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ABSTRACT:. Mo~ern computerized photogrammetric instruments are capable of utilizing both radial and decentering
camera caJ.ibratJon parameters which can .incr.ease plotting a~curacyover that of older analog instrumentation technology
from prevwus decades. Also, recent desIgn Improvements m aerial cameras have minimized distortions and increased
the resolvmg. power of. camera systems, which sh~uld improve the performance of the overall photogramrnetric process.
In ~oncert wIth these Improvements, the GeologIcal Survey has adopted the rigorous mathematical model for camera
cal~bra~ondeveloped by Duan~ Brown: An ~xplanationof the Geological Survey's calibration facility and the additional
cahbration parameters now bemg proVIded m the USGS calibration certificate are reviewed.

INTRODUCTION

BEGINNING IN THE LATE 1950s, the U.S. Geological Survey
(USGS) calibrated aerial cameras that were to be used by

contr~c.tors ~n ~SGS projects (Bean, 1962). In recognition of this
capabIlIty eXIstmg at the USGS, the responsibility for aerial cam­
era calibration in the U.S. Government, except for the Depart­
ment of Defense, was transferred from the National Bureau of
St~n~ards to the USGS on 1 April 1973 (Tayman, 1974). About
thIS tI~e, the USGS Optical Calibration Laboratory's multicolli­
?",ator mstrument was structurally upgraded and expanded to
mclude a total of 53 collimators. This expansion would permit
super-wide angle aerial cameras to be accommodated. The up­
gra?ed laboratory was located at Reston, Virginia, where it re­
ma.ms t.oday. The laboratory team performs approximately 100
calibratIons every year, and their records show that today's
cameras have improved significantly in recent years.
. P:rhaps the National Aeronautics and Space Administra­

tIon s Large Format Camera, built by Itek in the early 1980s, set
a new standard for cameras with improved lenses and forward
motion compensation. Following Itek's lead, the commercial
aerial camera manufacturers - Wild Heerbrugg, Carl Zeiss Ob­
erkoch~n, and Zeiss Jena-have made significant improve­
ments 10 the performance of their cameras both in resolution
and distortion. Table 1 indicates typical improvements over the
years.

The techniques and procedures for calibrations at the USGS
including a users guide, have been well documented (Karen:
1968; Tayman, 1978; Tayman, 1984; Tayman and Ziemann, 1984;
Tayman et aI., 1985). The aerial camera is the instrument that
gathers the data necessary lor subsequent photogrammetric
processes and operations. It can be considered as a surveying
mstr~ment of ~re.at precision when properly calibrated. The
metrIC characterIstIcs and orientation of critical parts of the cam­
era. an~ their relations to one another must be determined by
c~libratlOn bef?re the photographic data can be used for preci­
sIOn work. BaSIcally, these characteristics are (1) the focal length
of the camera lens, (2) the radial and decentering distortions of
the lens, (3) the resolution of the lens-film combination, (4) the
position of the principal point with respect to the fiducial marks,
and (5) the relative positions and distances between the fiducial
marks.
. Up .to n?w, the ':'SGS Calibration Laboratory has performed
It~ calibration functions and compiled the report in the format
~ven by Tayman (1984). The importance of quality and preci­
s.lOn measurement has always prevailed in the lab, and rela­
tIvely few changes have been made in the basic concept over
the years. Now, in recognition of the improvements being in-
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troduced by the camera manufacturers, reduced distortion, in­
creased resolution, forward motion compensation, and even
s~~bilized mounts coupled with the photogrammetrist's capa­
bIlity, by means of computerized instrumentation to utilize the
improvements, it is timely to apply a more rigorous theory in
modeling the camera's parameters. A more rigorous model of
the camera parameters will increase the accuracy obtainable in
photogrammetric practice. The new analytical model is based
on the projective equations outlined by Schmid (1953). This
model for calibrating metric cameras has undergone continuous
and significant development since Brown published his rigor­
ous treatment of simultaneous determination of the exterior an­
gular orientation, interior orientation, and symmetric radial lens
distortion (Brown, 1956).

