
Environmental Analysis Using l ntegrated GIs 
and Remotely Sensed Data: Some Research 
Needs and Priorities 
Frank W .  Davis 
Department of Geography, University of California, Santa Barbara, CA 93106 
Dale A. Quattrochi 
NASA Science and Technology Laboratory, John C. Stennis Space Center, Stennis Space Center, MS 39529-6000 -- 
Merrill K. Ridd 
Center for Remote Sensing and Cartography, University of Utah Research Institute, Salt Lake City, UT 84108-1295 
Nina S-N Lam 
Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA 70803-4105 
Stephen J. Walsh 
Department of Geography, University of North Carolina, Chapel Hill, NC 27599-3220 
Joel C. Michaelsen 
Department of Geography, University of California, Santa Barbara, CA 93106 
Janet Franklin 
Department of Geography, San Diego State University, San Diego, CA 92182 
Douglas A. Stow 
Department of Geography, San Diego State University, San Diego, CA 92182 
Chris 1. Johannsen 
Laboratory for Application of Remote Sensing, Purdue University, West Lafayette, Indiana 47907 
Carol A. Johnston 
Natural Resources Research Institute, University of Minnesota, Duluth, MN 55811 

ABSTRACT: This paper discusses some basic scientific issues and research needs in the joint processing of remotely 
sensed and GIs data for environmental analysis. Two general topics are treated in detail: (1) scale dependence of 
geographic data and the analysis of multiscale remotely sensed and GIs data, and (2) data transformations and infor- 
mation flow during data processing. The discussion of scale dependence focuses on the theory and applications of 
spatial autocorrelation, geostatistics, and fractals for characterizing and modeling spatial variation. Research using these 
and related techniques is needed to identify characteristic space and time scales of surface variation, to help define the 
measurement scales of remotely sensed and GIS data, and to formulate strategies for acquiring and integrating multiscale 
geographic data to model Earth systems. Data transformations during processing are described within the larger frame- 
work of geographical analysis, encompassing sampling, cartography, remote sensing, and GIS. These transformations, 
which may introduce noise but may also involve more fundamental changes in the input data, have not been inves- 
tigated in terms of overall processing flow and information development. Development of better user interfaces between 
image processing, GIs, database management, and statistical software is needed to expedite research on these and other 
impediments to integrated analysis of remotely sensed and GIS data. 

INTRODUCTION 

T HE PURPOSE OF THIS PAPER is to discuss some basic scientific 
issues and research needs in the joint processing of remotely 

sensed and GIs data for environmental analysis. Over the past 
decade there has been an explosive increase in georeferenced 
data and computer systems for spatial data handling. Our per- 
spective is that of scientists attempting to take advantage of 
these data and new technologies to investigate real world en- 
vironments, their conditions, patterns, and dynamics. As noted 
by Curran (1987), remote sensing and G I ~  are tools not only for 
scientific research on how the world works, but also for tech- 
nological applications in meeting human needs. The need for 
close coupling between research and application is especially 
important to the emergent programs for monitoring the envi- 
ronmental and social consequences of global change. 

The type of spatial information system required for regional 
to continental scale environmental analyses is very large (e.g., 
lo3-106 megabytes) and may include fundamentally different 
kinds of data, for example, (a) multi-temporal and multi-reso- 

lution digital images acquired from one or more satellite and 
aircraft platforms; @) gridded elevation data; (c) digitized maps 
of land surface variables such as soils, hydrography, and veg- 
etation cover; (d) socioeconomic data (e.g., population density, 
zoning district) aggregated by political reporting units; and (e) 
point measurements of subsurface, surface, and atmospheric 
variables at scattered locations. Queries of such databases can 
range from relatively simple (e-g., where? how much?) to ex- 
tremely complex (e.g., what is the projected distribution of var- 
iable A at time T based on linked simulation models 1, 2, and 
3?). 

Much work has been devoted to overcoming technical obsta- 
cles to joint processing of image and GIS data, such as convert- 
ing between vector and raster data structures and jointly 
displaying digital imagery and maps. Continued developments 
should lead to Integrated Geographic Information Systems (IGIS) 
for joint analysis of remotely sensed and GIs data, capable of 
handling multiple data structures and supporting complex spa- 
tial analyses and user queries (Ehlers et al., 1989; Faust et al., 
1991, this issue). In contrast, scientific theory to guide modeling 
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and analysis using the amalgamated data inputs and outputs 
of IGIS has been slow to develop. Several features of IGIS analy- 
sis make processing and interpretation of the outputs especially 
complex, for example: 

use of multiple data layers varying in their structure, level of pre- 
processing, and spatial consistency; 
multiple (and often poorly known) measurement scales, ranging 
from "points" to grids to irregular polygons; 
unknown measurement errors for most variables; 
unknown spatial dependenaes in the data and their propagation 
through spatial models; 
limited ability to verify or validate IGIS model outputs; and 
limited capability for model sensitivity analysis. 

