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ABSTRACT: We describe an improved table look-up technique for performing rapid maximum likelihood classification 
on large images. The method provided a more than 20-fold reduction in classification time relative to standard algorithms 
in a three-band classification of a full Landsat Thematic Mapper (TM) scene. While powerful, the improved algorithm 
is also simple, portable, and can run in limited memory desktop computer environments. The described algorithm 
sigruficantly improves the practicality of large area land-cover classifications, such as those required for statewide and 
regional analyses. 

INTRODUCTION 

A VARIETY OF AUTOMATED METHODS have been developed 
over the past two decades in order to classify multispectral 

satellite image data into distinct feature categories (e-g., Swain 
and Davis, 1978; Richards, 1986). These methods convert mul- 
tispectral image data into information about the location and 
extent of earth surface features, and they have been applied 
extensively in such diverse fields as geology, hydrology, water 
quality assessment, the agricultural sciences, forestry, and land- 
use management (e.g., Jensen and Toll, 1982; Ryerson et al., 
1985; Franklin, 1986; Irons and Kennard, 1986; Lathrop and Lil- 
lesand, 1986; Hopkins et al., 1988). 

Supervised classification methods are those which require 
significant pre-classification input by the image analyst, and the 
maximum likelihood decision rule is by far the most common 
supervised classification method used for analyzing satellite im- 
age data (Richards, 1986). The standard implementation of su- 
pervised maximum likelihood classification requires the selection 
of "training' samples representing the feature types to be mapped 
(Lillesand and Kiefer, 1987). The sampled data normally include 
several "spectral classes" to adequately represent each "infor- 
mation class" or feature type. These training data are used to 
estimate the parameters of a probability density function for 
each spectral class. Generally, a multivariate normal probability 
model is chosen, with the training sample mean vectors and 
variance/covariance matrices defining the probability density 
functions. These density functions are then used to calculate 
the likelihoods of spectral class membership for each pixel in 
the image. The class with the highest computed likelihood is 
assigned to the output classified image. 

The popularity of the maximum likelihood classifier is due to 
a number of characteristics (Swain and Davis, 1978; Schowen- 
gerdt, 1983; Richards, 1986). First, the maximum likelihood de- 
cision rule is intuitively appealing because the most "likely" 
outcome among candidate outcomes in chosen. Second, the 
decision rule has a well-developed theoretical foundation, and, 
for normally distributed data, is mathematically tractable and 
by many measures statistically desirable. Third, a maximum 
likelihood classification can readily accommodate covarying data, 
a common occurrence with satellite image data. Finally, maxi- 
mum likelihood classifiers have been proven to perform well 
over a range of cover types, conditions, and satellite systems 
(Swain and Davis, 1978; Richards, 1986; Lillesand and Kiefer, 
1987). 

Despite the advantages of maximum likelihood classifiers, most 
implementations have exhibited at least one serious drawback, 
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namely, long classification times. For N spectral bands and T 
training sets, computing the maximum likelihood for each N- 
tuple (pixel measurement vector) of image data requires at least 
(W + N) * T multiplications and (N- l)*(N+ 1) + 2'N additions 
in the most commonly implemented form of the maximum like- 
lihood decision rule (Richards, 1986). Accordingly, per-pixel 
maximum likelihood classification requires billions of calcula- 
tions when applied to large-area high- resolution satellite image 
data, such as those provided by the Landsat Thematic Mapper 
(TM) and SPOT High Resolution Visible (HRV) multispectral scan- 
ners. Full-scene classification times have been limited to date 
by computational speed, even when standard numeric copro- 
cessors are used. Run-times of from 5 to 70 days can be expected 
for classifying a full-scene Landsat TM image with current pipe- 
line-architecture desktop computers (Westman, 1989). 

There are several potential means by which classification speed 
can be improved. First, increased processor clock speed will 
improve numeric computations approximately proportionally. 
Clock speeds have been doubling every three to four years in 
many computing environments and should continue to do so 
for at least the next several years. However, clock speed im- 
provements foreseeable in the next decade will still result in 
impractical full-scene or multiple scene classification times in 
the desktop environment. 

Enhanced numeric coprocessors are a second potential source 
of classification speed improvement. Commercially available 
specialized coprocessors can yield two- to four-fold increases in 
classification speeds when compared to the use of "standard 
coprocessors. Unfortunately, enhanced numeric processors are 
often expensive, and can require special languages or algo- 
rithms, thereby reducing code portability. 

