Table 3).
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changes due to 6 are probably a result of the smaller sample 
sizes obtained at 6=5  and 9. For a uniform texture (i.e., new 
ice), smaller sample sizes would not be as critical as for a more 
heterogeneous texture (i.e., land). Alignment of surface 
roughness elements relative to the incident angle of the radar 
may create structure within the rougher ice classes which is 
captured differently depending on the orientation used to 
compute the GLCMs. 

Filtering resulted in a highly significant difference between 
distributions of GLCM texture statistics over all classes tested. 
Note that the mean difference of original minus filtered resulted 
in a negative value for each of the ice classes for the uniformity 
measure (Table 3). Recall from Equation 3 that uniformity is the 
squared summation of the conditional joint probability densities 
within each cell of the GLCM. By reducing the variation within 
each of the ice classes, the filtered GLCM will have fewer cells 
with positive probabilities, resulting in a higher uniformity 
measure. Entropy, dissimilarity, contrast, and to a lesser extent 
correlation all increase as the standard deviation of the image 
feature increases. The result is that the mean difference (Orig- 
Filt) is positive, confirming that the filter does reduce local 
variation. 

These results show that changes caused by adaptive filtering 
are consistently captured by each of the GLCM texture statistics. 
We make no claims as to the utility of the significant differences 
d u e  to 6 and a, or those d u e  to adaptive filtering, on 
discrimination of ice types. This analysis has shown that 
significant differences do occur; determining what the utility of 
these differences are on discrimination is the topic of the following 
section. 

MULTIVARIATE ANALYSIS 

It has been shown that the information contained within the 
GLCMs is not adequately captured by any single texture statistic 
(Conners and Harlow, 1980a). It is also apparent from the pre- 
vious analysis (Figure 3) that each of the texture statistics pro- 
vides different relative separation of the four ice classes. Close 
examination of Equations 3 to 7 shows that some of the variables 
will be highly correlated and others will not. The higher the 
correlation between pairwise variables, the less likely that se- 
lection of these variable pairs will improve discrimination (Table 
A\ 
= I .  

The primary objective of this section is to determine whether 
several texture statistics, considered in a multi-textural space, 
will provide good discrimination of sea ice classes. We will also 
assess the impact of the GLCM conditional parameters 6 and a 
and the effect of adaptive filtering on the multivariate discrim- 
ination of SAR sea ice types. To meet these objectives, linear 
discriminant analysis (LDA) is used. Although maximum-like- 
lihood estimation is a standard algorithm for classification, lin- 
ear discriminant analysis (LDA) has also been used (Franklin et 

al., 1989; Kershaw, 1987; Mather, 1987; Steiner et al., 1971). LDA 
is commonly used to assess the contribution of several variables 
to classification precision (Blom et al., 1987; Schwaller, 1987; 
Steiner et al., 1971) or assessment of a set of variables to clas- 
sification accuracy (Barber and LeDrew, 1989; Franklin et al., 
1989; Kershaw, 1987). Throughout this paper, precision will re- 
fer to the variability of repeated estimates and accuracy to the 
proximity of these estimates to the true population parameter. 

We used LDA as a means for determining which set of p var- 
iables maximize discrimination of k ice classes. The number of 
discriminant functions which result is the smaller of k - 1 or p. 
LDA provides a set of Iinear transformations which maximize 
the inter- to intra-class variation over k . This is equivalent to 
maximizing the F ratio of a one way analysis of variance (Manly, 
1986). The first function (Z,) maximizes the inter- versus intra- 
class variation, over the entire data matrx. The second function 
(Z,) maximizes the F ratio, with the important limitation that 
Z, is statistically orthogonal to Z,, and so on (Manly, 1986). 

Computation of the dicriminant functions can be conducted 
with all or a portion of the available training set. In this analysis, 
training set refers to those samples used to compute the dis- 
criminant functions. Cross validation refers to the difference 
between predicted (through the discriminant functions) and ob- 
served class assignments, from samples not used in the training 
set. The Mahalanobis distance (Manly, 1986) is the metric used 
to assign class probabilities. To specifically address the objec- 
tives of this section, four research questions are posed: 

(1) Do the conditional parameters 6 and a affect discrimination? 
(2) Is there a difference between training and cross validation re- 

sults? 
(3) What is the best set of texture statistics to discriminate SAR ice 

types? 
(4) What is the effect of adaptive filtering on discrimination accu- 

racy? 