These challenges or impediments to IGIS analysis have long 
been recognized (e.g., Everett and Simonett, 1976; Strahler et 
al., 1980). Many important topics such as the integration of 
disparate data structures, analysis of large spatial databases, 
user-IGIS interfaces, and error analysis are the focus of other 
research initiatives by the National Center for Geographic In- 
formation and Analysis, and are treated elsewhere in this issue. 
Our purpose here is to expand on two general topics that we 
believe are high priority areas for research: 

Investigation of surface patterns and biophysical processes at mul- 
tiple space and time scales to quantify scale dependence of IGIS 
inputs and outputs, and development of robust procedures to 
account for scale-dependence in lGIS modeling and 
Development of prihciples, methods, and technical support for 
quantifying and tracking data transformations and information 
flow in IGIS processing. 

In presenting our view of research needs and priorities, we 
hope to stimulate discussion and debate among IGIs users. We 
do not attempt a full review of the literature on remote sensing 
and GIS, and our perspective is somewhat narrow, reflecting 
our research specialties in terrestrial ecosystems and in the 
physical and biological sciences. We have tried to keep the dis- 
cussion at a fairly high level of generalization, but we believe 
that continued focusing and prioritization of research needs must 
occur, both to coordinate research efforts and to guide the de- 
s im of future hardware and software svstems. 

SCALING OF GEOGRAPHIC PHENOMENA 
Research into the scaling properties of geographic phenom- 

ena, as represented by remotely sensed and digital cartographic 
data, must address three general and related questions: 

What are the characteristic spatial and temporal scales and scale 
dependencies of Earth system processes and phenomena (notably 
in those related to the electromagnetic variation measured by sat- 
ellite sensors)? 
What are the measurement scales of GIS and remote sensing data 
and their derived products, and how do these scales vary de- 
pending on data processing algorithms and overall data process- 
ing flow? 
How can multiscale geographic data be integrated and linked in 
a statistically robust design to model Earth systems? 

These questions are similar to those formulated in a recent 
workshop on predicting across scales in landscape ecology (Dale 
et al., 1989), and have been recognized as central to geographic 
research for a long time (e.g., Harvey, 1969). In this section we 
hope to show that research on scaling of geographical data re- 
mains a very high priority in the context of IGIS analysis. 

By scale we mean the interval of space or time over which a 
measurement is made. Nearly all surface processes are highly 
scale dependent, that is, their magnitude or variability depends 
on the measurement scale. Thus, a phenomenon may appear 
homogeneous at one spatial scale but heterogeneous at another 

(e.g., Goodchild, 1980; Townshend and Justice, 1988; Nellis and 
Briggs, 1989). The practical consequences are familiar to anyone 
who has conducted geographical surveys. For example, the pro- 
portions of a region occupied by different land-cover types de- 
pend on the spatial resolution of the mapping system. The 
distribution and magnitude of slopes on a topographic surface 
depends on the density of elevation measurements. 

Each of the disciplines in the Earth sciences seeks to recognize 
and link characteristic scales for the processes it investigates. For 
example, atmospheric scientists distinguish microscale versus 
mesoscale processes as those occurring at length scales of 0.01 
to 1000 m versus 10 to 1000 km, respectively (Oke, 1987). A 
hurricane is a feature of atmospheric circulation associated with 
mesoscale pressure gradients over a characteristic time scale of 
a few days. Graetz (1990) has defined characteristic scales for 
environmental changes, biotic responses, and vegetation pat- 
tern. For example, climatic fluctuations occurring over short 
time periods (10' years) and large areas (lo6 mZ) are associated 
with biotic responses of phenology and population dynamics 
that produce pattern in plant communities. Characteristic scales 
thus define the space and time intervals with which a process 
can be detected and monitored as well as the characteristic di- 
mensions of geographic phenomena. Many natural systems ex- 
hibit hierarchical organization, with nested patterns and processes 
occurring over a wide range of characteristic spaceltime scales. 
Often the links between different scales of processes or phe- 
nomena are not well understood (Allen and Starr, 1982). 

In principle, scale dependencies or scaling properties of surface 
variables should be known and should guide the collection, 
processing, and interpretation of remotely sensed and GIs data. 
Scale dependence is especially significant in the context of IGIs 
analysis, which seeks to deduce or to exploit relationships among 
geographical variables, because those relationships change as 
the spatial scale is changed (Meentemeyer, 1989; Turner, 1990). 
In practice, the scaling properties of many surface processes are 
not well known, in part because these properties are frequently 
site- or region-specific and also time-dependent, making it dif- 
ficult to generalize from isolated studies. For example, spatial 
variation of solar radiation over terrain exhibits different char- 
acteristic scales and scaling properties depending on topogra- 
phy, sun position, and atmospheric conditions (Dubayah et al., 
1989; 1990). Nelson (1989) found that estimates of forest cover 
for the continental United States based on AVHRR Global Area 
Coverage (GAC) data were not correlated with estimates based 
on Landsat MSs data, and that the relationship varied by region 
depending on the spatial pattern of forest cover. 

