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ABSTRACT: Knowledge about the amount and effects of plant resique on the surface of cultivated soils is important in 
the design and implementation of a conservation program for most agricultural soils. Landsat Thematic Mapper (TM) 
data were utilized to determine the type and amount of aop residue on the surface of cultivated soils in Miami County, 
Indiana. Land ownership data were incorporated into a geographic information system (GIs) to enhance the Landsat 
TM data in an attempt to improve classification. The data were classified using maximum-likelihood, minimum-distance, 
and neural network classifiers. With the maximum-likelihood classifier it was not possible to classify the GIs-enhanced 
data because second-order statistics of the land-ownership data were not meaningful. The classification result using 
the neural network on the enhanced data was better than those obtained by applying the maximum-likelihood and 
minimum-distance classifiers to the original Landsat TM data. 

INTRODUCTION 

C ROP RESIDUE IS THE PORTION OF A CROP that remains in the 
field after harvest. It is an important natural resource-not 

a waste as some have termed it (Oschwald, 1978). The residue 
left in the field increases surface roughness and then reduces 
soil erosion by minimizing surface crusting and slowing runoff 
velocities. It also improves water quality because the rough sur- 
face can prevent chemicals such as phosphorus from entering 
drainageways through surface runoff. Traditional methods to 
determine amount and kinds of crop residues depend on field 
measurements, require a significant amount of time and labor, 
and are costly to apply on a large scale. Determining crop res- 
idues using remote sensing data can overcome limitations of 
range coverage and topographic conditions and is suitable for 
ensuring compliance with USDA requirements in conservation 
and other programs. 

Traditionally, the link between remote sensing and geo- 
graphic information systems (GIs) has been perceived as uni- 
directional, with remote sensing data being used as an input 
into the GIS (Walsh et al., 1990). Classified remotely sensed data 
can provide timely ground information such as vegetation and 
crop residue coverage and land-cover change that are necessary 
for GIS and simulation models. Theoretically, the information 
from a spatial database should be of assistance for classification 
of remote sensing data. Based on this hypothesis, a digital spa- 
tial data set - land ownership - was employed in an attempt 
to improve classification of Landsat Thematic Mapper (TM) data. 

The objectives of this study were to develop techniques to 
improve the classification of Landsat TM data for measurement 
of crop residue with the aid of GIs data and to make compari- 
sons of classification results by applying minimum-distance, 
maximum-likelihood, and neural networks to the original and 
the GIS-enhanced Landsat TM data sets. 

BACKGROUND 
Integration of GIs information with remote sensing is becom- 

ing increasingly important. Janssen et al. (1990) spatially inte- 

grated a topographic map with remote sensing data for land- 
cover classification. A false color photograph and land-cover 
maps were digitized as the object boundaries used in an object 
classification. They defined an object as an area in which only 
one land-cover type is expected. The pixel classification results 
were relabeled in an object-base. The authors concluded that 
the object classification improved the overall accuracy of the 
two study regions by 12 percent and 20 percent, respectively. 

Landsat TM data and topographic information were inte- 
grated for evaluation of hydrological characteristics in Glacier 
National Park, Montana (Walsh et al., 1990). The integration 
proved valuable in understanding the hydrological processes in 
complex and rugged topography. Goodenough (1988) reported 
that the integration of GIs and remotely sensed data could be 
used to update the spatial database and to guide the selection 
of training data for image classification. 