The original solution utilized a least-squares adjustment of
the measured plate coordinates of stellar images taken with a
ballistic camera. The star images were taken in support of the
National Satellite Triangulation Program using stellar cameras
to photograph the satellite against a background of stars (Case,
1955). Since then, significant advances were made by the intro­
duction of a parameterized model of lens decentering distortion
and Brown's (1966) refinement of the Conrady (1919) lens de­
centering distortion model. The culmination of the analytical
camera calibration method was reached when DBA Systems
issued a report titled Advanced Methods for the Calibration ofMetric
C~meras (Brown, 1968). Finally, a computer software program,
SImultaneous M~lti-Camera Analytical Calibration (SMAC), was pro­
duced under contract to the U.S. Army Engineer Topographic
Laboratories, Fort Belvoir, Virginia, by Gyer et al. (1970). The
software system to be utilized at the USGS and discussed in this
paper is a modification of the SMAC Program adapted to the
USGS multi-collimator instrument. The SMAC is being modified
and installed on an IBM PS/2 Model 70 computer by DBA Sys­
tems, Inc. of Melbourne, Florida.

PRESENT SYSTEM'S DATA REDUCTION METHOD

The math model now in use is basically a least-squares ver­
sion of the photogrammetric resection problem. The plate co­
ordinates of the collimator images are the observations and the
collimator directions are the known coordinates. Because the
collimator image positions have been perturbed by lens distor­
tions, the measured coordinates will be different from their true
positions. In the reduction process the position of the interior
perspective center and the orientation of the camera are allowed
to adjust to minimize the differences between the observed and
true image positions. The result is calibrated focal length, profile
of the mean radial distortion, and the coordinates of the prin­
cipal point. Thirty-three collimator images will appear on the
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RESECTION EQUATION AS A CALIBRATION MODEL

The well known projective equations of photogrammetry are
employed in the present camera calibration system (Karen 1968).
They are

calibration plate for a standard 6-inch focal length (152.4 mm)
aerial camera, giving a total of 66 observations.

Figure 1 illustrates the geometry of one bank of the USGS
multi-collimator instrument. Figure 2 illustrates the distribution
of the collimator positions that appear on the plate. Figure 3
illustrates the resolution target and the position reticle that is
installed in each collimator. [

AA + BfJ- + CV]
x-xp = f VA + EfJ- + Fv

[
AlA + B'fJ- + C'v]

Y-YP = f V A + E fJ- + F v

(1)

'AWAR is area weighted average resolution measured on a Kodak
high resolution (400 lp/mm) micro-flat glass plate.

TABLE 1. TYPICAL IMPROVEMENTS IN AERIAL CAMERAS

Camera Item

Resolution (AWAR)'
Radial Distortion

1960s

63lp/mm
± 10 ~m

1990s

901p/mm
± 3 ~m

in which

x and yare the measured plate coordinates with respect to the
photo coordinate system;

xp , YP' f are the coordinates of the principal point and focal
length of the camera;

[
ABe] orientation matrix elements which are
A'B'C' = functions of three independent angles a, w, K

V E F ref.erred to an arbitrary X, Y, Z frame in
object space; and

A, fJ-, v = X, Y, Z direction cosines of rays joining correspond­
ing image and object points.

Summarizing the present method, it should suffice to point
out that the data reduction program uses the linearized version
of Equation 1 in the least-squares solution of the unknowns.
The unknowns are

(xp , YP' f): the coordinates of the principal point and focal
length of the camera, and

a, w, K: the three angles of exterior orientation. a and ware
approximately zero.

The residuals L1x and L\y on each point remaining after the
least-squares adjustment are the basis for the radial distortion
curve as reported in each USGS calibration report. In the actual
reduction, the focal length is slightly adjusted to accommodate
for the small shift in unknowns xp , YP away from the center of
fiducials in the image plane.
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FIG. 1. Schematic diagram of one collimator bank.