A key consequence of scale dependence is the presence of 
spatial covariability (the degree of dependence between values 
of a spatial process at different locations) in most spatial data- 
sets. Recently, there has been increased application of spatial 
statistical techniques in remote sensing and GIS research, aimed 
at characterizing and modeling spatial dependence (see, for ex- 
ample, Woodcock and Strahler (1988), Davis et al. (1989), and 
Webster et al. (1989)). Explicit modeling of spatial statistical 
structure should improve interpolation of point data, sampling 
designs for field studies, and estimation of the effects of spatial 
averaging, and should also contribute to our understanding of 
underlying processes. There are a number of related statistical 
approaches to modeling spatial variation based on covariance, 
the power spectrum, the variogram, or fractal analysis. What 
follows is a brief technical summary of the statistical models 
underlying these approaches, which is included to highlight 
some commonalities in the approaches and the general issue of 
non-stationarity in spatial data. 

Formally, a set of spatial data can be considered as a sample 
realization of a stochastic process, Z(x), where x is a two-di- 
mensional position vector. The process is characterized by its 
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cumulative distribution function, 

Fzw (z) = Prob(Z(x) < = z), 

or, equivalently, by its probability distribution function (PDF), 

assuming the derivative exists. It is important to note that 
the distribution function characterizes random variations at each 
fixed location, x, over the ensemble of realizations of the sto- 
chastic process. Similarly, the dependence of the process at two 
different locations is characterized by the joint PDF, fl, (x,, x,). 

In practice, a stochastic process is usually characterized by its 
first and second moments, the mean 

and covariance 

Note that 
c(xl,xl) = a2 (XI) 

is the variance of Z(x,). (Note also that the same information 
can be conveyed in the power spectrum (Jenkins and Watts, 
1968), the Fourier transform of the covariance.) In this general 
formulation the moments are a function of absolute location, 
producing what is still a very complicated model. 

A common assumption is that the stochastic process is sta- 
tionary or spatially homogeneous, meaning that the moments 
are independent of absolute position. Under the assumption of 
weak, or second-order, stationarity, the mean and variance are 
constant; i-e., 

p(x) = )I and a2 (x) = d 

and the covariance is only a function of amount of separation, 

where h = x, - x,. Often it is assumed that the covariance 
is also independent of direction, depending only on the dis- 
tance between locations. 

Unless one assumes stationarity, it is impossible to estimate 
any of the moments without multiple realizations from the en- 
semble of the stochastic process or an explicit model of the non- 
stationarity. In some applications, such as meteorology and 
oceanography, one has repeated spatial samples over time and 
can reasonably invoke temporal stationarity to estimate ensem- 
ble means and variances at each location and ensemble covar- 
iances between each pair of locations. More commonly, however, 
one has to use some type of spatial averaging to estimate the 
moments, necessitating a model of the non-stationarity. 

A process can be non-stationary in mean (often referred to as 
trend or drift), variance, or both. Non-stationarities in mean 
can usually be modeled fairly easily with a low order trend 
surface or some similar method. Alternatively, the increments, 

1 Z(x + h) - Z(x), may be mean stationary with non-zero mean 
while the actual process is non-stationary (Woodcock et al., 1988); 
however, this is only possible in one dimension. Non-station- 
arity in variance can be more difficult to correct. It is possible, 
though not easy, to develop a two-dimensional process that has 
a non-stationary variance while the increments of the process 
do not. When the mean is also non-stationary, variance may 
increase with the mean. A transformation such as a square root 
or log can help to make the variance more stationary. 

If stationarity can be assumed or if the non-stationarity can 
be modeled and adjusted for, it is possible to estimate the en- 
semble covariance with spatial averages. The two most common 
approaches are to estimate the covariance (or power spectrum) 

directly or to estimate the variogram (Journel, 1989); i.e., 

If the process is stationary the two approaches are identical 
and 

If the process is non-stationary, the relationship is somewhat 
more complex because 

It has been suggested (e.g., Webster et al., 1989) that the 
variogram is preferable in non-stationary situations because the 
variance will be infinite, increasing with increasing area. As 
noted by Journel (1989), however, using a spatial average to 
estimate the variogram is only appropriate if the process is sta- 
tionary. Thus, working with the variogram is only preferable 
in situations where increments are stationary but the process is 
not. As noted above, this is possible for non-stationarity of var- 
iance. In general, though, there seems to be very little reason 
to prefer one statistic over the other. 