The methods of sample collection are consistent with those 
described in the 'UNIVARIATE ANALYSIS' section. Discriminant 
analysis was computed using a Macintosh I1 microcomputer, 
based on algorithms described in Ludwig et al. (1988) and using 
SYSTAT (Wilkinson, 1987). Computation of the discriminant 
functions (training set) was based on 15 samples unless stated 
otherwise i n  the &suits (i.e., training and Aoss validation in 
research question two). 

Data used for analysis of each of the research questions are 
summarized (Table 5) into seven data sets (Set #); (Vars) is the 
number of texture statistics used in each trial; (a) and (6) are 
the orientation and interpixel sampling distances used to generate 
the GLCMs; (Trials) is the number of sets of variables (i.e., Set 
#1= 3 trials of 5 Vars.); (Selection) is either fixed (all possible) 
or random. To illustrate, consider set 1. There are five variables 
in this set (uniformity, correlation, entropy, dissimilarity, and 
contrast), each obtained at an orientation of 0". Three trials are 
conducted with this set of variables, at the interpixel sampling 
distance of 1,5, and 9. The trial at S=9 consists of all five texture 

Orientation Interpixel 
Set # Vars (4 distance (6) Trials Selection 

1 5 0" 1.5.9 3 fixed 
2 U W 0 v 2 5 0°,450,9000 . 1. 3 fixed 

Uniformity 1 3 3 0" 1 5 random 
Correlation - .537 1 4 5 0" 5 5 random 
Entropy - .912 .776 1 5 3 0" 9 5 random 
Dissimilarity - .87 309 .983 1 6 10 0" 1,5,9 3 5 by 5 
Contrast - .705 356 .901 .951 I 7 10 0",45",90"" 1 3 5 by 5 
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statistics at a=OO and 6=9. Set # is referenced in the response 
to each research question. 

Contingency tables were tabulated for each set of variables. 
A k-hat statistic (Kappa Coefficient) and variance (Ks) of this 
statistic (Bishop et al., 1975) were computed for each set of texture 
variables. Confidence intervals (C.I.) were computed based on 
an assumed normal distribution of the K-hat statistic at a 99 
percent level against a Type I error (Upper and Lower C.I.). 
Hypothesis testing for research questions one and two was 
conducted using the confidence regions around the K-hat statistic. 
Selection of the most appropriate set of variables (question 3) 
was also based on these confidence regions. Wilkes Lambda 
(WA) and the F statistic associated with each LDA is presented 
as additional information on the significance of each analytical 
result. The computational algorithms used, and a description 
of hypothesis conditions are reviewed by Manly (1986). 

The impact of filtering was also tested using the K-hat 
confidence regions. To assist with interpretation of the results, 
the probabilities associated with each of the 60 samples used in 
one trial (15 samples of four ice types) are presented. The 
probabilities are derived from the Mahalanobis distance metric 
associated with each obsenration in the LDA. A moving average 
was used to smooth the probabilities so that trends, between 
filtered and unfiltered probabilities, could be interpreted from 
the line diagrams (Figures 4 and 5). 

V Moving Avg. O.NI + Moving Avg. O.UN0 

*Moving Avg. O.NWI OMoving Avg. O.MYI 

I 1 

- ,2 First-Year Ice I New Ice Land 1 Multi-Year Ice 

Samples 

FIG. 4. Prediction probabilities derived from LDA of an unfiltered SAR 
image. 

VMoving Avg. F.FYI +Moving Avg. F.MN0 

.Moving Avg. F.NWI OMoving Avg. F.MYI 

- .2  j First-Year Ice New Ice Land ! Multi-Year Ice 

Samples 

FIG. 5. Prediction probabilities derived from LDA of a filtered SAR image. 

RESULTS 
Research Question One 
Do the conditional parameters 6 and a affect discrimination? 

Set 1 and 2 provide information pertinent to this research 
question. Set 1 consists of three sets of all five texture statistics 
(Equations 3 to 7) at (6,a) = {1,0°);{5,00};{9,00}. Set 2 consists of 
all five texture statistics at (6,a) = {1,0°);{1,450);{1,900}. A 
sigruficant difference occurred between samples obtained at S= 1 
compared with observations at 6=5 and 9 (Table 6) .  Also note 
that 6 =5 and 9 are not significantly different. Samples obtained 
at 0" are also significantly different than either a=45" or 90" 
(Table 7). In set 2 the variables at a=45O and 90" produced a 
sigruficantly better result than set 1 variables at interpixel sampling 
distances of 5 and 9. This confirms the importance of obtaining 
information from every pixel regardless of the orientation used 
in the algorithm. 