A third option for improving classification run-times involves 
the adoption of parallel processing technology. System bottle- 
necks inherent in pipeline architecture are avoided by perform- 
ing the numeric calculations in parallel, and very high throughput 
can be achieved with array processors (Westman, 1989). How- 
ever, as with enhanced numeric coprocessors, array processors 
can be very expensive, and usually require hardware specific 
code. 

As an alternative to the above "hardware" approaches to im- 
proving classification speed, this paper reports on a simple, 
portable table look-up algorithm which dramatically reduces 
processing times for large scenes while retaining the advantages 
of the maximum likelihood classifier. As described below, this 
algorithm derives its speed by avoiding most of the redundant 
computation which characterizes many current implementa- 
tions of the maximum likelihood classifier. The procedure also 
circumvents many of the disadvantages of previous table look- 
up methods. 
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BASIC CONCEPTS 

Most current maximum likelihood classifiers calculate relative 
class membership "likelihoods" with respect to all training sets 
for each pixel in an image. They then assign the resultant most 
likely class identity to the output image and discard the inter- 
mediate computational results. Thus, an identical set of multi- 
plications and additions will be computed each time a frequently 
occurring N-tuple is present in the image. This method is in- 
efficient when there are several instances of the same N-tuple, 
because of the redundant calculations involved. There are at 
most LN unique N-tuples with N bands measure over L possible 
gray levels, and in practice the number of distinct N-tuples is 
much smaller (Shlien, 1975). Thus, when there are many more 
pixels than distinct N-tuples to classify, it becomes quicker to 
calculate the likelihood for the N-tuples once, save them in a 
suitably indexed look-up table, and simply recall the result the 
next time each N-tuple is encountered. Most current imple- 
mentations of the maximum likelihood algorithm do not utilize 
this approach, apparently because the potential data space oc- 
cupied by the set of possible N-tuple combinations is consid- 
erably larger than the data space available in most computing 
environments. For example, both SPOT HRV and Landsat TM 
data are quantized in eight bits, affording 256 unique data val- 
ues per band. This allows a total of 2563, or 16,777,216 unique 
N-tuples with SPOT multispectral data, and 256"discounting 
the thermal band), or approximately 2.8 ' l0l4 unique N-tuples 
with Landsat TM data. This is considerably larger than memory 
available with current hardware. In spite of these large potential 
data spaces, two observations suggest that a look-up table ap- 
proach may still be used to improve classification speeds in the 
context of computer memory limitations. 

First, current high resolution satellite data sets contain three 
or fewer fundamental dimensions of variability for many ap- 
plications, and much of the information in the image data can 
be captured by using three (or fewer) image bands (Gooden- 
ough et al., 1978; Nelson et al., 1984; Horler and Ahern, 1986; 
Lathrop and Lillesand, 1987). For example, SPOT-1 HRV data are 
only available in three bands, and a majority of the variability 
in the data is often contained in just two principal dimensions 
(Blohm, 1989). For Landsat TM data, a large part of the varia- 
bility usually occurs in just three principal dimensions. For many 
vegetative cover types, much of the variability is represented 
by one band from each of the visible, near-infrared (NIR), and 
mid-infrared (MIR) portions of the spectrum. 

A second factor suggesting the potential utility of the table 
look-up method involves the actual versus the potential fre- 
quency distributions characteristic of most satellite image data. 
Although 2563 unique combinations are possible with three- 
band eight-bit images, most of the data are usually concentrated 
in a small region of the entire potential data space (Shlien, 1975; 
Malila, 1985; Metzler and Malila, 1985; Murphy ef al., 1985). As 
the observation of typical single-band image histograms indi- 
cates, over 90 percent of the data for I-tuples are often con- 
tained in a relatively limited subset of digital values. Similar 
conditions also commonly exist for higher order N-tuples. This 
means that regions of data concentration can be effectively iden- 
tified, and the look-up table can be limited to only the fre- 
quently occurring N-tuples. In this way, the size of the look-up 
table can be greatly reduced, yet a large portion of the image 
data can be represented by the look-up table. Hence, during 
image classification the look-up table can be used only for those 
N-tuples which occur most frequently. Likelihoods for only the 
relatively infrequent N-tuples not in the look-up table can be 
computed separately each time they occur. 

The advantages of a table look-up approach have been pre- 
viously recognized and demonstrated for Landsat Multispectral 
Scanner (MSS) data (Eppler, 1974; Shlien, 1975; Mather, 1985). 
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However, these approaches have not been widely adopted, par- 
ticularly for Landsat TM and SPOT HRV data. The algorithm de- 
scribed herein is distinct from the previous approaches in at 
least three respects: data quantitization independence, im- 
proved portability, and run-time dimensioning to improve re- 
source utilization and increase efficiency. 