The estimated covariance, power spectrum, or variogram can 
each be utilized to define a correlation length scale, which is a 
measure of the minimum distance between uncorrelated loca- 
tions. This information can be useful for designing field surveys 
or obtaining rough estimates of the variance of spatial averages. 
For many purposes (e.g., interpolation using kriging), however, 
it is desirable to fit a model of spatial variation to the data. This 
typically involves estimating parameters of the model from the 
sample moments or from the data. An approach commonly 
used in kriging is to fit a curve of the appropriate shape to the 
sample covariance or variogram. Alternatives include selecting 
one of a family of models, such as autoregressive or fractal 
models, and estimating values of the key parameters. 

No one modeling approach is best in all situations. The geo- 
statistical model has been extensively utilized for interpolation 
because of the flexibility in choice of functions for fitting the 
covariance (Journel, 1989). This model is less useful, however, 
when one wants to derive expressions showing the effects on 
changing scales, in which case an explicit model such as an 
autoregressive or fractal might be preferable. The fractal model, 
for example, implies that changing scales only changes vari- 
ances by a fixed constant related to the fractal dimension (Tel, 
1988). In Euclidean geometry the dimensions of a curve and 
plane are one and two, respectively, whereas in fractal geom- 
etry the dimension of a curve lies between one and two, de- 
pending on its complexity (Lam, 1990). Fractal models have 
become popular recently, possibly because of the connection to 
chaos theory or because fractal models produce surfaces that 
"look like" natural features. Unfortunately, there is no consen- 
sus on the best way to estimate fractal dimension from geo- 
graphic data. Under certain conditions (i.e., Brownian fractal 
process), the fractal dimension can be related to (or derived 
from) the variogram, covariance, or spectrum, where decreas- 
ing fractal dimension is equivalent to increasing autocorrelation. 
In general, however, this estimation problem has meant that 
fractal models have been most successfully utilized in simula- 
tions of natural features. 

Recent spatial analyses of geographical data include the use 
of fractals to characterize the scale dependence of precipitation 
(e.g., Lovejoy and Schertzer, 1985; Gupta and Waymire, 1990), 
remotely sensed images (Lam, 1990; DeCola, 1989), topography 
(e.g., Mark and Aaronson, 1984), soil properties (Burrough, 1983a; 
1983b), and land use (e.g., Milne, 1991). Semi-variograms have 
been used to characterize spatial variability in topography (e-g., 
Mulla, 1988; Dubayah et al., 1989), solar radiation (Dubayah et 
aL, 1990), surface albedo (Webster et al., 1989), satellite radi- 
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ances (Ramstein and Raffy, 1989), spectral vegetation indices 
(Davis et al., 1989), soil properties (Burrough, 1983a; 1983b; Oliver 
and Webster, 1986; Robertson et al., 1988), and vegetation 
(Woodcock et al., 1988; Townshend and Justice, 1988; Pastor et 
al., 1990). Jupp et al. (1988, 1989) have shown how the serni- 
variogram of a scene composed of discrete objects is related to 
that of digital images of that scene as "regularized to different 
pixel sizes. Much more research along this line is needed to 
improve our understanding of the relation between surface var- 
iation and the spatial properties of multi-resolution images, es- 
pecially when one considers that remote sensing imagery is the 
main source of measurement data for analyzing the spatial de- 
pendence of surface and atmospheric phenomena at relatively 
large measurement scales and over large areas. 

Related to the problem of non-stationarity in spatial processes 
is that of infrequent, extreme variability or intermittency (Lovejoy 
and Schertzer 1985). An approach that shows some promise for 
dealing with extreme variability is to model such fields as the 
expression of multiple scales of random processes (Schertzer 
and Lovejoy, 1987). Lovejoy and Schertzer (1985) have coined 
the term Generalized Scale Invariance to describe spatial variability 
in terms of a cascading process, in which a process is more 
concentrated or localized at finer scales but its average value 
remains constant across scales. This approach has shown prom- 
ise in applications to hydrology (Gupta and Waymire, 1990) and 
atmospheric processes (Schertzer and Lovejoy, 1987). 

There are sigruficant challenges to both defining and chang- 
ing the measurement scale of remote sensing and GIS data. So- 
cioeconomic data are aggregated to reporting units that vary in 
size and shape. The spatial scale of many ground measurements 
is often onli appro&nately known. u h o u g h  most ground 
measurements are treated as points, they typically represent an 
area, often of indeterminate extent. The measurement scale of 
maps produced from point data or from survey and image data 
is even less well specified (Goodchild, 1980). 

