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ABSTRACT: The n-dimensional probability density functions (nPDF) is an algorithm for displaying, analyzing, and clas- 
sifying data. The technique is developed from what are often called frequency perspective plots, but overcomes the 
inherent limitation of earlier approaches. The interactive classification procedure using the WDF algorithm has led to 
new approaches for the classification of multi-dimensional data. The nPDF plots provide a clear perspective of the 
distribution of remotely sensed data, as well as the training fields selected in supervised classification schemes. After 
mapping the nPDF of multi-dimensional data and training field distributions, the nPDF space can be divided according 
to the distribution of training field data. This nPDF division is then used as a look-up table to classify the data. For 
unsupervised classification, the nPDF plots may provide a valuable representation of data distribution that can be used 
directly to select the number of classes and locations of class means for initial clustering of the data. Complimentary 
to the use of WDF for both supervised and unsupervised classification, the routine may also be used for data trans- 
formation and reduction. Besides the speed and low memory requirements, this transformation can be user directed 
to enhance particular features of interest. 

1 INTRODUCTION 

I u NSUPERVISED AND SUPERVISED CLASSIFICATION STRATEGIES 
are commonly used for the classification of digital remotely 

sensed data. Previous studies of supervised classification tech- 
niques (e-g., maximum-likelihood, minimum distance, etc.) have 
demonstrated the diiculty of selecting training fields for clas- 
sifying digital remotely sensed data. A conceptually similar 
problem is encountered during unsupervised classification in 
the selection of the number, standard deviations, and location 
of means (Swain and Davis, 1978; Wharton and Turner, 1981; 
Jensen, 1986; Chuvieco and Congalton, 1988). 

Many techniques rely on purely statistical approaches to de- 
scribe data and training field distribution. However, a graphical 
method, in conjunction with statistical techniques, has the ad- 
vantage of providing a conceptually simple view of highly com- 
plex data distributions. 

Several studies have been carried out on graphical methods 
in order to display remotely sensed data statistics using two- 
dimensional (2D) or pseudo three-dimensional (3D) plots. Sev- 
eral methods have been proposed to use two-dimensional dis- 
plays of intersample distances through the use of distance 
measures. These are well explained by Fukunaga (1972) and are 
limited to two classes for each two-dimensional plot. Eyton (1983) 
described an instructional package for the use of frequency per- 
spective plots which are also limited to a maximum of two bands 
per plot. Coggeshall and Hoffer (1973), Anuta (1977), and Swain 
and Davis (1978) showed the use of two-dimensional displays. 
Esbensen and Geladi (1989) described the use of principal com- 
ponents analysis for multivariate image analysis using fre- 
quency plots. In order to store more complex data distribution, 
Mori and Gotoh (1989) developed a method for the analysis of 
SPOT HRV (Haute Resolution Visible) data statistics in three-di- 
mensional histogram space; however, their method is limited 
to three channels. Jensen (1979) presented a graphic method of 
analyzing training class statistics by viewing parallelepipeds, 
but this method is also limited to three channels or dimensions. 
Hodgson and Plews (1989) introduced a method to display clus- 

ter means in up to six-dimensional space using different sizes 
of numbers depending on the distance to the graphics plane 
and using red, green, and blue color combinations. This method, 
however, is not only inherently complex and difficult to inter- 
pret, but is limited to the plotting of mean locations of training 
fields. 
This paper deals not only with the mapping of multi-dimen- 

sional digital remotely sensed data in order to overcome the 
inherent limitations of the earlier approaches, but also with the 
interactive classification of the data in terms of both supervised 
and unsupervised classification strategies by using the n-di- 
mensional Probability Density Functions (nPDF) algorithm (Ce- 
tin, 1990). Finally, we demonstrate the usefulness of the nPDF 
algorithm for data transformation and reduction. 