Previous table look-up methods have either lacked gener- 
ality, required specialized, non-portable code to implement 
(Shlien, 1975; Mather, 1985), or depended on the order of 
training data input (Eppler, 1974; Jones, 1974). The approach 
adopted by Shlien (1975) and Mather (1985) involves storing 
calculated maximum likelihoods in a hash table for later ac- 
cess. In both cases, a fixed-size hash table was adopted. A 
prime division hash function (Knuth, 1973) and machine-de- 
pendent bit shuffling were implemented to calculate table ad- 
dresses, while collisions were resolved by repetitive probing. 
This approach has low portability because rapid hash table 
addressing results mainly from machine-dependent subrou- 
tines. Further, pixel concatenation for address computation 
depends on machine integer dimension, further reducing 
portability to other computing platforms. The algorithm was 
developed for six-bit representations of Mss data, so appli- 
cability to eight-bit data from other sensors, such as SPOT HRV 
and Landsat TM sensors, is uncertain. Finally, the fixed, 10,000 
element hash table may be too small for eight-bit TM and SPOT 
data, resulting in frequent collisions and rehashing, or may 
limit representation to a small percentage of the image data, 
reducing efficiency in either case. The algorithm described 
herein does not use a hash function for table address calcu- 
lation; rather, it accesses table elen~ents directly. Direct ac- 
cessing is possible because the look-up table is restricted only 
to the "data rich" portion of the spectral domain. 

The adopted algorithm identifies regions of high data density 
by using histograms of individual spectral bands to select digital 
numbers for inclusion in the look-up table. These histograms 
correspond to the marginal frequency distributions of the N- 
dimensional data. This method requires the compilation of an 
image histogram for each band prior to classification, but this 
can be accomplished at minor computational expense. Sam~linp 

1 U 

theory sugg6sts accurate histograms can be compiled quickly 
for very large images by using a fixed sample size and sub- 
sampling systematically along rows and columns of the image 
data (Williams, 1978). Although single-band histograms do not 
guarantee an optimal selection of digital numbers for inclusion 
in the look-up table, they offer considerable computational time 
savings relative to N-way histogram compilation while provid- 
ing suitable selections. 

Finally, another factor influencing the design and develop- 
ment of our algorithm is the fact that many current maximum 
likelihood classifiers compute the likelihoods for all possible 
spectral classes, irrespective of their statistical distance from the 
current N-tuple to be classified. Many N-tuples, particularly those 
very near a training set mean, have very high likelihoods for 
one spectral class and relatively low likelihoods for the remain- 
der of the spectral classes. Accordingly, less computationally 
intensive methods (e.g., parallelepiped techniques) can be used 
to first classify these "highly certain" N-tuples, and maximum 
likelihood classification can be used only for the remaining ob- 
servations which fall further from class means. Provided this 
approach leads to class assignment identical to the maximum 
likelihood method, this stratified classification procedure can 
result in significant time savings relative to traditional maxi- 
mum likelihood implementations with no degradation in clas- 
sification accuracy. 

Thus, the success of our improved algorithm depends on (1) 
how well the single-band histograms identify regions of high 
data density, (2) the size of the resultant look-up table, and (3) 
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the accurate specification and classification of "near" spectral 
classes. 

ALGORITHM DESCRIPTION 

The basic concepts described above have been developed and 
tested in a stratified, three-band table look-up maximum like- 
lihood classifier (Figure 1). The adopted approach calculates the 
marginal (one-dimensional) histograms of the three-dimen- 
sional data space. A large number of pixels (greater than 10,OO) 
are sampled systematically in a uniformly spaced grid for each 
band in each image, and the percent frequency of occurrence 
is calculated for each of the 256 (0 to 255) possible digital num- 
bers. Each frequency histogram is held in a separate vector, 
used initially to calculate histograms and subsequently to index 
the look-up table. The number and location of digital counts 
above an analyst- specified minimum frequency threshold are 
flagged for each band (Figures 2 to 4). Thus, only that portion 
of the spectral domain which satisfies the marginal frequency 
threshold criteria for all bands is included in the look-up table 
(Figure 5). The number of digital counts selected for the three 
bands, plus one additional count for each band (described be- 
low), define the three dimensions of the look-up table. If suf- 
ficient memory space is available, the look-up table is then 
allocated dynamically; if space is not available, the threshold is 
successively increased and a smaller set of qualifying digital 
numbers is reselected for each band until an array of the max- 
imum manageable size is successfully allocated. Categories are 
then assigned according to the appropriate maximum likelihood 
value. 

