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ABSTRACT: A framework for automated land-cover classification based on a concept of a classification model was de­
veloped and tested. The framework employs a user-specified rule base to ~~scr~be a classifi~ation. model, ~efined. as
the series of spatial data operations and decisions used in landcover claSSIfIcation. Both eVIdential and hIerarchICal
inference are supported utilizing a set of spatial data operators. .

The concept was tested through the development and application of a set of computer progran:s which s';lpport
classification models. A rule base, thematic spatial data, and satellite image data were then used to defme a classIfIcation
model for conditions in northeastern Wisconsin. The test model incorporated Landsat Thematic Mapper data, sOli
texhIre data, and topographic position data. Classification accuracies and efficiencies 1Jsinl? the developed system were
then compared to those for supervised maximum-likelihood classifications. The classificatIOn model afProach resulted
in statistically significant, 15 percent improvements in classification accuracy when averaged across dIfferent analysts,
geographic areas, and years.

INTRODUCTION

SUPERVISED, PER-PIXEL, MAXIMUM-LIKELIHOOD SPECTRAL clas­
sifiers are the most commonly applied automated land-cover

classification techniques due in part to a well developed theo­
retical base, ease in automation, and proven track record (Swain
and Davis, 1978; Richards, 1986; Lillesand and Kiefer, 1987).
Unfortunately, when used with satellite image data, these tech­
nologies often yield unacceptable accuracies for many applica­
tions. For example forest management agencies often require
landcover classification at the Anderson et aI., (1976) level IIIIII
with at least 95 percent accuracy, while automated classification
of satellite data generally result in accuracies well below this
level (e.g., Nelson et aI., 1984; Moore and Bauer, 1990).

Spatial data in a GIS have been shown to improve classifica­
tion accuracy and aid in the extraction of information from re­
motely sensed imagery (Strahler et aI., 1978; Likens and Maw,
1981; Marble and Peuquet, 1983). Methods include incorpora­
tion before, during, or after a maximum-likelihood classification
(Hutchinson, 1982; Richards et aI., 1982). However, current
technologies do not allow easy automated integration of non­
image spatial data (such as digital thematic maps and associated
attributes) in image classification. In most instances spatial data
are used in manual pre- or post-classification manipulations
(Gaydos and Newland, 1978; Hutchinson, 1982). The integra­
tion of non-image data during classification often involves rel­
atively inflexible hard-coded classifiers (Fleming and Hoffer, 1979;
Hoffer et aI., 1978), or "logical channels" (Strahler et aI., 1978;
Strahler et aI., 1980) which violate distributional conditions.

Artificial Intelligence (AI) and expert systems techniques have
been investigated to improve land-cover classification (Ferrante
et aI., 1984; Wharton, 1987; Argialas and Harlow, 1990), and
show promise in the integration of non- image spatial data (Ma­
son et aI., 1988), because of their flexibility, generality, and in­
tuitive appeal. Both evidential and hierarchical approaches have
been investigated. Evidential approaches rely on obtaining
measures of the relative "mass" of evidence in support of al­
ternative hypotheses (Duda et aI., 1979; Goldberg et aI., 1985;
Lee et aI., 1987), and select the hypothesis (land-cover class
assignment) with the greatest evidence mass. Hierarchical ap-
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proaches, such as the"decision tree" techniques described by
Swain and Hauska, (1977), eliminate competing hypotheses from
consideration during inference until only one hypothesis re­
mains. Conceptually, land-cover classes are considered leaves
of bi- or multinary trees, with decision criteria applied at each
node to eliminate or select the decision path (Swain et aI., 1977;
Duda et aI., 1978; Ferrante et aI., 1984).

Strictly hierarchical approaches are computationally more ef­
ficient, but do not recover from decision errors; conversely,
methods which strictly accumulate evidence incur high com­
putational loads. Thus, there is a trade~ff be.twe:n flexibility
and run-time efficiency. Systems may be mflexIble m that land­
cover classification can be difficult with satellite systems (e.g.,
SPOT versus Thematic Mapper), feature types, or areas different
from those on which the systems were developed (Ferrante et
aI., 1984; Wang and Newkirk, 1984; Goldberg et aI., 1985). Al­
though principles apply, changed conditions ent.ail sign~~cant

recoding. Those systems that do incorporate eaSIly modIfIable
rule-based strategies result in classification times an order of
magnitude or more slower than the "standard" max~mum-like­

lihood approach (Wharton, 1987; Mason et aI., 1988; CIvco,.19~9).