METHODOLOGY 
In two-dimensional feature space, the position of any point 

is uniquely determined by the intersection of two scalars having 
different origins (Figure la). The intersection of the two arcs 
created by the scalars gives the location of the point in the 
feature space. The axes of the graph in Figure l a  represent two 
spectral bands: Band 1 (xl)  and Band 2 (xJ. For this discussion, 
we assume al l  original spectral bands are orthonormal. The range 
"R" is 255 (i.e., gray scale) for the 8-bit TM data. The feature 
vector is defined by 

The magnitude of the scalars can be calculated by using the 
Euclidean distances 

Dl = (g + $J* and 

Dz = [(R - XI)' +.elV2- (lb) 

A generalized distribution of highly correlated digital re- 
motely sensed data in three-dimensional feature space is shown 
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in Figure lb. When a third dimension is added, we define the 
feature vector by 

and the distances to the two corners of a cube (Figure lb) will 
be 

Although Graphical representation of four or higher dimen- 
sional data is impossible, it is still possible to calculate the dis- 
tances vectorially. For the multi-dimensional case, the feature 
vector is defined by 

where n is the dimension of the data. When a hyperdimensional 
cube is used, the vector magnitudes (the distance! to the two 
corners) for n-dimensional data will be 

In 

where j is the band (dimension) number. The formula for the 
distance to the comers of a hyperdimensional cube can be gen- 
eralized as 

There are eight possible corners of a three-dimensional cube 
as is shown in Figure lb. Four of the corners can be selected as 
principal corners (1 through 4), while the remaining comers (5 
through 8) are the complimentary to the four principal corners. 
Thus, the complimentary pairs are comers 1 and 5, 2 and 6, 3 
and 7, as well as 4 and 8. For the hyperdimensional cube model, 
a and b values needed to calculate the distances to the principal 
corners using the Equation 4 are as follows (j is the band num- 
ber): 

Dl: For all j values 

D,: if { j = 1,3,4,6,7,9,10,12,13,15,16 ,... a = 1, b = 0 
j = 2,5,8,11,14,17 ,... a =O,b = 1 

The a and b values can also be determined in the following way: 
Each corner of a cube (3D) has three coordinate values. The 

0 1 Band 1 255 
(a) 

Clo) 

(b) 
FIG. 1. (a) Two-dimensional feature space. (b) Three-dimensional 
feature space. 

corner #1 is selected as the origin of the cube; therefore, it has 
(0,0,0) for x,y,z coordinates, respectively. Similarly, coordinates 
for comer #2 are (0,0,255), for #3 are (0,255,0), and for #4 are 
(0,255,255). For the hyperdimensional cube, depending on the 
dimension or number of bands, a binary code can be used to 
determine the a and b values. If we use 0 for 0 coordinate and 
I for 255, the a and b vaIues can be determined easiIy. The 
following example has 15 dimensions (bands 1 through 15 are 
from left to right): 

corner #1: 000000000000000 
comer #2: 001001001001001 
corner #3: 010010010010010 
comer #4: 011011011011011 

For the Equation 4, if the binary number is 0 for the band, a is 
1 and b is 0. Similarly, if the binary number is 1 for the band, 
a is 0 and bis 1. 

The nPDF components are then calculated using the already 
determined distances, as well as a number of scaling factors: 
I.e., 
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nPDF, = component i of ~ P D F ,  
i = corner number, 

S = desired scale factor for the nPDF axes (256,512, etc.), 
Di = calculated distance for component i (the distance to 

corner i, calculated with Equation 4), 
BIT = number of bits of input data (8 bits for TM, etc.), 

and 
NB = number of bands used. 

For this study, the reference points chosen were the two cor- 
ners of a hyperdimensional cube, whose size was set within 
the 0 to 255 range, to calculate each nPDF component of the data 
sets described below. One comer was selected at one end of 
the maximum data distribution (comer #I in Figure lb), while 
the other comer is perpendicular to the maximum data distri- 
bution (comer #4 in Figure lb). Depending on the distribution 
of the classes of interest in nPDF space, the user can select cor- 
ners by which the separation of the classes is maximum. 

In order to calculate the frequency values of the nPDF com- 
ponents, two of the nPDF components must be used at a time 
(i.e., nPDF, and nPDF, for this study). When the four comers 
are used (two at a time), there are six possible plots of the nPDF 
(1-2, 1-3, 1-4, 2-3,24, and 3-4). 