Neural networks have been applied to several types of clas- 
sification of multispectral remotely sensed data. The following 
examples are representative. Neuro-classification, when ap- 
plied to Landsat Multispectral Scanner (hiss) data merged with 
geographic data including elevation, slope, and aspect, was bet- 
ter than conventional methods in terms of classification accu- 
racy of training data (Benediktsson et al., 1990a), but was worse 
when used with very high dimensional data - more than 20 
channels (Benediktsson et al., 1990b). A four-band (bands 1,2, 
3, and 4) Landsat TM image (459 by 368 pixels) with four land- 
cover classes (water, urban, forest, and grass) was classified by 
Hepner et al. (1990). It was concluded that the neural classifier, 
which used a minimal training set compared with the maxi- 
mum-likelihood classifier, performed well for all areas including 
those for which the conventional approach did not. In a clas- 
sification of synthetic aperture radar (SAR) data (896 by 1024 
pixels) with three classes (urban, park, and ocean), Decatur 
(1989) concluded that the neuro-classifier presented better re- 
sults than the Bayesian classifier when accurate assumptions 
about probability density functions could not be made and a 
priori probability could not be given. However, it should be 
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pointed out that in this study only three distinctive land-cover ership boundaries, (c) an enclosed region represented one owner, 
types were used and that SAR data generally do not have a (d) each area was coded with a digital number (i-e., each was 
Gaussian distribution. A merged image of the Advanced Very numerically uniform), and (e) the classification results may be 
High Resolution Radiometer (AVHRR) and the Scanning Multi- improved because of the unique digital number inside each pol- 
spectral Microwave Radiometer (SMMR) data for an Arctic area ygon. 
was classified by Key et al. (1989) using traditional and neural 
classifiers. Thev found that the neural classifier had meater flex- NEURAL NETWORKS 
ibility than thbmaximum-likelihood classifier for cl~ssifying in- 
distinct classes, such as those containing pixels with spectral The neural network (NN) used in this study, as shown in 

values significantly different horn the pixels in the training areas. Figure 3, was configured as a three-layer back-propagation net- 
work, including input, hidden, and output layers, with full in- 

MATERIALS AND METHODS terconnections between adjacent layers. The input layer was 
composed of an N by 8 array of units corresponding to N bands 

SITE DESCRIPTION (N = 7 or 8 in this studv) of the 8-bit Landsat TM data. Thirty- 

A study area of approximately 10.36 km2 was comprised of 
sections 3,4,9, and 10 located in T28N, R5E of Richland town- 
ship, Miami County, Indiana. Land cover for these sections 
included c o n  residues, soybean residues, grasslands, forests, 
roads, an abandoned railroad, farm-steads, and the Eel River. 
Portions of the area are owned by 58 farmers (Figure 1). This 
area represents much of northem Indiana and other states of 
the midwestem U.S. 

DATA 
A Landsat TM scene acquired 26 April 1988 was used in this 

project, along with accompanying ground observation data for 
section 9. Aerial photographs from 1987 for this study area were 
available. The U.S. Geological Survey 1:24,000-scale topo- 
graphic map of the Roann, Indiana Quadrangle was used as a 
reference. The corresponding ownership map was digitized using 
ERDAS (ERDAS, 1988), and an ownership boundary data layer 
registered to the 30-meter TM data was generated. 

The GIs data layer used in this study was the ownership map 
associated with the four sections studied. The map was added 
as an eighth band to the original Landsat TM image data, as 
illustrated in Figure 2. The eight-band merged data were called 
Landsat TM Plus. 

The reasons for choosing the ownership layer were (a) the 
boundaries representing different owners matched field bounda- 
ries, (b) land-use and thus crop residues change at field and own- 

FIG. 1. Ownership boundaries for sections 3, 4, 9, and 10. 

five units were assigned'to the hidden layer, and seven uniis 
in the output layer referred to seven land-cover classes. For the 
training, the TM data were fed to the input layer and propagated 
through the hidden layer to the output layer, and then the 
differences between the computed outputs and the desired out- 
puts were calculated and fed backward. This process continued 
until the training arrived at the desired error. Additional details 
of the network are given in Zhuang (1990). 

The neural network simulator used was NASA NETS (Baffes, 
1989), which runs on a variety of machines including worksta- 
tions and PCs. The simulator provides a flexible system for ma- 
nipulating a variety of neural network configurations using the 
generalized delta back propagation learning algorithm. The NETS 
software used for image classification was run on 

FIG. 2. Creation of Landsat TM Plus data.? 

FIG. 3. The back-propagation neural-network structure. 
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workstations. Interface routines were developed to make NETS 
suitable for image classification (Zhuang, 1990). 