FIG. 2. Target positions that appear on glass plate. FIG. 3. Reticle/resolution target.
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(4)

(3)

where

Definition
NewSMAC

Program

a, w, K

K'a, K't, K'2, K'3

Iv 12, 4>0

f

Current Program

distortion. The higher order coefficient, P3, only rarely proves
to be significantly different from zero in today's aerial cameras.

The P1, Py P3 quantities in Equation 4 are actually parame­
terized terms of the actual decentering parameters epa, Ju J2'
These are introduced to simplify the computations (Livingston,
1980).

TABLE 2. COMPARISON OF PROGRAM OUTPUTS: CURRENT vs NEW
SMAC

epa = arc tan (P/PJ
J1 = (P1 2 + p22)ln.

J2 = (I1) (P3)

Reversal of these relations yields

P1 = J1 sin epa
P2 = J1 cos epa
P3 = J/J1

ef
ea,w,K
e.

e.

epa = angle between the positive x axis and the axis of max­
imum tangential distortion, and

Ju J2 = coefficients of decentering distortion to be reported
in the calibration report from the new system.

THE TOTAL SMAC MODEL

The model is composed of three parts: (1) projective equations
of photogrammetry, Equation 1; (2) the radial distortion model,
Equation 3; and (3) the decentering distortion model, Equation
4. Equation 5 represents the totally rigorous SMAC model. Table
2 shows a comparison of the current program output with the
SMAC. Notice that the Ks and Jv J2, and epa are the additional
values obtained by SMAC. Table 3 is a comparison of the cali­
brated values from an actual camera known to have large de­
centering distortion. Notice the 15 f.Lm at 40° is reflected in the
SMAC output. The current system offsets the xI" YP considerably
as a result of the decentered lens, but it cannot directly account
for the decentering as distortion. For the high quality cameras
manufactured today, decentering distortion is generally ex­
pected to be near zero, but it will be defined. This may be a
measure of the camera quality as well of precision in assembly
of the lenses. However, in some state-of-the-art lenses decen­
tering distortion may actually be significantly greater in mag­
nitude than radial distortion. This may be largely due to computer
lens designs where the designer may suppress radial distortion
to a very low level, but the alignment and fabrication of the
lens elements remains a tedious manufacturing step as in the
past.

e.

e Radial Dist.
Table

Coordinates of Principal
Point
Calibrated focal length
Orientation angles
Coefficients of radial
Distortion
Parameters of Decentering
Distortion

Radial Dist. Radial Distortion -
Table Each Diagonal
Decentering Decentering
Distortion Distortion
Table - Each Diagonal

e All other parameters Resolution, Fiducial Coordinates, Shutter Effi­
ciency, Stereomodel Flatness, etc., will remain as currently reported.

(2)

where P1, P2, P3 are unknown coefficients of decentering lens

in which Ku K2, K3 are coefficients of radial distortion and r is
the radial distance referred to the principal point.
More specifically,

r = [(x - Xp)2 + (y - ·Yp)2Pn.

~here x, Y. are the plate coordinates of the photographed col­
lin;ator pomts and xI" YP are the coordinates of the principal
pomt. The x-Y components of radial distortion are given by

ox=or (~) = x(K1r2 + K2r4 + K/' + ) and

oy=or (;) = y(K1r2 + K1r4 + K/' + ).

THE NEW ANALYTICAL MODEL WITH RADIAL AND
DECENTERING LENS DISTORTION

The new model (Brown, 1966) incorporates Equation 1, the
photogrammetric projective equations, and augments them with
two. parts: sy~metric radial dis.tortion and lens decentering dis­
tortIon. SpecIfically, the analytIcal models for radial and decen­
tering distortion are introduced directly into the projective
equatIons. The parameters defining the distortion functions are
then solved simultaneously with the projective parameters ((\',
w, K, xI" YP' f, '\, J.L, v) in a least-squares adjustment. There are
13 unknowns in the new model which rigorously define the
camera parameters.