The frequency calculation for comers #1 and #4 can be per- 
formed by using the following routine: 

.... 
First initialize Freq(i,j) = 0 
Calculate Freq(i,h values: 

For row = 1 to nrow 
For column = 1 to ncol 

....( nPDF, calculations) 
Freq(i,j) = Freq(i,j) + 1 

Continue 
Continue 

where nrow = number of rows of the data, and ncol = number 
of columns of the data. 

The nPDF scale for this study was selected as 256. Therefore, 
a 256 by 256 array is needed for the frequency (Freq) calcula- 
tions. The memory required for the array is summarized in 
Table 1. 

The nPDF algorithm was first tested (Figure 2a) on six-band 
synthetic data (Cetin, 1990) using a scale of 256 and comers #I 
and #4. Although the synthetic data have 16 separable classes, 
each band individually can be analyzed to discriminate between 
only two broad classes. Therefore, no one, two, or three bands 
can uniquely separate all the 16 classes. When the traditional 
two-dimensional frequency plots are used, 15 two-dimensional 
graphs are needed to display the data distriubtion, and a max- 
imum of four classes could be separated per plot. On the other 
hand, the nPDF niapping function, using comers #1 and #4, 
provides a single perspective plot that successfully maps the 
data into 16 discrete classes (Figure 2b). 

The algorithm was then applied to actual Landsat Thematic 
Mapper (TM) data consisting of seven bands and covering an 
agricultural area in Tippecanoe County, Indiana (Plate 1). Due 

TA~LE 1. THE REQUIRED VIRTUAL MEMORY (RAM) FOR DIFFERENT 
SCALES. 

Scale Frequency < 65,536 Frequency<4.29 x lo9 
(Integer*% mode) (Integer'4 mode) 

256 x 256 132 Kilobyte 263 Kilobyte 
512 x 512 525 Kilobyte 1.05 Megabyte 

1024 x 1024 2.1 Megabyte 4.20 Megabyte 

(b) 
FIG. 2. (a) Six-band synthetic data. (b) The nPDF plot of the six-band 
synthetic data. 
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P m  1. (A) False color composite image (Red =4, Green = 3, and Blue=P) of the TM scene. (6) The ground information of the area. (C) The npoF plot of the training field distribution 
in image (raster) form. (D) The nmF plot of the TM data distribution in image fonn. (E) The results of supervised classification using npDF algorithm. (F) Maximum-likelihood classification 
results. (G) Minimum distance classification results. (H) Mahalanobis distance classification results. (I) The results of unsupervised c lass i t ion (clustering) using npoF algorithm. (J) 
Principal component (FC) analysis image of the TM data (Red= FCI. Green= PC~, and Blue= PC~). M The npDF transformation image. 
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to the high correlation between the TM bands, the distances 
between the clusters are very small; therefore, very accurate 
calculations must be made. Consequently, after the range of 
output is determined, it is usually advantageous to stretch the 
range of the nPDF axes used. Although this can be done auto- 
matically, noise present in the data will tend to limit the results. 
Thus, the distribution should be examined first, and then the 
range to stretch the ~ P D F  distribution can be selected by the 
user. 

The ~ P D F  of the remotely sensed data and training field dis- 
tributions can be displayed using pseudo three-dimensional plots, 
in a two-dimensional contour map (Figure 3), in ASCII character 
mode (Figure 4) or in image (raster) form (Plate 1). 

INTERACTIVE CLASSIFICATION OF REMOTELY SENSED 
DATA USING nPDF 

The nPDF algorithm can be used not only to display multi- 
dimensional data and training field distributions, but also to 
classify the data using either supervised or unsupervised clas- 
sifications. Two classification routines (supervised and unsu- 
pervised) were written to map and classify the remotely sensed 
data using the ~ P D F  algorithm. 