The minimum-distance (L1) and maximum-likelihood (ha) 
classifiers (Richards, 1986) were applied to the original Landsat 
TM data. The minimum-distance classifer used in this study 
classified an unknown pixel by computing the LI distance (Rich- 
ards, 1986) between the value of the unknown pixel and each 
of the information class means, and then assigned the unknown 
pixel to the "closest" information class. Under the assumption 
of normality, the maximum-likelihood classifier categorized a 
given pixel by computing the statistical probability of the pixel 
being a member of a particular information class. The neural 
network (NN) classified an unknown pixel by applying the 
knowledge learned from a training data set to the pixel. For the 
study area, training fields were selected for seven different land- 
cover classes based on the corresponding ground observation 
data and the spectral features. The classes were: cord51 percent 
(corn residue, 51 perent coverage), forest, pasture/grass, river, 
soybeans/74 percent (soybean residue, 74 percent coverage), bare 
soil, and cornlunknown (unknown coverage of corn residue). The 
training data for class river were obtained by unsupervised clas- 
sification (clustering) of the portion of the image containing the 
river. 

For the GIS-enhanced data, it was not possible to complete 
the maximum-likelihood classification because the second-order 
statistics of the land ownership band were not meaningful. The 
neural-network classifier was utilized because it need not ad- 
dress the second-order statistic, covariance. Because the mini- 
mum-distance classifier considers only the first-order statistic, 
mean, it was possible to use this classifier for classification of 
the GIS-enhanced data set. 

RESULTS 

Figure 4 illustrates the classification results obtained by using 
L1 and ML for the training and testing data. As shown in the 
figure, L1 achieved 59 percent and 49 percent accuracies, whereas 
ha obtained 89 percent and 85 percent accuracies, for the entire 
training and tesing data set. Confusion matrices were also gen- 
erated for the testing data set and are shown in Tables 1 and 2 

FIG. 4. Performance of the training and testing data sets for the original 
Landsat TM data. 

TM 
Ground observation classes 

Percent 
classes correct com/fil% codunknown forest pasture soybeans/74% Total 

cord51 % 54% 337 17 0 13 70 437 
codunknown 47% 203 50 0 60 12 325 
forest 63% 0 0 101 110 0 211 
pasture 40% 0 3 0 172 2 177 
river -- 0 0 59 3 0 62 
soybeans174% 32% 66 34 0 72 41 213 
bare soil --- 14 2 0 1 2 19 

Number of ground 620 106 160 431 127 1444 
observation pixels 

TM 
Ground observation classes 

Percent 
classes correct com/51% codunknown forest pasture soybeans/74% Total 

corn/51% 82% 508 0 0 1 14 523 
codunknown 76% 5 81 0 42 0 128 
forest 90% 0 0 144 7 0 151 
pasture 88% 1 25 0 381 1 408 
river - 0 0 16 0 0 16 
soybeang4% 87% 79 0 0 0 111 190 
bare soil -- 27 0 0 0 1 28 

Number of ground 620 106 160 431 127 1444 
observation pixels 
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FIG. 5. Performance of the training and testing data sets for the Landsat 
TM PIUS data. 

corresponding to classifiers LI and a. The percentages listed 
in the tables represent the proportion of ground observation 
pixels correctly labeled by the classifier. From the tables, the 
greatest confusion among crop residue classes is 55 percent (class 
soybeansf74 percent) for L1 and 13 percent (class cod51 percent) 
a. The confusion between each of the crop residue classes and 
the bare soil class is 2 percent from each of the crop residue 
classes for LI, and 4 percent from class cod51 percent, zero 
from class corn/unknown, and 1 percent from class soybeansf74 
percent for ML. 

FIG. 6. Comparison of the testing results from two 
data sets. 

The classification results obtained by applying L1 and NN to 
the GIs-enhanced training and testing data set (Landsat TM Plus) 
are shown in Figure 5. LI achieved 62 percent and 54 percent 
accuracies, whereas NN obtained 100 percent and 87 percent 
accuracies for the entire training and testing data set. As noted 
above, it was not possible to use ML. As seen in Tables 3 and 
4, a certain amount of confusion exists between the crop residue 
classes and the bare soil class for L1 but not for NN. 

DISCUSSION 

As seen in Figure 4, the L.1 results are unsatisfactory, while 
the ML results are much improved for the training and testing 

TABLE 3. CONFUSION MATRIX FOR THE LANDSAT TM PLUS TESTING DATA CLASSIFIED USING MINIMUM-DISTANCE (Ll) ALGORITHM. 