MODELS FOR RADIAL AND DECENTERING DISTORTION

The distortion, or, of a perfectly centered lens referred to the
Gaussian focal length, f, can be expressed as

The number of coefficients required to represent radial distor­
tion ~ith sufficient accuracy depends on the particular lens.
Mappmg lenses generally require two or three coefficients.
Unusual lenses such as fisheye lenses may require several more,
whereas a simple lens may require only a single coefficient.

After computing the appropriate coefficients, it is customary
for practical production usage to transform the Gaussian dis­
tortion function (Equation 2) to a form in which the maximum
positive and negative values of the distortion are equal. It was
shown by Brown (1957) that a change, Lif, in the computed
focal length results in a more useful distortion function given
by

or = I + (K1 + l)r3 + (K2 + l)r5 + (K3 + l)r7 +

= K'o + K'lr3 + K'2r5 + K'3r7 + ...

The K' values will be reported in the calibration report along
with the associated focal length, f.
DECENTERING DISTORTION MODEL

Slight misalignments in lens assembly introduce what is termed
decentering distortion. This distortion has both a radial and
tangential component and can be described analytically by the
expressions that follow (Brown, 1966):

Lix = [1 + P/ r2] [P1 (r2 + 2x2) + 2P2xy ]

Liy = [1 + P32 r2] [2P1 xy + P2 (r2 + 2y2)]
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TABLE 3. CURRENT SYSTEM vs SMAC FOR A REAL CAMERA

• Angle
7.50°

15.00°
22.75°
30.00°
35.00°
40.00°

• Parameters

Current System
Average Distortion

-8~m

-8
-3

4
3
o

21I-Lm
-47

152.599 mm

SMAC
Radial Distortion

-5~m

-7
-4

3
7
1

5~m
-21

152.597 mm
0.254 x 10- 3

-0.553 X 10-7

0.241 X 10- 11

SMAC
Decentering Distortion

O~m

1
2
4
6
9

213°
0.558 x 10-6

K3 = 12 = 0 (insignificantly different from zero by statistical test)

Simultaneous Multiframe Analytical Calibration - SMAC

• Calibration Math Model

x-x __ f[AA + BJ.L + cv] [ ]+ x K1r2 + K2r4 + K/'
P DA + EJ.L + Fv

+ [1 + p/r2
] [ 2P1xy +P2(r2 +2y2)]

CONCLUDING REMARKS

In the past, many of the metric shortcomings of mapping cam­
eras could be tolerated by virtue of the compensation provided
by fairly dense networks of pre-established ground control. Es­
tablishing dense networks of control constitutes a major expense
for mapping operations in both time and money. Mainly for this
reason, coupled with advances in computer technology and pho­
togrammetric instrumentation, the extension and densification of
mapping control by means of block analytical aerotriangulation
has gained widespread acceptance. Experiments by Brown (1966)
have shown that the full promise of analytical methods depends
in great measure on the precise calibration of the camera. This is
because residual systematic errors propagate through analytical
aerotriangulation in a most unfavorable manner.

It follows that the more comprehensive and more precise the
calibration of the camera, the lower the requirements for absolute
control in photogrammetric operations. The introduction of the
more rigorous SMAC system at the USGS may be of fundamental
importance to geodetic photogrammetry, to analytical photogram­
metry, and to photogrammetric instrumentation nationwide.