The ~ P D P  algorithm was first used to map the TM data and 
then, by using the "valley-peak seeking" approach, the number 
and location of means were selected for unsupervised classifi- 
cation (clustering). Thus, localized zones of high frequency (peaks 
in contour plots) were chosen as initial class means. The nPDF 
plot of the TM data is shown in color coded form in Plate 1D 
and in Ascn code in Figure 4a. Two different approaches can 
be used for the ~PDF clustering: 

(1) Mean locations are selected depending on a maxima or 
mean of a cluster from the nPDF plot. After selecting the mean 
(or maxima) locations, the nPDF coordinates of the means are 
entered into the nPDF program as an input so that the data can 
be classified into the desired number of classes (depending on 
the number of means) by using a reverse calculation and a rnin- 
h u m  distance seeking approach: i.e., 

where M, is the mean vector obtained from nPDF plot for class 
k, nPDF, is the calculated nPDF values for pixel j of the input 
data, and di, is the distance between them. The class with the 
smallest distance to the nPDF coordinates (values) is assigned 
to the pixel for the classification. After examining the results 
visually, some of the classes can be merged into distinct classes 
(in terms of spatial relationship). 

(2) The clusters are outlined by simply drawing boundaries 
between the clusters on the nPDF plot of the data. Each of the 
windows created by the boundaries is considered as the class 
distribution on the plot. These boundaries are digitized and a 
raster form of image data with the same scale selected for the 
nPDF plot (256 by 256 for this study) is obtained. Because the 
location of every point (nPDF coordinates) with a class value is 
known, these data are used as a look-up table to classify the 
TM data. The 256 by 256 data are read into-two-dimensional 
array, Class (it)] array, for example. The value of the array, i 
being column (nPDF,) and j being row (nPDF,) of the raster im- 
age data, is the class number. The classification starts from the 
first pixel of the TM data and continues until the last pixel is 
classified. The following example serves to make the procedure 
clear: 

.ATION MAPPING 

'6 
(b) 

of the TM data distribution. (b) The nPDF plot of 

D. 

D,, 

nPDF- 

= (16  + U)2 + 3 6  + 402 + 502 + 602 + 70")'/2 
= 118.322 
= (102 + (255-20)' + (255-30)' + 4 6  + (255-50)' 

+ (255 -60)' + 76)m 
= 438.748 
= 256 * 118.322/(256 7m) = 44.72 = 45 

If the class 
(class 3), 

Because 
relies on 

nPDF, = 256 * 438.748/(256 7=) = 165.83 = 166 

at nPDF location (45,166) was earlier classified as 3 
then the pixel is classified into that class. 
the second approach is computationaly intensive and 

boundaries which are sometimes difficult to identify, 
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the first approach, which relies on a minimum distance analy- 
sis, was used for the clustering in this study. The nPDF cluster- 
ing results are shown in Plate 1. 

The algorithm was then used for supervised classification of 
the data. The nPDF of the TM data and training field distribu- 
tions were mapped in image form (Plate 1 C and D) and in ASCII 
form (Figures 4a and 4b) with a scale of 256 by 256. For dis- 
playing and digitizing the data, ERDAS~ image processing soft- 
ware was used. The following procedure was used to classify 
the data: 

First, training fields were selected and their coordinates 
were entered into the nPDF program to map the training field 
distribution in nPDF space (Figure 4b). The training fields se- 
lected were three training blocks from soybean fields; two 
training blocks each from corn, wheat, oat, hay/grass/pasture 
fields, and roadbackground; and one training block each from 
clover, alfalfa, and unknown field. As is seen from Figure 4b, 
the classes, excluding the road/background class, have dis- 
tinct clusters. The boundaries between the classes were drawn 
midway between two closest neighboring classes by using 
screen digitizing on the monitor display of the nPDF training 
data map (Figure 4b). Then, the digitized areas were con- 
verted to a raster form GIs file with 256 rows and 256 columns, 
and each pixel was assigned a class determined by the digi- 
tized boundaries between the data classes. The 256 by 256 GIs 
file was read into a data array of the same dimension, as 
discussed in the previous section under part two of unsuper- 
vised techniques. The 256 by 256 data array was then used 
as a look-up table for the classification (every coordinate, or 
pixel, in the GIs file has a class value). The classification starts 
from the first pixel of the input data (TM, etc.) and the nPDF, 
values are calculated for the pixel. The nPDF values, or co- 
ordinates, are then used to look up the appropriate class 
number from the data array. The classification continues until 
the last pixel has been assigned a class. 