Extrapolation of point measurements and model estimates to 
large areas remains a major problem in geographical analysis, and 
continued research is needed to idenbfy appropriate sampling and 
scaling strategies for sparse ground measurements, especially in 
the context of regional and global assessments. Interpolating point 
measurements to a surface creates variation that may or may not 
approximate the scaling properties of the actual surface. Only 
recently have Earth scientists made explicit use of spatial auto- 
correlation theory in designing sampling and interpolation schemes 
for surface variables (e.g., Dancy et al., 1986; Oliver and Webster, 
1986; Curran, 1988). Kriging, for example, uses the variogram in 
estimating a surface from point measurements (e.g., Estes et al., 
1987; Webster et al., 1989). Co-kriging based on ground and image 
or GIS data may prove an even more powerful technique for some 
applications, for example, in generating precipitation maps from 
rain gauge and digital elevation data, or in mapping soil moisture 
using soil samples and remotely sensed microwave imagery. Such 
methods may need to be combined with traditional approaches 
such as stratified sampling in order to be applicable over hetero- 
geneous regions, and there is continuing need to develop and 
refine methods for optimal stratification of surfaces for spatial 
sampling and distributed modeling (e.g., Band and Wood, 1988; 
Davis et al., 1990). 

The measurement scale of remotely sensed data is relatively 
well specified compared to many geographic data, but may still 
be quite uncertain. The resolution of a map produced from 
interpretation of aerial photography may be defined by the ef- 
fective resolution element, that is, the size of the smallest object 
that can be reliably detected against a radiometrically contrast- 
ing background, but mapping is rarely done to that resolution. 

Resolution depends instead on the complex generalization process 
applied by the analyst. For this reason the effective scale of GIS 
data is sometimes described in terms of the minimum mapping 
unit (MMU), but the actual MMU may vary both within and be- 
tween maps as a function of map classes, terrain type, and 
analyst. 

The pixel size is generally taken to define the spatial resolu- 
tion of digital remotely sensed data, although the term image 
resolution has various meanings (Forshaw et al., 1983). How- 
ever, the measurement scale is not fixed. Resolution varies not 
only as a function of the sensor's instantaneous field of view 
(IFOV) and altitude, but also because of many other factors in- 
cluding the sensor point spread function, surface-sensor ge- 
ometry, atmospheric conditions, and data processing such as 
image rectification or enhancement (Billingsley, 1983; Duggin, 
1985; Strahler et al., 1986). 

Given that surface processes and phenomena exhibit char- 
acteristic scale dependencies, then remote sensing data of mul- 
tiple resolutions, either from multiple sensors or from degradation 
of high resolution imagery, can be used to study and exploit 
those dependencies for mapping and modeling (e.g., Woodcock 
and Strahler, 1987; Wharton, 1989, Ramstein and Raffy, 1989; 
Weiler and Stow, 1991). Each spatial resolution provides a 
somewhat different perspective, and the factors influencing 
surface patterns as measured at each spatial resolution may 
reflect different underlying processes. While such an approach, 
in which scaling property is treated as an explicit variable in an 
analysis, has been productive in some industrial applications of 
visual pattern recognition, it has still seen relatively little ap- 
plication in remote sensing and IGIs analysis (Wharton, 1989). 

There are strong practical incentives for understanding the 
scale dependence of Earth surfaces and of IGIs data. Environ- 
mental scientists using remote sensing and GIS data usually 
operate at multiple space and time scales wherein data density 
is a technical consideration. As illustrated in Figure 1, data den- 
sity depends jointly on spatial and temporal resolution (and the 
spectral dimensionality of the sensor), so that data density de- 
creases from the lower left to upper right corners of the dia- 
gram. Continuous increases in computing capacity have shifted 
the data volume threshold towards the lower left hand corner, 
allowing the investigation of processes operating at relatively 
fine space and time scales over increasingly large areas and with 
finer spectral resolution. Nevertheless, there are still very real 
practical limits to the spatial and temporal domain of remote 
sensing for regional and global analysis, and to the volume of 
data that can be effectively archived, retrieved, and analyzed 
(Atkinson et al., 1990). For global analysis, practical scales are 
still far more coarse than the measurement scales of many kinds 
of biophysical data (e.g., small plot measurements of biomass 
or trace gas fluxes, or high time frequency of measurements of 
rapidly varying atmospheric properties such as temperature, 
humidity, or cloud cover) (Rosswall et al., 1988). According to 
Haber and Schaller (1988), field measurements are most appro- 
priate for sampling ecosystem processes such as photosynthesis 
or mineral cycling, whereas remotely sensed data and GIs data 
can be used to measure or represent some of the spatial controls 
on those processes, such as radiation or soil moisture. Because 
not all controls on biophysical processes can be mapped directly 
from remotely sensed data or existing maps, an important role 
of IGIs will be the generation of such information by appropriate 
modeling using more than one information source (Risser, 1986). 

A real challenge in combining remote sensing and GIs for 
Earth science studies is the proper nesting of observations at 
multiple space and time scales in order to link short-term, fine 
scale measurements and process models to long-term, broad 
scale measurement and modeling efforts. This is a key issue in 
monitoring and modeling global change (Rosswall et al., 1988). 
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FIG. 1. Spatial and temporal measurement scales for ground samples (shaded 
region) and remote sensing data. Data density decreases from lower left to upper 
right. 