The intent of this paper is to show the general equation form
of the new calibration system and thereby to assist the users of
the calibration report to better understand its value. The devel­
opment team for the project is composed of Brad Johnson, George
Schirmacher, Edward Cyran, and Donald L. Light of the USGS.
Conversion of the original SMAC Code to the USGS system is being
(Received 12 February 1991; accepted 18 April 1991)
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Misclassification Bias in Areal Estimates
Raymond 1. Czaplewski
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ABSTRACT: In addition to thematic maps, remote sensing provides estimates of area in different thematic categories.
Areal estimates are frequently used for resource inventories, management planning, and assessment analyses. Mis­
classification causes bias in these statistical areal estimates. For example, if a small percentage of a common cover type
is misclassified as a rare cover type, then the area occupied by the rare type can be severely overestimated. Many
categories are rare in detailed classification systems. I present an informal method to anticipate the approximate mag­
nitude of this bias in statistical areal estimates, before a remote sensing study is conducted. If the anticipated magnitude
is unacceptable, then statistical calibration methods should be used to produce unbiased areal estimates. I then discuss
existing statistical methods that calibrate for rnisclassification bias with a sample of reference plots.

INTRODUCTION

REMOTELY SENSED AREAL ESTIMATES are typically treated as
unbiased estimates of the true area for each cover type in

a study area. However, Card (1982), Chrisman (1982), and Hay
(1988) note that misclassification can bias areal estimates from
remote sensing. My first objective is to demonstrate the cause
of misclassification bias, and then to present an informal method
to anticipate its magnitude before a remote sensing study is
conducted. With a quantitative expectation of the approximate
magnitude of this bias, the user of remotely sensed areal esti­
mates can judge the practical importance of misclassification
bias, given the unique requirements of each remote sensing
study. If the anticipated magnitude of misclassification bias is
unacceptable, then areal estimates should be calibrated with
remotely sensed and reference classifications for a representa­
tive sample of reference plots from the study area. My second
objective is to increase awareness of existing methods that can
statistically calibrate for misclassification bias, and then to pro­
vide general guidance in the choice and application of an ap­
propriate calibration method.

SOURCE OF MISCLASSIFICATION BIAS

Let the remotely sensed percentage of cover type A be de­
noted as the scalar Y, and the true percentage of cover type A
be denoted as the scalar X. The true percentage of cover types
other than A (labeled cover type B in the following) will equal
the scalar (100% - X). Let scalar HA represent the conditional
probability that any pixel is interpreted as cover type A, given
that the pixel is truly cover type A, where 0 :5 HA :5 1; and let
scalar (1 - HB) represent the conditional probability that any
pixel is interpreted as cover type A, given it is truly type B,
where 0 :5 HB :5 1. HA and HB represent producer's accuracies,
and are measures of omission error (Story and Congalton, 1986).
The remotely sensed percentage (Y) of cover type A will be the
following deterministic function of the true percentage (X) of
cover type A and the true conditional probabilities of omission
errors (HA and HB):

Y = [HA Xl + [(1 - H B) (100% - X)]. (1)

Equation 1 shows that misclassification biases areal estimates
from remote sensing; the remotely sensed percentage (Y) will
not equal the true percentage (X) unless there are no omission
errors, Le., HA = HB = 1, or effects of omission errors exactly
compensate, Le., (1 - HB) (100% - X) = (1 - HA ) X. Either
condition is rare in remote sensing.

Proportions or acreages of each cover type can be readily used
in place of percentages in Equation 1. Instead of (100% - X),
(1 - X) would be used if X and Yare proportions, and (T -
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X) would be used if X and Yare acreages, where T is the total
acreage of the study area.

Assume classification accuracies are high for all cover types
(e.g., HA = HB = 0.95). If cover type A truly occupies 90 percent
of the study area (Le., X = 90), then the remotely sensed per­
centage (Y) will equal 86 (see Equation 1). Similarly, Y equals
68 percent if X equals 70 percent, and Y equals 50 percent if X
equals 50 percent. The bias in areal estimates for rare categories
can be relatively high, even with such high classification accur­
acies. If cover type A truly occupies 10 percent of the study
area, then the remotely sensed estimate will be 14 percent (see
Equation 1). In this example, the remotely sensed percentage
will be 40 percent larger than the true value. If a small per­
centage of a common cover type is misclassified as a rare cover
type, then the area occupied by the rare type will be overesti­
mated, unless there is a high rate of omission error in classifying
the rare type. As the detail of a classification system increases,
many categories will be rare. Figure 1 portrays the magnitude
of misclassification bias for a wide range of classification accur­
acies.