Other classification algorithms, such as maximum-likelihood, 
minimum distance to means, and Mahalanobis distance, were 
used to compare the results obtained from the nPDF classifica- 
tion (Plate 1). Due to the large standard deviation of the "road/ 
background" class (class #8 in Figure 4b), the results obtained 
from the maximum-likelihood and Mahalanobis distance clas- 
sifications are not as good as the results obtained from the nPDF 
and minimum distance classifications. The "unknown" field was 
classified well by all the classification techniques used. The per- 
formance of the nPDF classification depends on how one draws 
the boundaries on the nPDF map (image) of training field dis- 
tribution. Due to the influence of the "road/background" class, 
some of the fields belonging to the other classes (especially 
pixels belonging to the wheat and pasture/hay/grass classes) 
were classified into the "roadbackground" class by the nPDF 
procedure, as well as the other classification routines. The ac- 
curacy measures of the classifications are shown in Table 2 and 
Figure 5a. 

Because the roadbackground class has a large standard de- 
viation, this class was excluded from a new set of classifications. 
Table 3 and Figure 5b show the accuracy measures of the second 
set of classifications. For almost all of the classification schemes, 
the accuracy was improved. The nPDF clustering and minimum 
distance classification (without roadbackground class) results 
are almost identical because of the similarity in the method of 
classifying the data (both use a minimum distance approach); 
however, the nPDF approach is both faster and more flexible for 
user interaction. The run time of the classifications, obtained 
for the TM data with seven bands and 169 by 169 pixels, is 
shown in Table 4 (tested on Northgate-486 PC). 

TABLE 2. ACCURACY MEASURES (WITH ROAD/BACKGROUND CLASS) OF 
THE n DF, MINIMUM DISTANCE (M.D.), MAHALANOBIS (MAH.), AND 

MAXIMU k -LIKEUHOOD (MAX.) CLASSIFICA~ONS (VALUES IN PERCENT). 

- .--- 

Soybean 

Clover 
PRVGras 
RoadDa 
Unkno 
Overall 

Class 
Corn 

coo."" 
so.'"' 2: 

PO.@ 

0 P  

nPDF M.D. Mah. Max. 
94.70 91.55 29.72 54.36 

(b) 
FIG. 5. (a) Bar diagram of the accuracy measures (with roadlbackground 
class) of he npDF, Minimum Distance (M.D.), Mahalanobis (Mah.), and 
Maximum Likelihood (Max). classifications. (b) Bar diagram of the accu- 
racy mea ures (without roadlbackground class) of the nPDF, nPDF Clus- 
tering (n DFC), Minimum Distance (M.D.), Mahalanobis (Mah.), and 
Maximum Likelihood (Max.) classifications (values in percent). i 

nPDF TRANSFORMATION 
use of nPDF for both supervised and 

the nPDF approach may also be used 
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TABLE 3. ACCURACY MEASURES (WITHOUT ~OAD/BACKGROUND CLASS) 
OF THE nPDF, nPDF CLUSTERING (nPDFC), MINIMUM DISTANCE (M.D.), 

MAHALANOBIS (MAH.), AND MAXIMUM-LIKELIHOOD (MAX.) CLASSIFICATIONS 
(VALUES IN PERCENT). 

Class nPDF M.D. Mah. Max nPDFC 
Corn 96.03 91.55 82.34 82.79 90.63 
Soybean 79.72 71.45 72.63 73.00 70.75 
Wheat 59.70 58.55 37.60 39.68 50.34 
Oat 59.12 52.25 71.00 69.25 50.00 
Alfalfa 83.08 78.46 78.46 80.00 78.46 
Clover 52.67 34.41 35.70 35.70 34.89 
P/H/Grass 66.90 42.96 50.70 50.00 41.55 
Unknown 95.71 94.70 94.95 94.95 94.70 
Overall 74.12 65.54 65.42 65.67 63.92 

for data reduction and transformation. There are two ways to 
approach data reduction using the nPDF method. 