This efficiencylflexibility trade-off results from the applicatIve
approach adopted by rule-based systems (Mehldau and S~how­

engerdt, 1990) in that soft,:,are for system d~velopment IS. de­
signed for quick construction and prototypmg, but proVIdes
unacceptable performance with large data volumes Gackson,
1985). Thus, a combination of hierarchical and evidential ap­
proaches is often adopted (Shortliffe, 1976; McDermott, 1982;
Jackson, 1986). This paper describes a land- cover classification
approach controlling RS/GIS integration through an easily mod­
ifiable rule base, and which also provides rapid throughout.

DESIGN PHILOSOPHY

The adopted approach is based on a concept of a classification
model. Classification models are defined as an automated se­
quence of operations applied to image ~~d ~on-imag~ ~pa.tial

data which results in a land-cover claSSIfIcatIOn. ClaSSIfIcatIOn
models may be considered analogous to cartographic models
defined for geographic information systems (Tomlin and Berry,
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FIG. 2. System components and combination for
land-cover classification. The rule base is con­
verted to C code, which is then compiled with
foundation code to produce an executable mod­
ule. This executable module would then be com­
bined with spatial data, possibly inclUding both
image and non-image data, to produce a land­
cover classification.
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CLASSIFICATION MODELER: PROTOTYPE

as classification primitives. The classification model is defined
by the sequence and combination of these primitives.

A system of programs was produced which supports the de­
velopment of classification models. This system, herein called
CLASMOD (classification modeler), allows the integration of the­
matic data, satellite imagery, and a rule-based, forward-chain­
ing inference strategy in land-cover classification. The adopted
approach uses a set of rules to define a classification model.
Both evidential and hierarchical inferences are supported. Rules
are used to describe feature types, data themes, the relation­
ships among themes and feature types, and to define the in­
ference path. Although CLASMOD is sufficient to test the concept
of a classification modeler, it is an early prototype and as such
is limited in many respects.

CLASMOD consists of three parts: a rule parser, "foundation
code," and a compiler (Figure 2). These three are used with a
~ule ba~e to define a classification model. First, the rule parser
IS applied to a rule base, generating computer code. For ex­
ample the rule "if soiL-text is sand and topo_position is up­
land then restrict-by topo_position" might be converted to
the C code fragment "if (theme_var[i] = = theme_tab[a][b]
II theme_var[j] = = theme_tab[c][d]) {restrict(theme_
var[j]}" .

The generated code is then compiled and linked with the
foundation code to produce an executable classifier based on
the classification model. The executable code then operates on
the base and spatial data to classify land cover for a geographic
area (Figure 2).

The rule parser recognizes a number of keywords in rules
which are contained in the rule base (Table 1). The parser con­
verts the rule base into C code and data tables which are used
in the classification model. Rules are used to identify the set of
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1979; Burroughs, 1986). These models may use various decision
criteria and operations to assign distinct land-cover classes. Al­
though a broad-sense interpretation of the definition includes
a "standard" supervised maximum-likelihood classifier, classi­
fication models will generally have several "levels", and use
several different data types and spatial data operators. For ex­
ample, in a classification model, image and non-image data may
be automatically integrated to classify a geographic area into
four land-cover classes: urban, forest, cropland, and water (Fig­
ure 1). Digital population density data may be used to identify
urban classes, digital thematic maps to assign water, and a spec­
tral-based maximum-likelihood classifier used to assign the crop
and forest classes. Thus, in a classification model a set of spatial
data analysis primitives are used to classify land cover, e.g.,
maximum-likelihood calculations and direct assignment based
on thematic data values.

Classification models should support both evidential and hi­
erarchical inference. As noted above, both types of inference
have been successfully applied to land-cover classification, and
the combination is desirable both to facilitate increases in clas­
sification accuracy and enhance run-time efficiency.

The inference strategy should be specified at a high level of
abstraction, Le., one which allows non-programmers to under­
stand and develop classification models, and it should also be
flexible and easy to modify. A higher level of abstraction is a
common paradigm of much AI programming, and it allows a
wider application of this approach Oackson, 1986). Flexibility
also entails an easily modifiable system which may be applied
to a wide range of land-cover and data types. Classification may
use only spectral data, only thematic data, continuous non­
thematic and non-image spatial data, or a combination of these
data types.