MAGNITUDE OF MISCLASSIFICATION BIAS
Figure 1 or Equation 1 can be informally used to anticipate

the approximate magnitude of misclassification bias for any cover
type. However, preliminary expectations of classification ac­
curacies and prevalence of various cover types must be used,
rather than their true, but unknown, values. For example, as­
sume you expect that classification accuracies for your study
area will be similar to those given by Story and Congalton (1986),
who used reference and remotely sensed classifications of 30
forested plots, 30 water plots, and 40 urban plots to construct
an error matrix. From their error matrix, your preliminary es­
timate of producer'S accuracy for the forest cover type in your
study area is HA = 28/30 = 0.93, and your preliminary estimate
for non-forest accuracy is HB = (15 +1+5 +20)/(30 +40) = 0.59
(Le., the water and urban types are pooled together). Assume
your preliminary estimate of forest cover in your study area is
33 percent. Using Figure 1 with HA=0.90, HB =0.60, and X=33,
you anticipate misclassification bias will be approximately 25 per­
cent; you can expect the remotely sensed areal estimate for forest
will be (33 + 25) = 58 percent if forest cover is truly 33 percent
in your study area. From the same error matrix, producer's ac­
curacy for water cover is HA = 15/30 = 0.50, and that for non­
water (Le., forest and urban) is HB = (28 +1+15+20)/(30 +40) = 0.91.
You can anticipate from Equation 1 that the remotely sensed
areal estimate for water will be approximately Y = 23 percent
if water truly covers X = 33 percent of your study area, Le.,
misclassification bias of -10 percent. Finally, you can use Equa­
tion 1 and the same error matrix to anticipate that the remotely
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FIG. 1. Examples demonstrating magnitude of misclassification bias for various probabilities of omission errors. Misclassifi­
cation bias is the difference between the remotely sensed estimate and the true percentage of a cover type. Remotely sensed
estimate (y) is a function (Equation 1) of prevalence of a cover type (X) and producer's classification accuracies (HA and He),
which are conditional probabilities of omission errors. HA and He are sometimes equal in this example, but they are not
necessarily equal in practice. This figure, or Equation 1, can be informally used to anticipate the magnitude of misclassification
bias, given approximate expectations of classification accuracy and prevalence of cover types. If the anticipated magnitude
is unacceptable, then more formal calibration methods should be considered, which are discussed in this paper.

sensed areal estimate for urban will be approximately 19 percent
if urban areas truly cover 33 percent of your study area, Le.,
misclassification bias of -14 percent.

CALIBRATION FOR MISCLASSIFICATION BIAS

If the anticipated magnitude of misclassification bias is un­
acceptable to the user, then more formal calibration techniques
should be included in the remote sensing study. Calibration
cannot identify misclassified pixels. Rather, calibration is a
probabilistic technique; it uses proportions of imperfectly class­
ified pixels in a reference sample to estimate conditional prob­
abilities of various types of misclassification, and these estimated
probabilities are then used to predict the true percentage of each
cover type given the remotely sensed percentages. Proportions
or acreages can be used in place of percentages. Statistical cal­
ibration requires accurate estimates of misclassification proba­
bilities using reference plots from the study area, rather than
preliminary expectations used above to anticipate the approxi­
mate magnitude of misclassification bias.