Run-time array dimensioning and allocation offer several ad- 
vantages, chief among them being a balanced selection of digital 
numbers and full utilization of available memory resources. Se- 
lected histogram vector elements are then numbered sequen- 
tially to index corresponding elements in the three-dimensional 
look-up table array. Unselected elements are set to values point- 
ing to the lower "faces" of the look-up table, with an index 
value set to a null value which does not occur or occurs infre- 
quently in the input data (e.g., -1 or 0). This null value is the 

I Generate I 

l ~ e l  Up Table I 
I 

1 Classification 
I 

In Table Not in Table 11,1 

FIG. 1. Overview of the table look-up classifier. 

"additional" count mentioned above (Figure 6). This selection 
and indexing of the histogram vectors reduces the size of the 
look-up table by eliminating sparsely populated spectral re- 
gions. This structuring also allows the image data to be used 
as nested indices during classification, in accordance with the 
following C syntax: 

Feature Type ljk = Look up table [Vectl[i]] [Vect2[j]] 
[Vect3[k]] , where i, j , and k are digital data observed in the 
images; Vectl, Vect2 , and Vect3 are histogram vectors; Look 
up table is the three-dimensional table; and Feature Type Ijk 
is the feature type with the maximum likelihood for the given 
N-tuple. Thus, once calculated, pixel N-tuples represented in 
the table can be assigned the appropriate class at the compu- 
tational cost of accessing three one-dimensional arrays and one 

Digital Numbcr 
FIG. 2.Frequency histogram and number of digital numbers 
with frequency greater than 0.3 percent for band 3 of a 
Landsat Thematic Mapper image of a forested region in 
northern Wisconsin. 

Digital Number 

FIG. 3. Frequency histogram and number of digital numbers 
with frequency greater than 0.15 percent for band 4 of a 
Landsat Thematic Mapper image of a forested region in 
northern Wisconsin. 
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Digital Number 
FIG. 4. Frequency histogram and number of digital numbers 
with frequency greater than 0.15 percent for band 5 of a 
Landsat Thematic Mapper lmage of a forested region in 
northern Wisconsin. 

TM Band 5 Digital Number 
FIG. 5. A two-dimensional example of the portion of the total 
spectral domain covered by the look-up table. Those areas 
inside the rectangles satisfy a marginal frequency threshold 
criteria of 0.15 percent for both bands, illustrated in Figures 
3 and 4. The feature type with the maximum likelihood is 
calculated for each distinct N-tuple within the selected re- 
gions and stored in the look-up table (LUT). 

three-dimensional array, a significant time savings when com- 
pared to repeating the likelihood calculations or to hash table 
address calculation. 

The proposed method of look-up table access exhibits several 
advantages when compared to previously described schemes 
(Eppler, 1974; Shlien, 1975; Mather, 1985). First, the described 
method is more general, in that no assumptions about the num- 
ber of selected N-tuples are required nor is complex training set 
structuring. Second, the indexing scheme is simple, resulting 
in code parsimony. Finally, the indexing method is inherently 
rapid when using standard higher level languages, and optim- 
ization by means of lower level programming is not required. 

Look-up Table 

(3,4i  Index Vector 
Pixal Data 

FIG. 6. A two-dimensional example of the sequential table 
look-up indexing scheme used. lmage data (e.g., obser- 
vation vector digital number combination 3,4) are use to 
index 256 element vectors, which in turn index the look- 
up table. Asterisks in the index vectors indicate unselected 
digital numbers. The look-up table contains the identifi- 
cation number of the most likely feature category, in this 
case, category "W." 

Thus, the algorithm is easily ported across a broad range of 
computing platforms. 