(1) The first method is to select three reference points that 
one point is one end of the direction of the maximum distri- 
bution of the data, and the other two reference points are at 
the ends of the axes which are perpendicular to both the max- 
imum distribution axis and to each other. The bands of the 
output data are created by using the distance formula (Equation 
4) 

where, for each band (j), a = 1 and b = 0 or a = 0 and b = 1 
and by using the nPDF formula (Equation 5). An example of a 
choice of a and b values for six-band input data is given in Table 
5. For each of the output transformed bands, we desire a par- 
ticular class of interest to have higher values than the other 
classes. With reference to Equation 4, it can be seen that, if the 
original DN values for the class of interest are higher relative to 
the other classes, a should be set to 1 and b to 0, and thus the 
original DN values are squared. This will tend to raise Di for the 
class of interest. However, where the class of interest has com- 
paratively low original DN values, we take the square of the 
difference between the range, R, and the DN values, which will 
again raise Di for that class. This is achieved through setting a 
to 0 and b to 1 in Equation 4. Thus, when the summation is 
performed, Di will tend to be highest for the class of interest. 
The following example, from a Pioche, Nevada, TM scene uses 
representative pixels from three classes that are difficult to sep- 
arate in that scene: hydrothermally altered areas, vegetation, 
and light-toned soils (see Table 5). By comparing the DN values 
for each band, for each class, appropriate a and b values may 
be chosen to separate a particular class in each output band. 
Table 5 shows that light-toned soil class tends to have the high- 
est DN values in all bands. Thus, for band 1, we select a to equal 
1 and b to equal 0 for all bands. D, is thus the square root of 
the sum of the squares of the DN values and the resulting nPDF, 
value is 112 for the light-toned soil, compared to 66 for vege- 
tation and 80 for the hydrothermally altered areas. In band 2, 
vegetation is enhanced. Table 5 shows that vegetation has higher 
DN values than hydrothermally altered areas in bands 2,4, and 
6 (2.08 to 2.36 pm), and thus a value of 1 is chosen for a and 0 
for b. For these three TM bands, the original DN values are there- 
fore used in the calculation. For bands 1,3, and 5, which have 
lower DN values for vegetation than the hydrothermally altered 
area, by selecting 0 for a and 1 for b, the DN values are sub- 
tracted from 255 (R = range = 255), thus giving vegetation higher 
value than the altered area. The calculated nPDF, of 138 is there- 
fore higher than hydrothermally altered area (120) and light- 
toned soil (111). 
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TABLE 4. THE RUN TIME OF THE CLASSIFICATIONS OBTAINED FROM 
NORTHGATE-486 PC FOR THE TM DATA WITH SEVEN BANDS AND 169 BY 

169 PIXELS 

Maximum-Likelihood Classification: 130 seconds, 
Mahalanobis Classification: 126 seconds, 
Minimum Distance to Means Classification: 67 seconds, 
nPDF Clustering: 52 seconds, 
nPDF Classification: 24 seconds. 

Similarly, a and b values are chosen for band 3 so that the 
output data will have high values for hydrothermally altered 
areas. Because the altered areas have high DN values in bands 
1, 3, and 5, b values of 0 and a values of 1 are used for those 
bands. In bands 1, 3, and 5, where the hydrothermally altered 
area has lower DN values than vegetation, b values are set to 1 
and a values are set to 0. Therefore, band 3 will have higher 
values for the hydrothermally altered area than those of the 
vegetation or soil. 

When an RGB color combination is used for the bands 1, 2, 
and 3 of the output data, respectively, the light-toned soil class 
will tend to be red, the vegetation green, and the hydrother- 
mally altered areas blue. The mixed pixels will have colors that 
are combinations of these three bands. 

(2) A second alternative approach for data reduction is to 
obtain four bands of output data by using the four corners of 
the hyperdimensional cube. For the band 1 of the output data, 
the comer #1 is used (Figure lb). Similarly, the corner #2, #3, 
and #4 are used for band 2, band 3, and band 4 of the output 
data, respectively. The calculations are done as described before 
and the nPDF, values are used as DN (digital number) for the 
corresponding band. 