One research effort of special relevance is the NASA FIFE (First 
ISLSCP (International Satellite Land Surface Climatology Project) 
Field Experiment) project, which was conducted between 1987 
and 1989 over the Konza Prairie Long Term Ecological Research 
Site near Manhattan, Kansas. FIFE was designed to study re- 
gional land surface climatology and to develop methods for 
deriving quantitative information about surface climate varia- 
bles from satellite observations (Sellers et al., 1988). This is one 
of the first attempts to simultaneously acquire ground and re- 
mote sensing data over a range of measurement scales in order 
to explicitly examine how processes and patterns at small scales 
are related to those at larger scales. Preliminary data analyses 
have indicated the potential as well as the enormous complexity 
in scaling from ground to satellite measurements of surface bio- 
physical properties (Sellers et al., 1988; 1990). 

Studies like those just cited are improving our understanding 
of scaling properties of geographic variation. However, in the 
context of IGIS analysis, the most pressing need is for coordi- 
nated research that considers spatiaI scale dependence of sur- 
face variation from the joint perspectives of process-oriented 
measurements, remote sensing, and cartography. In this sec- 
tion we have only discussed issues of scale in terms of absolute 
spatial scales of measurement and modeling. However, in joint 
processing of cartographic and remote sensing it is important 
to consider relative space and relative spatial scale as well. Ab- 
solute space is space as referenced to a Euclidean coordinate 
system. The topology of elements within this coordinate system 
is determined by location, distance, direction, shape, and ge- 
ometry, as well as the size of the observation area (i.e., local, 
regional, global) (Meentemeyer, 1989). In relative space, dis- 
tance, direction, and geometry are predicated on a functional 
relationship (Meentemeyer and Box, 1987; Meentemeyer, 1989). 
Remotely sensed measurements can be degraded from higher 
to lower resolution based on the size, shape, and location of 
those measurements in a Euclidean coordinate system (for ex- 

ample, an image of surface albedo can be transformed from 
higher to lower resolution by simple image filtering). This is 
very different from the kind of operation one would use to 
simplify or reduce the scale of a vector representation of a var- 
iable such as watershed boundaries, where aggregation of sub- 
basins within a basin would be more appropriate and relative 
space is especially problematic. 

Although satellite remote sensing has long been advocated 
for monitoring surface processes through time, there has been 
remarkably little progress in quantitative spatiotemporal analy- 
sis of multi-temporal imagery, particularly for land surface 
analysis. There is a pressing need for such research applied to 
sensors with low spatial resolution and short repeat intervals 
(e.g., AVHRR, GOES) as part of efforts to study global ecological 
changes (e.g., Townshend and Justice, 1990). 

There are many uncertainties in detecting change with multi- 
temporal satellite data. As noted by Townshend and Justice 
(1988), the ability to detect changes in a surface identified over 
time with remote sensing depends on the spatial (geometric 
registration, resolution), spectral (band location and width), ra- 
diometric (signal-to-noise and quantization levels), and tem- 
poral (imaging frequency) properties of the sensor system. 
Changes in instrument function such as gain or offset and fac- 
tors related to atmospheric or sun angle conditions have a des- 
tabilizing influence on temporal data sets (Duggin and Robiiove, 
1990). High frequency variation in solar, atmospheric, and sur- 
face conditions during scene acquisition (e.g., illumination, rapid 
changes in physiological response of vegetation) contribute noise 
to the analysis. Comparisons based on more than one sensor 
convolve surface changes with instrument noise, atmospheric 
influences, and the varying IFOVs and spectral response char- 
acteristics of the sensors. 

Integrating multitemporal remote sensing data into IGIS analysis 
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obviously requires understanding of both the sensing systems 
used and the phenomena under observation. Often, surface 
change can only be detected with a high level of uncertainty, 
depending upon the radiometric contrast between successive 
surface states, the rate of change, and its spatial distribution 
(Townshend and Justice, 1989). However, the greatest source 
of uncertainty may be the data transformations imposed by im- 
age processing, rectification, and registration procedures used 
to build a multitemporal database (Walsh, 1989). We believe 
that research to improve our understanding of those transfor- 
mations is essential and of high priority. 

DATA PROCESSING AND INFORMATION FLOW 

IGIS analysis can be conceptualized as a flow of geographic 
data through a series of transformations into geographic infor- 
mation (Figure 2). Data flow in geographic information systems 
ultimately begins with georeferenced measurements of the "real 
world," whether by sampling, survey, or remote sensing. These 
measurements take several fundamentally different pathways 
into a digital spatial database. Ground and survey measure- 
ments may be entered directly into the database, potentially 
carrying with them both measurement or categorization error 
and locational error, or they may be interpolated to make a map, 
in which case sampling and estimation errors must also be con- 
sidered (Curran and Hay, 1986; Curran and Williamson, 1986). 