As mentioned previously, those N-tuples falling outside the 
range of the look-up table could be assigned by means of the 
usual repetitive likelihood calculation method. However, this 
requires the calculation of all likelihoods for each pixel, includ- 
ing many distant classes with correspondingly low likelihoods. 
In many cases only one or a few likelihoods are viable candi- 
dates. There are several potential methods for screening can- 
didates; we chose a parallelepiped procedure to identify the 
classes of high potential likelihood (Lillesand and Kiefer, 1987). 
Although not sensitive to data covariance structure, the paral- 
lelepiped classifier is a rapid, simple method for multi-dimen- 
sional distance discrimination. Only classes which uniquely fall 
within class-specific distances of the pixel to be classified are 
considered as candidates. That is, if the pixel is within a set 
distance (e.g., one standard deviation) of the mean in all spec- 
tral dimensions for one and only one class, then this class iden- 
tity is assigned to the pixel. Although not a maximum likelihood 
classification, practice suggests that, under most circumstances, 
setting the distances "close" to the spectral mean values results 
in assignments for qualifying pixels which are identical to those 
of the maximum likelihood classification. If the distances are 
chosen conservatively, the resultant set of likelihood calcula- 
tions will be greatly reduced, yet still result in proper class 
selection. 

Finally, for N-tuples which fall outside the range of the look- 
up table and do not satisfy the parallelepiped criterion, the usual 
pixel-by-pixel maximum likelihood classification is performed. 
This three-phase approach to classification yields the combined 
efficiency and accuracy of the proposed algorithm. 

MATERIALS AND METHODS 
The above algorithm was written at the University of Wis- 

consin-Madison Environmental Remote Sensing Center (ERSC) 
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and has been initally tested using Landsat TM data collected as 
part of ERSC'S participation in the National Science Foundation 
supported Long-Term Ecological Research Program (Lillesand 
et al., 1989). The classifier was written with the C programming 
language to operate on an Intel 80386 based microcomputer 
under the DOS operating system. Although code was developed 
on a microcomputer platform, we attempted to adhere to the 
ANSI C standard to ensure portability. 

Initial testing of the algorithm was performed using images 
that were subset from a Landsat TM scene located in the forested 
region of northeastern Wisconsin (Path 25, Row 28, acquired 9 
June 1988). Vegetation in this region is dominated by northern 
hardwood and boreal forests (Kotar et al., 1988). A represent- 
ative sub-image of approximately 500 by 600 pixels was selected 
from a cloud-free portion of the full TM scene. Training sets had 
been developed previously for a much larger portion of the 
image using standard supervised maximum likelihood classifi- 
cation techniques. A total of 79 spectral classes were used to 
represent 14 land-cover classes (Northern Hardwoods, Mixed 
Hardwood/Conifer, ReWhite  Pine, Jack Pine, White Pine/ 
Norway Spruce, Upland Brush, Lowland Brush, Lowland Con- 
ifer, Mixed Lowland Vegetation, Grass and Sedge, Herbaceous 
Vegetation, Aquatic Vegetation, Urbanbare Soil, and Water). 
The scene was initially classified using the traditional super- 
vised maximum likelihood pixel-by-pixel method and algo- 
rithm. Classification accuracies averaged 89 percent (Benson et 
al., 1989). 

A set of benchmark classifications using both the traditional 
and new approach were conducted on the sub-image, using 
three TM image bands: a visible (band 3), the near infrared (band 
4), and a mid-infrared (band 5). Benchmark tests compared clas- 
sifier characteristics and run-times at a number of histogram 
selection threshold levels. Measurements included time spent 
on inputloutput, histogram generation and count selection, look- 
up table elaboration (time spent calculating and assigning class 
maximum likelihoods to N-tuples represented in the table), ta- 
ble look-up during classification, and calculation of likelihoods 
during classification for N-tuples not covered by the table. Times 
for each respective activity were reduced to a per-pixel basis, 
and extrapolated using appropriate multipliers to cover a range 
of image sizes. Total classification times were compared to those 
of a similar traditional maximum likelihood classifier. This tra- 
ditional classifier was developed by removing the histogram 
generation, look-up, and parallelepiped portions of the table 
look-up classifier; essentially the lower right-hand box in Figure 
1. This traditional method employs the "standard" form of the 
maximum likelihood decision rule, wherein only the exponent 
of the likelihood function is used as a discriminant (Richards, 
1986). All classifications were compared digitally, pixel by pixel, 
to the classified image derived using the traditional maximum 
likelihood classifier. 

All benchmark classifications were performed on a 25mHz 
Intel 80386 computer (CompuAdd model 325) equipped with 1 
mbyte of RAM and running the DOS 3.3 operating system. Ap- 
proximately 585 kbytes of RAM were available for program use 
on the system after device drivers, DOS environment space, and 
other required system space had been allocated. 