Two different calibration methods can be used if a reliable
error matrix is acquired for a particular study. In remote sens­
ing, Bauer et al. (1978), Maxim et al. (1981), Prisley and Smith
(1987), and Hay (1988) demonstrate use of a classical multivar­
iate calibration method, which was introduced into the statis­
tical literature by Grassia and Sundberg (1982). Equation 1 is a
univariate example of this method. To produce an unbiased
areal estimate, Equation 1 is solved for the true percentage (X)
given the remotely sensed estimate (Y), and accurate estimates
of the probabilities of omission errors (Le., HA and Ha). The
inverse calibration estimator of Tenenbein (1972) is an alterna­
tive to this classical estimator, and Card (1982) and Chrisman
(1982) demonstrate use of this estimator in remote sensing. The
inverse estimator uses probabilities of commission errors (Le.,
user's accuracies), while the classical estimator uses probabili­
ties of omission errors. Czaplewski and Catts (1990) give ex­
amples of these two calibration methods in remote sensing.

Based on unpublished Monte Carlo simulations, I found the
inverse calibration estimator of Tenenbein is less biased, more
precise, and less prone to numerical problems and infeasible

solutions, especially for small sample sizes of reference plots.
For example, the multivariate classical estimator requires a ma­
trix inversion, and can produce negative areal estimates; the
inverse estimator requires less complex algebra, and will always
produce positive estimates.

These calibration techniques use misclassification probabili­
ties from an error matrix that are estimated with a finite sample
of reference plots from the study area. These estimated prob­
abilities contain sampling errors, which are propagated into es­
timation errors for the true percentage of each category in the
study area. As the sample size of reference plots increases, the
sampling error deceases for estimates of misclassification prob­
abilities, and accuracy of the calibrated areal estimate increases.
Grassia and Sundberg (1982) and Tenenbein (1972) give ap­
proximate covariance matrices for these estimation errors; they
assume a large sample of reference plots is available, and the
reference plots are independent and homogeneous (Le., each
independent reference plot is classified into a single category
with remote sensing, and a single category with the reference
data). These covariance matrices are needed to construct con­
fidence intervals, which describe the level of uncertainty in the
calibrated areal estimate that is produced by uncertain estimates
of misclassification probabilities.

An unstratified sample of homogeneous reference plots will
include a small number of rare cov~r types. Stratification can
provide more intensive sampling of rare types, which can im­
prove accuracy of calibrated areal estimates for rare types. How­
ever, an inappropriate calibration technique can bias calibrated
areal estimates from a stratified sample of reference plots. In
general, the inverse estimator of Tenenbein should be used if
stratification is based on the remotely sensed classifications. If
the stratified sample is selected based on the reference classi­
fications, then the classical estimator of Grassia and Sundberg
should be used. This latter situation might exist if existing field
plots are used for reference data, but the cost of accurate reg­
istration of existing field plots to the remotely sensed imagery
limits the number of plots that can be registered. Bias from an
inappropriate calibration technique can be eliminated with in­
dependent ancillary estimates of the true or remotely sensed
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percentages in the study area, but more elaborate calibration
methods are required.

These calibration methods require a large sample of repre­
sentative reference plots to estimate misclassification probabil­
ities. Representative reference plots are best selected with
randomization methods. Training or labeling plots often have
lower rates of classification error than are typical for the entire
study area, and such plots will produce biased areal estimates
if used for calibration. Brown (1982) discusses controlled cali­
bration, which can use purposefully selected reference plots;
however, this requires Bayesian estimation, which is vulnerable
to subtle problems and undetected biases.

If the reference plots are not well registered to the remotely
sensed imagery, then classification error will be confounded
with registration error, and the misclassification probabilities
will be poorly estimated. Large heterogeneous reference plots
might be more successfully registered to remote sensing im­
agery than small homogeneous plots. If the heterogeneous plots
are a simple random or systematic sample, and reference clas­
sifications are available for each pixel in these plots, then the
calibration methods of Tenenbein (1972) and Grassia and Sund­
berg (1982) can be applied without modification. However, clas­
sification errors for adjacent pixels in the same reference plot
are not independent, and different methods would be required
to calculate the estimation error covariance matrix.