Analog remote sensing imagery is usually converted to geo- 
graphic information by human interpretation, whereas digital 
imagery is guided by human analysts but also depends on im- 
age processing and statistical algorithms (see Duggin and Ro- 
binove (1990) for a fuller treatment of information flow in remote 

Real World 

Ground 

Rectification 

I Geographic Database I 

FIG. 2. Conceptual diagram of data processing and information flow 
durina integrated analysis of GIS and remote sensing data. Processes 
are &closed in ellipses and products in boxes. 
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sensing). Image interpretation is a complex interpreter-depen- 
dent process that involves both objective and subjective criteria 
(Estes et al., 1983). Automated or semi-automated digital image 
analysis is also analyst dependent, and the main difference may 
lie in the more uniform application of rules for information ex- 
traction across an image or series of images (Duggin and Ro- 
binove, 1990). 

Merging ground, map, and image data requires digitizing, 
geo-referencing, and registration, each entailing additional 
transformations of the original measurement data. These in- 
clude introduction of noise (e.g., locational and thematic er- 
rors), but also may involve more fundamental changes in the 
input data. For example, conversion of gridded elevation data 
to a triangulated irregular network (TIN) for vector-based analy- 
sis changes the effective spatial scale of surface representation 
and the surface topology, with profound effects on modeling 
of topographic processes such as surface runoff or solar radia- 
tion. 

Once compiled, the geographic database is used in analysis 
and modeling to derive new geographic information, which in 
turn may guide processing steps or serve as input to subsequent 
IGIS analyses. Efforts to relate processing flow to model output 
usually focus on this step, taking the form of an accuracy as- 
sessment or model sensitivity analysis. However, it is obvious 
that the quality of the new geographic information may depend 
as much on any of the preceding processing steps as on this 
last step, that is, the joint analysis of the remote sensing and 
GIs data. Often the original measurement data and steps taken 
in developing the geographic database are not documented in 
sufficient detail to relate them to model output. This renders 
model testing and validation an ad hoc process that, at its worst, 
can lead to mi~s~ecification of the model in order to compensate 
for errors introduced during database development. As the da- 
tabase and analytical products are used to guide the acquisition 
and processing of new data, potential error can become deeply 
embedded in the overall data processing flow. 

Tracking the changes in geographic data during processing 
is a formidable task, in part because of the wide variety of changes 
that can occur, including 

datum value (i.e., category, level or magnitude) 
range of a variable 
data precision (higher - > lower) 
spatial or temporal resolution (higher - > lower) 
data type (e.g., numerical - > ordinal - > categorical) 
data structure (tabular < - > vector < - > raster) 
for GIS data, changes in polygon attribute information 

For remotely sensed data, procedures such as radiometric 
rectification, edge enhancement, and feature extraction (e.g., 
image classification) that are used to process radiances into the- 
matic information generally raise the information value of the 
data (Ehlers et al., 1989; Duggin and Robinove, 1990). Addi- 
tional transformations such as resampling to coregister imagery 
to other spatial data and processing of existing geographic data 
tend to lower their information content. Kerekes and Landgrebe 
(1987) provide a noise taxonomy for remote sensing systems 
subdivided into scene, sensor, and processing subsystems. An 
expanded taxonomy that includes both GIs and remote sensing 
would be valuable, especially if developed in a systems frame- 
work that accounts for both existing and future processing ca- 
pabilities and information needs. 

Many of the important research issues in IGIS data processing 
can be posed in terms of the following questions: 

What are the appropriate mathematical and statistical models to 
describe the accuracy and scale dependence of lGlS data? 

How do the accuracy, scale dependence, and predictive value of 
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the information that flows from IGIS analysis depend upon the mea- 
surement and processing strategies used to derive that information? 

What is the appropriate sampling and integration strategy for 
combining ground measurements, remote sensing measurements, 
and existing cartographic information to model a particular process? 

What are the preferred processing strategies and algorithms for 
production and integration of digital geographic data? 

What methods should be applied or developed to track changes 
in the content, spatial, and temporal properties of geographic data 
during data processing and analysis? What processing information 
and data attributes should be retained andlor transmitted to facilitate 
such tracking? 

Research into integrated processing of remote sensing and 
GIs data must consider the origin and evolution of those data 
and, therefore, must be placed in the larger framework of geo- 
graphic analysis, incorporating the theory and methods of 
mathematics and spatial statistics, cartography, remote sensing, 
and GIs (Fisher and Lindenberg, 1989). Relevant research issues 
range from those related to measurement and sampling of geo- 
graphical variables to those concerned with geographic data 
storage, retrieval, and display to development of methods of 
spatial simulation modeling, verification, and validation. 