RESULTS AND DISCUSSION 
As shown in Figure 7, classification times were dramatically 

improved using the look-up table method on the three-band 
data set. Relative improvement over the traditional method was 
a function of image size, and increased with increasing image 
size. The relative advantage increased because there are two 
stages of the look-up table method which account for a major 
portion of run-times on large images. The first stage, table elab- 
oration, depends on the size of the look-up table, and thus the 
number of digital number values resulting from the frequency 

1 Traditional method + - - 

Square Image Edge Dimension (pixeld 
FIG. 7. Time required for classification of square three-band 
images using both the traditional and look-up table maxi- 
mum likelihood classification algorithms. This and all bench- 
mark classifications were performed on a 25 mHz 80386 
system equipped with a math coprocessor. Seventy-nine 
spectral classes were used for 14 information classes, with 
an overall classification accuracy or 89 percent. 

threshold. At the lowest threshold tested (0.1 percent), tables 
contained on the order of 470,000 elements, and likelihood cal- 
culations were performed for all elements. However, not all the 
470,000 N-tuples occurred in the image, so some of the elements 
were computed unnecessarily. Time spent calculating these 
likelihoods can be considered as wasted, because they are never 
accessed. An alternate strategy was tested which calculated the 
table elements when they were initially encountered in the im- 
age, thereby avoiding likelihood calculations for N-tuples which 
do not occur in the image. This opportunistic table filling method 
was considerably faster than the adopted table look-up algo- 
rithm on small to mid-sized images, because table generation 
overhead was reduced. Also, this opportunistic approach was 
faster than a traditional maximum likelihood classification for 
all scene sizes tested larger than approximately 60 pixels on an 
edge. This compares to the adopted look-up table approach, 
which fills the table completely regardless of image size, and 
was not faster than the traditional maximum likelihood classifier 
until image edge dimension surpassed approximately 600 pix- 
els. However, for full-scene Landsat TM images, the opportun- 
istic approach proved slower than the adopted approach, due 
to the overhead incurred in checking the look-up table for prior 
assignment while classifying each image pixel. 

Run-times for the image classification and input/output are 
the second major phase and are added to table generation over- 
head, resulting in total classification times. As the size of the 
image increases, the proportionate amount of time spent aIlo- 
cating and elaborating the look-up table compared to classifying 
the image decreases. For square images 3000 pixels on a side 
(approximately equivalent to full SPOT multi-spectral scenes or 
TM quarter scenes), total classification times using the look-up 
table method required 6.2 hours, approximately 9.5 times faster 
than traditional methods. For a TM full-scene size image, the 
look-up table method would require 14 hours, approximately 
21 times faster than traditional methods. These dramatic im- 
provements in classification times were initially verified for only 
one satellite image of forested lands in northeastern Wisconsin. 
Although there are many scene-dependent factors which affect 
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classification times, such as cover types, spectral variability, 
number of training sets, and time of year, this work provides 
an example of the substantial reduction in classification run- 
times possible with the method. 

The look-up table classification times were a function of 
threshold level as well as image size (Figure 8). For small im- 
ages, classification times were relatively constant across a range 
of selection thresholds. This is because time saved by reducing 
the size of the look-up table was offset by fewer N-tuples being 
contained in the table, and hence more time spent calculating 
likelihoods during image classification. Lower thresholds pro- 
vide shorter times for larger images. This trend was true down 
to thresholds of 0.1 percent, the smallest tested due to memory 
limitation imposed by the DOS operating system. At this thresh- 
old, classifying a full scene TM would require 14 hours on an 
inexpensive, DOS-based desktop computer. Although the clas- 
sification times are likely to be a function of the scene-specific 
characteristics noted above, the look-up table algorithm pro- 
vides a substantial savings in classification time over a broad 
range of histogram thresholds and image sizes. 

Extrapolating the TM benchmark classification results to SPOT 
multispectral full scene data (3000 by 3000 pixels) indicates clas- 
sification times of approximately 6 hours. However, this is 
probably an over-estimate, for two reasons. First, the bench- 
mark tests were performed using Landsat TM visible (band 3), 
NIR (band 4), and MIR (band 5) images. The data ranges and 
hence look-up table dimensions for the infrared bands were 
much greater than for the visible bands of the study region, 
both on SPOT multispectral and Landsat TM imagery. Because 
SPOT multispectral data contain two visible and only one IR 
band, an optimal portion of the spectral data space could be 
included in the look-up table, thereby decreasing classification 
times. Second, the 6-hour estimate is probably conservative be- 
cause of the steeper gain and hence smaller ranges for SPOT 
multispectral bands when compared to corresponding TM bands 
(Blohm, 1989). Histogram ranges for all three SPOT multispectral 
bands have been observed to be narrower than the correspond- 
ing bands of concurrent TM imagery, both for the described 

% of Image data in LUT o 

LUT Size + -  - - - - 

Frequency Threshold (%) 

FIG. 8. The effect of image size and frequency threshold level on 
classification times when using the look-up table algorithm in a 
maximum likelihood classification. 

study area and for a similar region in northwestern Wisconsin. 
Preliminary tests classifying approximately one-half of a SPOT 
HRV image indicate full-scene classification times of approxi- 
mately 4 hours when using 71 spectral classes. 