Research Question Two 
Is there a difference between training and cross validation results? 

Set 1 is used to assess the difference between training and 
cross validation discrimination accuracies. The two types of 
discrimination assessments were significantly different over all 
sets of variables tested (Table 8). The column 'Difference' (Table 
8) is the minimum significant difference between the training 
and cross validation sets of each variable (i.e., Lower C.I. of 
training - Upper C.I. of cross validation). Training results are 
computed with five samples and cross validation with ten. The 
training set results are from 14.7 to 21.2 percent higher than 
those obtained through cross validation. 

Research Question Three 
What is the best set of texture statistics to discriminate SAR ice 
types? 

Determining the most appropriate set is conducted by 
computing an LDA on all the variable sets (Set #; Table 9). Wilkes 
Lambda (WA) and an F ratio derived from WA show the 
significance of each particular set, for discrimination of the four 
ice classes. Both training and cross validation discrimination 

Set # Var set K-Hat Ks Lower C.I. Upper C.I. 
1 S=1 82.2% 0.374% - 81.1% 83.3% 
1 S=5 75.6% 0.374% 74.4% 76.7% 
1 S=9 77.8% 0.374% 76.7% 78.9% 

- -  - 

Set # Var set K-Hat Ks Lower C.I. Upper C.I. 
2 a=o" 82.2% 0.374% 83.3% 
2 a=45" 77.8% 0.374% 76.7% 78.9% 
2 a=90° 80.0% 0.374% 78.9% 81.1% 

TABLE 8. CROSS VALIDATION AND TRAINING CLASSIFICATION ACCURACY 
FOR SET 1. 

Lower Upper 
Sampling Set# Var set K Ks Difference C.I. C.I. 

1 S=1 66.7% 0.927% 63.9% 69.4% 
Cross valid. 1 6=5 60.0% 0.951% 57.1% 62.9% 

1 S=9 63.3% 0.878% 60.7% 66.0% 
1 S=1 86.7% 0.857% 14.7% 84.1% 89.2% 

Training. 1 8=5  86.7% 0.857% 21.2% 84.1% 89.2% 
1 S=9 86.7% 0.834% 18.2% 84.2% 89.2% 
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TABLE 9. RESULTS OF ALL VARIABLE SETS FOR DISCRIMINATION OF ICE TABLE 10. AVERAGE DISCRIMINATION ACCURACIES FOR SET 3, ORIGINAL 
CLASSES. AND FILTERED. 

Training Cross Validation Sample Var set K Ks Lower C.I. Upper C.I. Significance 
Set# Trials Variables WA F K-Hat Ks K-Hat Ks Original Three 75.6% 0.4% 74.4% 76.7% No 

one 3 5 0.00 14.23 87.0% 0.85% 63.3% 0.92% Filtered Three 73.3% 0.4% 72.2% 74.5% 
two 3 5 0.00 16.64 89.0% 0.69% 72.2% 0.79% 
three 5 3 0.02 18.84 Bo.6% 0.55% 69.3% 0.83% 
four 5 3 0.03 13.39 91.8% 0.51% 63.3% 0.89% 
five 5 3 0.04 11.01 87.0% 0.80% 60.6% 0.93% the GLCM a parameter was parallel to the look direction of the 
six 3 10 0.00 9.47 97.7% 0.14% 53.3% 1.20% sensor. 
seven 3 10 0.00 10.02 97.7% 0.14% 62.2% 1.10% Cross validation results were substantially lower than training 

results. A likely cause for this is that the training sample accounts 
for an unrealistically high discrimination accuracy (K-hat = 86.7%, 

accuracies are presented. These analyses show that substantial K~=0.857% for a training sample of five; and K-hat =82.2%, KS 
variability occurs in discrimination accuracies attributable to each = 0.374% for a training sample of 15). The lower variance of 

set. B~~~~~~ there is no significant difference between set the larger training set indicates that the sample size of five is 

T ~ ~ , L Y )  = {1,00};{~,~50};{~,~00}) and set (five trials each with too small to adequately represent the information contained 

three texture statistics at 6=1  and a=OO), both provide the best within the ice texture 
discrimination of all sets tested (underlined values in Table 9). make a statement regarding the best set Of texture 
It is also interesting to note that agreement between training statistics for discrimination of these ice types would be premature 

sample results and cross validation was higher when fewer based o n  the natural variability observed within each 

variables were used (i.e., sets 3,4, and 5). discrimination result. Some general statements are perhaps more 
appropriate given the constraints of these analyses. 