In principle, the relationships among cartography, remote 
sensing, and GIs should be highly synergistic. Remote sensing 
allows the investigator to measure and monitor surface electro- 
magnetic variation. GIs allows the organization and analysis of 
these measurements, and the cartographic database provides 
the context to improve the modeling of surface processes using 
spectral data. In practice, there are many poorly understood 
tradeoffs in coupling remote sensing data to existing thematic 
maps. Maps use points and lines to represent selected features 
of the environment in a highly abstracted and generalized fash- 
ion (Peucker and Chrisman, 1975). Map properties such as min- 
imum mapping unit, degree of generalization, boundary 
accuracy, and thematic accuracy are typically unknown and may 
vary considerably from one part of a map to another. Satellite 
data differ from traditional cartographic data in their consis- 
tency, high positional accuracy, and high spatial resolution. These 
are complementary features, and there are many ways in which 
remote sensing and GIS data have been profitably merged, for 
example: 

use of remote sensing data to create, update, and/or improve the 
positional accuracy of thematic coverages (e.g., Hill and Kelly, 
1987); 
use of GIs data in image classification (e.g., Strahler, 1981; Hutch- 
inson, 1982; Richards et al., 1982); and 
calibration of remote sensing data and overlay on thematic maps 
for disaggregated estimation of ecosystem parameters (e.g., Re- 
hers et al., 1989) and for spatially distributed process modeling 
(e.g., Running et al., 1989). 

On the other hand, joint analysis of remote sensing and map 
data such as topographic data or soils data carries many costs, 
including potential loss of precision and object-based represen- 
tation of map information during vector to raster conversion, 
new cartographic error due to misregistration of image and map 
data, imposition of thematic map errors on remote sensing mea- 
surements, and error due to misspecification of the relationship 
between map classes and remote sensing data. 

The literature is now well stocked with examples of integrated 
analysis of remote sensing and GIs data. None have systemat- 
ically examined the suite of transformations, information gains, 
and losses inherent to this integration. Of special concern is the 
appropriate use and effective management of attribute data in 
IGIS processing and analysis. These data are often lost or trans- 
formed in deriving new GIs products, at the risk of inappro- 
priate use of those products in subsequent analyses. Conversely, 
the ability to invest geographic features with multiple attributes 
means that information can be preserved or enhanced during 

processing. For example, multiple attributes of a polygon re- 
lated to scaling could be explicitly stored (e-g., sub-pixel vari- 
ance, polygon constituents, boundary characteristics). 

CONCLUDING REMARKS 
The trend in remote sensing over the past decade has been 

from empirically based image classification, mapping, and in- 
ventory to more deterministic modeling of scene characteristics 
based on physical laws of radiative transfer and energy balance 
(e-g., Sellers et al., 1990), and to knowledge-based image inter- 
pretation systems (Goodenough et al., 1987; Argialis and Har- 
lau, 1990). Similarly, GIS analyses have grown increasingly 
sophisticated, moving from simple map overlay and relational 
models to spatially distributed simulation modeling (e-g., Cos- 
tanza et al., 1990). It is obvious that the progress made to this 
point and future developments in this area depend critically on 
hardware and software that facilitate the integration of remote 
sensing and GIS. As these technologies continue to improve, 
the power of IGIS analysis is increasingly limited by our under- 
standing of the phenomena under investigation and their rep- 
resentation in spatial databases. At its worst, IGIS is a powerful 
technology that can be used to answer poorly posed questions 
by running misspecified models on improperly extrapolated data 
to generate output whose validity can never be tested. At best, 
the coupling of satellite measurements with other spatial data 
has tremendous potential for describing Earth surfaces, pre- 
dicting future conditions, and validating biophysical represen- 
tations produced solely through remote sensing or GIS data. The 
concerns that we have highlighted in this paper in terms such 
as inappropriate mixing of scales and degradation of informa- 
tion obviously must be weighed against the robustness of the 
analysis and the user's willingness to tolerate uncertainty in 
applying IGIS products to decision making. 

We have argued that impediments to the integration of mul- 
tiple spatio-temporal remote sensing data are not only technical 
but are, more importantly, conceptual in nature. Some of the 
difficult problems relate to defining appropriate strategies for 
data acquisition and spatial modeling. This will require research 
on scale dependence in surface features and the relationships 
of absolute and relative scale within a remote sensing context. 
Another set of problems relate to tracking and understanding 
the impact of data processing steps on output products. Tools 
are needed for measuring spatial properties of input data such 
as spatial autocorrelation, two-dimensional spectral analysis, and 
block variance analysis. What other analytical tools should be 
included in an Integrated Geographic Information System? What 
are appropriate statistical approaches for analyzing IGIS prod- 
ucts? At present, it appears that the more complex modeling 
efforts cannot be validated except in a piecemeal fashion, and 
thus sensitivity analyses will be the best method for assessing 
the robustness of model outputs. Thus, user interfaces and an- 
alytical software need to be designed that facilitate sensitivity 
analysis of complex spatial models. Much can be gained simply 
from improved methods for the display and visualization of IGIs 
products (see Faust et al., (1991) this issue). Development of 
better interfaces between image processing, GIs, database man- 
agement, expert systems, and statistical software will go a long 
way in improving analysis capabilities. 
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