Both look-up table dimension and the percent of image data 
N-tuples included in the look-up table increased with de- 
creasing frequency thresholds (Figure 9). Look-up table size 
ranged from 14 to 474,000 elements over a range of thresholds 
from 1.5 percent to 0.1 percent, while the percent of observed 
image N-tuples found in the table increased from 1 to 93 per- 
cent over the same range. Thus 93 percent of the image area 
was included in a look-up table comprising 2.8 percent of the 
potential spectral domain (474,000 / 16,770,000) at the lowest 
histogram threshold level tested (0.1 percent). 

The 2.8 percent of the spectral domain represented in the 
look-up table was sparsely populated in that only 48,247 of the 
table N-tuples were observed in the test images. Hence, 10.2 
percent of the look-up table elements were used, during image 
classification. More complex indexing schemes could be used 
to decrease the storage requirements of the look-up table, e.g., 
hashing schemes, complex linked lists, binary, quad, or higher 
order trees, or some combination of these and indexed arrays. 
However, these schemes, while reducing storage requirements, 
are more difficult to code; further, guidelines need to be estab- 
lished to identify a judicious mix of smaller, slower access struc- 
tures (e.g., portable has functions) and faster, larger structures 
(look-up tables). These methods are topics for further investi- 
gation and show promise for data storage reduction without 
sacrificing performance. 

During the image classification stage, approximately 5 per- 
cent of run-time was spent classifying the 93 percent of the 
image covered by the look-up table, while the remaining 95 
percent of classification stage run-time was spent assigning classes 
to N-tuples not represented in the table. Of those N-tuples out- 
side the table, approximately 30 percent could be assigned using 
the parallelepiped classification rule (2.1 percent of the total), 
while 70 percent were assigned using the traditional classifica- 
tion method (4.9 percent). Thus, with a frequency threshold set 
at 0.1%, a total of 98 percent of the image pixels were assigned 
using the true maximum likelihood algorithm, while 2 percent 
were assigned using the parallelepiped algorithm. Because a 
majority of the full scene classification times are spent on clas- ' 
sifying the "outlyingf' N-tuples not covered by the look-up ta- 
ble, time savings by the parallelepiped classification rule are 

Frequency Threshold (%) 

Image 

Dimen- 
sion 

(pixels) 

FIG. 9. The relationships among look-up table (LUT) size, per- 
cent of image data covered by the table, and the frequency 
threshold chosen. 
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still significant. Tests without the parallelepiped sub-section in- 
dicate TM full-scene classification times were reduced approxi- 
mately 28 percent by the inclusion of the parallelepiped screening. 

Image differencing results show the table look-up classifica- 
tion to be identical to the traditional method. While those N- 
tuples represented in the table will result in equivalent class 
assignment, the parallelepiped part of the algorithm could re- 
sult in class assignment different from that of a maximum like- 
lihood classifier for the small percentage of image data not 
contained in the look-up table. The small one standard devia- 
tion bounds chosen for the parallelepiped classifier, when cou- 
pled with the restriction of selecting one and only one class, 
resulted in identical class assignment as the maximum likeli- 
hood algorithm under the conditions of this study. This com- 
plete agreement between the parallelepiped and maximum 
likelihood classifications, while not surprising in light of the 
small bounds chosen, is not guaranteed. Clearly, agreement 
depends on the nature of the image data, the training sets cho- 
sen, and the size of the parallelepipeds. However, this study 
indicates that, by choosing conservative bounds, high agree- 
ment should result. In short, the look-up table classifier covered 
a large percentage of the image data and significantly reduced 
classification times by avoiding redundant calculations. For most 
of the remaining data, the parallelepiped algorithm improved 
classification times without sacrificing accuracy. 