Research Question Four Results are highly variable, depending on which texture set is 
What is the effect of adaptive filtering on discrimination of ice used and whether we evaluate with the training or cross validation 
types? results. 

~~~l~~~~ of the difference in the statistical distributions showed The best results (high K-hat for both training and cross validation) 
were obtained from sets with three texture variables. that adaptive filtering resulted in a significant difference for , Sets and provide exceUent training results but poor cross 

each texture statistic (Table 3). The impact of this change on validation results. This is probably a function of the relationship 
classification accuracy is, however, not sigdicant. At a 99 percent between the number of variables used to compute the discriminant 
level against a Type I error, there is no significant difference functions and the training sample size (for more information see 
between the average of five trials with three variables all at 6= 1 Williams and Titus(1983)). 
and a = 0  lo). It appear that the change in Filtering appears to confuse the boundaries between each of 
distribution of each measure recombines in an unpredictable the ice classes in the context of the LM. Figures and show way, resulting in a non-significant difference between filtered a general increase in the probabilities of misclassification, and unfiltered images. particularly with FYI and Mn in the land class. Reasons for this To provide illumination on this result, the probabilities from difference are open to specularion~ It may be that the adaptive 
one of the sets within the original and filtered images were filter reduces the variation of the rougher ice classes (m and 
plotted (Figures and 5). For each a probability was land) so that these classes are more often confused with the 
computed from the Mahalanobis distance metric. Because each textures of MI and There is a definite increase 
line is the average of five adjacent probabilities, the trends for in the probabilities of misclassification (Figure 5) even if there 
each ice 'lass dotted lines) and Of is no significant difference between filtered and unfiltered ice 
these trends between filtered (Figure 5) and unfiltered (Figure classifications (Table 
4) can be readily observed. It is apparent that for each class the 
probabilities are highest for the correct samples. Confusion is CONCLUSIONS 
high between multi-year ice and land both within the land class 
and within the multi-year class for the unfiltered images (Figure The conditional parameters 6 and a have a significant effect 
4).   iff^^^^^^^ in the filtered versus unfiltered probabilities have on the distribution of each of the texture statistic distributions. 
been flagged with arrows to assist interpretation pigure 5). point Specific differences arise due to each of the parameters over the 

1 shows an increase in the probability of misclassification of MYI five texture statistics and four ice classes tested (Table 2 and 3). 
to FYI. This is acompanied by a corresponding decrease in the The effect Of is more pronounced than that Of 

misclassification probabilities of MM in the land ,-lass (point 2; filtering resulted in a significant difference between filtered and 
~i~~~~ 5). point 3 shows that FYI has a higher probability of unfiltered texture statistics for each ice type tested. In all cases 
being confused with both land and MYI when the imagery is the reduction in variance caused by the adaptive filter was cap- 
filtered. tured by each texture statistic. 

Analysis of the multivariate data resulted in four specific con- 
DISCUSSION elusions, each directly related to the four research questions: 

If we assume maximum information is obtained at 6= 1, then Do the conditional parameters 6 and cr affect discrimination? Signifi- 
sampling at 6 = 5  or 9 provides significantly less information cantly better results were obtained at 6=1 than either 6=5 or 9. 
than the former. Analysis of set 2 shows that 6 = l  provides Significantly better results were obtained at a=OO than either (r=4S0 

significantly better results, regardless of orientation, than do or 90". 

larger interpixel sampling distances. It is interesting to note that Is there a difference between training and cross validation results? Train- 

45" and 90" orientations provided significantly poorer results ing results were consistently higher than those obtained through 
cross validation. Generally, the fewer number of variables used 

than 0". Computation of the GLCM a parameters is graphically in the LDA the greater the agreement between training and cross 
illustrated in Figure 2. The results of these analyses indicate validation results. We believe that agreement between the two 
(limited to the ice types and sensor conditions in the study) that samples indicates the true Kappa Coefficient classification accur- 
significantly better classification accuracies were obtained when acies. 
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What is the best set of texture statistics to discriminate SAR ice types? 
These analyses indicate that the best discrimination (K-hat = 72.2%; 
Ks=0.79%) is achieved for a set of three texture statistics consid- 
ered simultaneously. The equivalent Kappa Coefficient of the 