Different calibration methods are required if an error matrix
cannot be constructed from the reference data. For example,
reference data for agricultural surveys can be limited to areal
estimates of different crop covers within large, heterogeneous
plots; maps showing the location of each crop cover within the
reference plots might not be available. Therefore, the reference
classifications for each pixel within the reference plots are not
available, and an error matrix cannot be constructed. Here, cal­
ibration can only use the remotely sensed and reference per­
centages of each cover type within each heterogeneous reference
plot. Calibration estimators for this situation have been devel­
oped and evaluated by Chhikara et al. (1986), Fuller (1986), Hey­
dorn and Takacs (1986), McKeon and Chhikara (1986), Hung
and Fuller (1987), Battese et al. (1988), and Chhikara and Deng
(1988). Similar situations arise when registration of pixels to
reference plots is problematic, and reference classifications for
individual pixels cannot be reliably obtained. Iverson et al. (1989)
consider this situation for AVHRR data, where remotely sensed
estimates for Landsat scenes serve as the reference data. In
addition, Pech et al. (1986) describe a method to calibrate areal
estimates from mixed pixels that cannot be classified into unique
categories. All these methods are linear regression techniques
rather than the probabilistic techniques of Tenenbein (1972) and
Grassia and Sundberg (1982). Calibration based on regression
methods can produce negative areal estimates. Lewis and Odell
(1971), Liew (1976), and Shim (1983) propose quadratic pro­
gramming techniques to avoid negative estimates, and van
Roessel (USDA Forest Service, 1980) has applied this solution in
remote sensing. Detection limits can affect misclassification bias
in more complex ways. For example, an AVHRR pixel might
require 30 percent deforestation before any deforestation can
be detected. This can cause a nonlinear relationship between
the remotely sensed and reference areal estimates for the ref­
erence plots, which might require nonlinear calibration esti­
mators. Scheffe (1973) and Brown (1982) discuss the statistical
aspects of nonlinear calibration, but this technique has not been
applied in remote sensing.

All of these calibration methods correct areal estimates for
misclassification error, despite the cause. Interpretation error is
the most familiar cause. However, changes in land cover might
occur between the dates that remotely sensed images and ref­
erence data were acquired, or there might be differences in

definitions between the remote sensing and reference classifi­
cation systems. Calibration treats the reference data as the stan­
dard, and calibrated areal estimates represent the acquisition
dates definitions and protocol used for the reference data. For
example, if the remotely sensed images were acquired in 1987
and the reference data in 1991, then the calibrated areal esti­
mates are an unbiased estimate of the status in 1991. If users
require areal estimates consistent with their existing definitions
and protocol for field surveys, but other methods are used for
the reference data in calibration (e.g., photointerpretation of
large-scale imagery, or "windshield surveys"), then the cali­
brated areal estimates can be unacceptable to the user.

All of these calibration techniques are closely related to var­
ious multi-stage or multi-phase sampling designs, which can
be more efficient than calibration if the sample size of reference
plots is large. The remotely sensed data are analogous to the
first level of a multi-level design, and the reference data are
analogous to the second level. However, calibration methods
have been developed that use areal estimates from all pixels in
an image, and for multivariate and nonlinear situations; cali­
bration might be more readily applied to these more compli­
cated estimation problems than multi-level sampling designs.

CONCLUSIONS

Some users reject areal estimates from remote sensing be­
cause the magnitude of misclassification bias might be large.
Some remote sensing specialists recommend that users ignore
misclassification bias if classification accuracy is high. The most
reasonable alternative might lay between these extremes. Dur­
ing the planning stage, remote sensing specialists should antic­
ipate the approximate magnitude of misclassification bias. If the
anticipated magnitude is unacceptable to the user of remotely
sensed areal estimates, then the study plan should require sta­
tistical methods that will calibrate the final areal estimates. Re­
liable calibration requires an adequate, representative, and timely
sample of accurately registered reference data from the study
area.
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