These calculations are significantly more efficient than the 
principal components (PC) analysis in terms of cPU time. For 
the TM data with 169 by 169 pixels and seven bands, the run 
time for the nPDF reduction was 22 seconds, whereas PC analy- 
sis calculations took 55 seconds. When the dimension of the 
data increases, the CPu time increases dramatically for the PC 
analysis compared to the nPDF method. Furthermore, the nPDF 
does not require as much memory as is needed by PC calcula- 
tions. This is especially significant, because memory require- 
ments become a problem with the PC analysis when higher 
dimensional data are used. 

The stretching of the PC data is limited to the transformation 
matrix and thus it is essentially a "blind approach" driven by 
the data distribution. In contrast, the nPDF transformation axes 
may be chosen so as to take advantage of the distributions of 
selected pixels. A PC rotation will tend to be dominated by the 
major spectral differences in the scene (i-e., snow, cloud, and 
bare ground). However, these distributions can be identified on 
the nPDF plots, and a transformation and enhancement can be 
selected that will tend to separate the cover types of interest. 
Even where snow or cloud is not a problem, such as for the 
Tippecanoe County scene (see Plate I), the nPDF analysis can 
be used to produce an image that enhances classes better than 
that of a PC analysis. 

DISCUSSION AND CONCLUSIONS 

Applications of the nPDF algorithm show that it can be used 
not only to display multi-dimensional data and training field 
distributions, but also to class@ the data. Additionally, the 
algorithm can be used for data reduction, which can further aid 
in identifying classes and showing the relative intraclass distri- 
bution. 

One of the limitations of the commonly used classifiers is that 
training fields representing the entire data must be selected in 



INTERACTIVE CLASSIFICATION AND MAPPING 

TABLE 5. THE DN, a, AND b VALUES OF THE TM SCENE AND DISTANCE-nPDF CALCULATIONS FOR THE LIGHT-TONED SOIL, VEGETATION, AND 
HYDROTHERMALLY ALTERED AREA CLASSES 

- 

DN values for TM bands 
(a and b values) Di nPDFi 

Class 1 2 3 4 5 6 DI D2 D3 nPDF, nPDF, nPDF, 
Light-toned 126 66 88 97 172 92 274.7 272.1 375.1 112 111 153 
soil (10) (10) (10) (10) (10) (10) 
Vegetation 96 54 44 78 71 35 162.5 338.0 369.4 66 138 151 

(01) (10) (01) (10) (01) (10) 
Hydrothermally 102 50 62 67 126 33 195.5 292.9 396.2 80 20 162 
altered area 

order to classify the data. The nPDF algorthim does not have 
this limitation. 

In order to get reasonable results, very accurate calculations, 
Integer'4 mode (long integer) for distance calculations, and double 
precision for square root calculation, should be made and ap- 
propriate reference systems should be selected (hyperdimen- 
sional cube, etc.). The classification results depend on  how one 
selects the maximum data distribution of a class of interest from 
the image created using the nPDF training field distributions. 
Therefore, the classification performance depends on the user, 
not on the computer. The reduction method using the nPDF 
method is faster and does not require as much memory as is 
required by the PC analysis. 

SOFTWARE IMPLEMENTATION 

The nPDF software was written in FORTRAN-77 code on  an  IBM 
3090 main frame using the DISSPLA graphics package and in "C" 
language on  an  IBM-PC based image processing system (ERDAS). 
It is interactive software that allows one to use different refer- 
ence coordinates and scales to map and classify the multi-di- 
mensional data. For information on the availability of the 
software, please contact the first author. 
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1992 ASPRS AWARDSPROGRAN 

The Society has significantly expanded its awards program beginning in 1992. The ASPRS Awards Manual, printed in the January 
1991 issue of PE&RS (also available through headquarters) lists criteria for all new awards: Outstanding Service, Merit, Certificate for 
Meritorious Service, Honor, and Fellow. Nominations for these awards, plus the Honorary Member Award are open to deserving 
candidates in the public or private sector. 

Because of the August 1992 ISPRS Congress, the ASPRS Awards will be announced at  the Spring Annual Meeting in Albuquerque, 
but presented at a special Awards Convocation at the August meeting so that all visitors to the ISPRS Congress may attend. 

If you have candidates, please send them to Headquarters. You can help to make the ASPRS Awards Program a success! 