published results of Holmes et al. (1984) (K-hat=54.4%; Ks=0.29%) 
were computed for a single (inertia) GLCM statistic. Because the 
computationally intensive part of the GLCM approach is determin- 
ing the matrix density functions, the improved accuracies ob- 
tained from the multivariate texture discrimination may be 
warranted. 
What is the effect of adaptive filtering on discrimination accuracy? There 
was no significant difference in the classification results between 
filtered and unfiltered images. Examination of the probabilities 
associated with each sample suggests that the separability of ice 
classes is actually reduced by filtering, for these data. 

The sample size used i n  these analyses (15 replicates) w a s  
selected because of the trade-off inherent in the sampling de- 
signs of the GLCMs a n d  the number of replicates from which to 
conduct hypothesis testing. Each GLCM must  b e  computed from 
a sample which is representative of the texture field w e  wish 
to  measure. Because the ice classes consist of similar textures, 
a larger GLCM sample size (625 pixels) was  considered more 
appropriate than more replicates with fewer pixels i n  each. The 
sampling problems inherent i n  this dichotomy are by n o  means 
fully understood a n d  should form part of future research into 
the application of texture statistics for feature discrimination. 

Statistical texture analysis h a s  been studied i n  a variety of 
application areas by many different researchers. O n e  of the major 
drawbacks of this a n d  other research is  that results are limited 
to the data set from which they were derived. Future analysis 
should consider the statistical significance of developing textural 
and  tonal discriminant functions i n  one  image then applying 
these functions to  scenes of the  same features imaged within a 
particular season. This type of analysis is required to assess the 
un iversa l i ty  a n d  prec i s ion  of t h e  resu l t s  o b t a i n e d  here .  
Comparisons between this work and  those published b y  other  
reseakhers  using a single image must  b e  constrained- to the  
identification of common trends, not a suantitative assessment 
of t h e  meri ts  o f  different approache's. Differences c a n  b e  
attributable to sample size (i-e., Holmes et al. (1984) versus these 
results); statistical tes t ing differences (i.e., K a p p a  v e r s u s  
summation of the diagonal elements i n  a confusion matrix); a n d  
other variations in the methods used. 

To meet the requirements of the operational sea ice community, 
it is important that a solution b e  found which will allow semi- 
automatic classification of orbital SAR imagery. In  meeting the 
r e q u i r e m e n t s  of t h i s  chaI Ienge ,  w e  o f f e r  a f e w  s i m p l e  
considerations: 

A thorough cornpanson of several textural and tonal classification 
algorithms for sea ice is required. We recommend an evaluation 
of the relative utility of different algorithms compared over the 
same scene, and a measure of the robustness of each method, by 
applying each to other images of the same scene. Analysis of tonal 
versus textural robustness to changes in range dependent variations 
must be extended beyond the preliminary analysis conducted by 
Barber et al. (1990). 
Classification algorithms must be seasonally adjusted. This means 
field validation studies must be mounted which relate classification 
algorithm performance with seasonal descriptions of sea ice. 
Livingstone et al. (1987) offer an excellent nomenclature and time 
line (winter, early melt, melt onset, advanced melt, and freeze- 
up) based on the recent thermal history of the ice. We suggest 
this nomenclature be adopted and that a concerted effort be made 
to evaluate the within to between season variations in SAR signatures 
of sea ice, either through in situ scatterometer measurements or 
empirical studies. Synergistic data, particularly thermal and passive 
microwave, should be evaluated as a means of identifying the 
onset and change of this seasonality. 

With improvements in relative SAR calibration, tonal classifiers 
should be thoroughly evaluated, specifically in the context of a 
multivariate classification with textural measures and association 
with seasonally dependent look-up tables (previous point). 
To satisfy the operational requirements of the sea ice community, 
it is important to develop classifiers which capture the essential 
textural information but are computationally fast. We also must 
not overlook the real potential for improvements in computer speed 
within the next two to five years when researching the utility of 
texture in sea ice classification. 

Multi-disciplinary field verification studies o n  SAR scattering 
from sea ice should continue to provide excellent quantitative 
information on the backscattering properties of sea ice. Within 
these studies an emphasis should be placed o n  linking the results 
of micro-scale m o d e l i n g  w i t h  macro-scale  d ig i ta l  i m a g e  
classification a s  a function of season. Of paramount importance 
is development of a n  understanding of the specific backscattering 
variables, a n d  their spatial arrangements, which give rise to  the  
texture inherent i n  SAR imagery of sea ice. 
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