Ground observation classes 
Th4 Percent 

classes correct corn/51% cordunknown forest pasture soybeand74% Total 

corn/51% 62% 383 0 0 4 68 455 
corn/unknown 66% 92 70 0 85 3 250 
forest 77% 0 0 123 133 0 256 
pasture 36% 0 3 0 156 2 161 
river --- 0 0 37 0 0 37 
soybeand74% 42% 142 0 0 10 53 205 
bare soil --- 3 33 0 43 1 80 

Number of ground 620 106 160 431 127 1444 
observation pixels 

TABLE 4. CONFUSION MATRIX FOR THE LANDSAT TM PLUS TESTING DATA CLASSIFIED USING NEURAL-NETWORK (NN) APPROACH. 

Ground observation classes 
Th4 Proportion 

classes correct cord51% cordunknown forest pasture soybearis/74% Total 

com,51% 94% 582 12 0 34 4 632 
cordunknown 78% 24 83 0 34 3 144 . 
forest 96% 10 1 153 35 2 201 
pasture 76 % 3 10 7 328 2 350 
river --- 0 0 0 0 1 1 
soybeans/74% 91 % 1 0 0 0 115 116 
bare soil --- 0 0 0 0 0 0 

-- - 

Number of ground 620 106 160 431 127 1444 
observation pixels 
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FIG. 7. Classification results for two data sets. 

data sets. This is because ML utilizes second-order statistics. For 
the GIs-enhanced data, L1 still performed poorly for both the 
training and the testing data sets. However, NN improved the 
classification accuracies. The reason that NN achieved perfect 
classification accuracies for each of the training classes and the 
entire training data set.is that NN was able to distinguish the 
features of the training data and thereby to classify the data 
correctly. 

Figure 7 shows the classification results obtained by applying 
L1 and ML to the original Landsat TM data set and NN to the 
GIs-enhanced Landsat TM Plus data set. It can be seen that the 
L1 result has a large amount of misclassification because of its 
consideration of only the first order statistic, mean. The NN re- 
sult shows some confusion as indicated in the corresponding 
confusion matrices, whereas the ML result has much more con- 
fusion among the crop residue classes, especially between class 
com/51 percent and class soybeansD4 percent, which were shown 
earlier in the confusion matrices. Moreover, for NN there was 
no confusion between each of the crop residue classes and the 

bare soil class, as shown in Table 4. Therefore, it can be con- 
cluded that the classification of the GIs-enhanced Landsat TM 
data set for crop residue classes was improved by using the 
neural network, i.e., integrating GIs information, the neural net- 
work outperformed the other classifiers. The improved NN clas- 
sification results for the testing data set are also reflected in the 
comparison shown in Figure 6, the map results shown in Figure 
7, and its accuracies for the testing data depicted in Figure 5. 

A major advantage of the neural-network classifier is that an 
assumption about distribution of data is not needed. The neural- 
network classifier is able to extract automatically the features of 
data used in training and to apply them to the classification of 
data for the entire image. In other words, the neural-network 
classifier is distribution-free. Moreover, it does not explicitly 
consider the second-order statistic, covariance, which inhibited 
the maximum-likelihood classifier for the GIS-enhanced data set. 

CONCLUSIONS 
Landsat TM data were used to determine crop residue type 

and class for a large area. There was much rnisclassification of 
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Landsat TM data for the crop residue classes when utilizing the 
maximum-likelihood and minimum-distance classifiers on the 
original Landsat TM data, though the maximum-likelihood clas- 
sifier achieved higher accuracies than the minimum-distance 
classifier. 

A digital spatial layer, ownership, was added to the original 
Landsat TM image as the eighth band of data in an  attempt to 
improve the classification results. Unfortunately, maximum- 
likelihood classification could not be used for the eight-band 
data because the covariance matrices corresponding to the eight- 
band image are meaningless. Therefore, the back-propagation 
neural-network classifier was used to substitute for the maxi- 
mum-likelihood classifier. The classification results obtained using 
the neural classifier showed less confusion among the crop res- 
idue classes, no  confusion between the crop residue classes and 
the bare soil class, clearer fields for the crop residue classes, 
and clear boundaries for these fields, compared to the results 
obtained by applying the maximum-likelihood classifier to the 
original seven-band Landsat TM data. The minimum-distance 
classifier did not obtain satisfactory classification accuracies for 
either the original Landsat TM data or the Landsat 'I'M Plus data 
because it could not consider the second-order statistics, the 
covariances between image bands. 
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