Because of the positive relationship between look-up table 
size, table elaboration time, and percent of image data covered 
by the table, the percentage of total run-time for table genera- 
tion decrease with increasing threshold (Figure 10). Approxi- 
mately equal parts were spent on look-up table creation and 
image classification for a 0.1 percent threshold. Although large- 
image classification times continued to decrease with decreasing 
frequency threshold down to the smallest threshold level tested 
(0.1 percent), extrapolation indicates convergence at some 
thresholdtable-size combination. The optimum threshold un- 
der the conditions of this study is below 0.1 percent, but could 

Likelihood calculation time dwing classification 
Lo&-up table creation and access time 
Time spent on irput-output 

Frequency Threshold (%) 

FIG. 10. The effect of frequency threshold on the relative 
proportion of time spent on inputJoutput, look-up table gen- 
eration, and likelihood calculations for pixels which fall out- 
side the look-up table during classification. A square image 
3000 pixels on an edge was used with 79 spectral classes. 

not be identified because of memory limitations imposed by the 
DOS operating system. Below this minimum threshold, classi- 
fication times would actually increase with decreasing threshold 
level. In general, the minimum threshold level is a function of 
many variables, including scene spectral diversity, image char- 
acteristics (e-g., clarity, time of year), scene size (Figure 8), number 
of training sets, the number of image bands used, and the rel- 
ative times of numeric computations and look-up table access. 
Nonetheless, substantial improvements in classification times 
can be realized over a broad range of thresholds. 

The described algorithm was developed and tested for clas- 
sification of three-band images, but there are no threoretical 
reasons the algorithm could not be applied to images having 
larger numbers of bands. However, there are practical con- 
straints imposed by available RAM memory on the number of 
input image bands. Approximately 25 mbytes of RAM would be 
required when employing four bands under the conditions of 
this study (two TM visible and two TM infrared bands). This is 
near the limit of what is generally allowable or affordable with 
current desktop computer technology. Table size with five or 
more TM bands and low histogram selection criteria would likely 
be larger than available memory. Table sizes for five and higher 
band classifications could be accommodated by raising the fre- 
quency selection threshold, although this would also tend to 
reduce performance because a reduced percentage of the spec- 
tral domain would be represented in the look-up table. As men- 
tioned earlier, much image data are provided with only three 
image bands (e.g., SPOT multispectral data), and for many re- 
gions of the world most of the variation in TM data is contained 
in three principal dimensions. If the additional discrimination 
from more than four bands is required, the information could 
be maintained utilizing a dimensionality reduction technique 
such as a principal components transformation. Thus, infor- 
mation from five or more bands could be incorporated by rais- 
ing the frequency selection thresholds, a feature reduction 
transformation, or the application of a hybrid indexing scheme, 
e.g., through a combination of table look-up and a portable 
hashing scheme. 

CONCLUSIONS 

A stratified table look-up algorithm can significantly reduce 
classification times for a maximum likelihood classification with 
three satellite image bands. With this method full-scene Landsat 
TM classification can be accomplished overnight using presently 
available, inexpensive, modestly equipped desktop computer 
systems. Current prices of the computer system used for the 
described work total less than $5,000. Current moderately priced 
systems, available for less than $15,000, exhibit an 8- to 12-fold 
increase in throughput under scientifidengineering workloads 
when compared to the system used in the present work (Var- 
hol, 1989). This suggests TM full-scene, three-band classifica- 
tions of approximately 3 to 4 hours on such systems. 

Table look-up classification performance is a function of the 
frequency selection threshold chosen; however, improvements 
in classification speed are large over a range of thresholds. Time 
savings increase with increasing image size. The table look-up 
algorithm significantly enhances the practicality of land-cover 
classification over large areas, particularly for state-wide and 
regional analysis where multiple satellite images are to be class- 
ified. 
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43rd Photogrammetric Week 
Stuttgart, 9-14 September 1991 

This internationally-recognized "vacation course in photogrammetry" has been held at Stuttgart University since 1973. Because Professor Dr.- 
Ing. Friedrich Ackermann, one of those responsible for the scientific program, is to retire soon, this 43rd Photogrammetric Week will be his 
farewell seminar. Essential lines of his work have been chosen as the main topics for the meeting: 

GPS for Photogrammetry Digital Photogrammetric Image Processing Photogrammetry and Geo-Infonnation Systems 

Lectures and discussions will be held in the mornings. Technical interpreters will be available for simultaneous translations into German or 
English. Demonstrations are scheduled for the afternoons. 

For further information and applications, contact: Universitat Stuttgart, lnstitut fur Photogrammetrie, Keplerstrasse 
11, D-7000 Stuttgart 1, FRG, telephone 071 1/121-3386 or FAX 071 1/121-3500. 