Classificati~n modeling requires a defined set of spatial data
operators whIch may be considered image classification primi­
tives. !hese primitives are analogous to map algebra primitives
(Tomlin and Berry, 1979), except that they are expanded to in­
clude operators specifically designed for land-cover classifica­
tion. These priInitives will then be called to operate on co­
registered data during the inference process defined by the clas­
sification model. For example, spectral class likelihood calcu­
lation, the boolean combination of thematic spatial data, shape
determination, or local texture computation may all be useful
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TABLE 1. RULE TVPES, EXAMPLES, AND KEYWORDS RECOGNIZED BV

THE RULE-PARSER. RULES ARE USED TO BUILD A CLASSIFICATION MODEL

BV DEFINING FEATURE TVPE, THEMATIC DATA LAVERS, THEME CLASSES,

EVIDENCE VALUES, AND THE TIMING AND TVPE OF DECISIONS USED IN

CLASSIFICATION. KEYWORDS RECOGNIZED BV THE PARSER ARE

ITALICIZED.

FIG. 3. The classification model used
for system tests. This model applies
restriction and evidence accumula­
tion operators to classify land-cover in
northern Wisconsin.
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land-cover classes (feature types), thematic spatial data (e.g.,
income category, soil texture), the theme classes (e.g., sand,
silt, or clay soil). The rule base is also used to specify how
inference is to proceed during land-cover classification. English­
like rules are used to describe the legal feature types (e.g., for­
ests, road), spatial data themes (e.g., imagery, soil texture, ter­
rain), thematic types for each theme (e.g., soil texture as sandy,
aspect as northerly). Rules are also used to describe the rela­
tionships between themes and features (e.g., if soil texture is
sandy, then evidence for jack pine is 0.5). Spatial data are iden­
tified by the name of the theme, e.g., "soil-texture," thematic
class names, e.g., "coarse-sand, organic, silt-loam," and nu­
meric identifiers. Identifiers are specified to provide the con­
nection between the numeric data contained in the raster spatial
data and the thematic variable. For example, "coarse-sand" might
have an identifier of 1, and all cells with a value of 1 in the soil­
texture data layer represent an area of coarse-textured soils.

Rules are also used to define the hierarchy or sequence of
operator application. Timing is specified by "levels" (Table 1),
and operations at lower levels are applied before operations at
higher levels (i.e., level 1 operations are applied before level 2).
Ordering of rules with the same level, e.g., two level 4 classi­
fication operations, follows their order in the rule base.

The foundation code is the shell of computer code into which
code from the rule parser is embedded. This code defines gen­
eral "housekeeping" constructs such as procedure, function,
and data structures; data file opening routines; and error han­
dling. Finally, the compiler is used to compile the computer
code into an executable file. The C programming language was
used in this work. An ANSI-compatible C compiler (Borland,
International) was used on a DOS, Intel 80386 platform.

The system allows the incorporation of three types of datal
information in addition to the "data" in the rule base: (1) the­
matic spatial data, (2) image data, and (3) spectral training data.
These data are used with the executable code for land-cover
classification (Figure 3). The adopted approach assumes all fea­
ture types are initially possible for any portion of the image.
Feature types can be eliminated from consideration, and evi­
dence for or against the remaining plausible feature types can
be accumulated. Feature type elimination or evidence accu­
mulation can be based on either the thematic or image data.

Classification must be restricted to those regions for which the
classification model is valid. However, the system is sufficiently
flexible to allow the generation of different classification models
for different regions or conditions.

A small set of classification primitives is currently supported:
thematic restriction, thematic evidence accumulation, spectral
evidence accumulation, and classification quality. While these
constitute only a limited subset of potential operators, they al­
low the flexible incorporation of spectral and non-spectral data
in image classification techniques.

Restriction operations are used when the occurrence of a the­
matic class reduces the set of plausible feature types. For ex­
ample, we may be certain that only lowland vegetation types
(e.g., black spruce and bog sedge) are found in areas which
have been mapped as having organic surface soils. Thus, if we
have a soil map, every time we encounter an organic surface
soil we can eliminate all but the lowland types from consider­
ation. Thematic evidence accumulation occurs when thematic
data support or contradict feature type occurrence with less
than complete certainty. For example, areas with sandy soils
may be more likely to support jack and red pine, while loamy
soils are more likely to support sugar maple. Note that the same
thematic data layer can be used for both evidence accumulation
and restriction. Finally, spectral evidence accumulation adds
supporting evidence based on imagery which is proportional to
spectral class likelihoods. The remotely sensed data are viewed
as one of many spatial data sources from which information
about land-cover may be extracted.

The spectral evidence accumulation primitive is based on like­
lihood calculations with image data. When this primitive is in­
voked, the likelihoods for all plausible spectral classes are
calculated and ranked. LL1<elihoods are scaled using a Chi-square
distribution. Spectral data coincident with training set mean
values yield Chi-squares of zero and correspond to the highest
possible likelihood for the training set. A zero Chi-square is set
to correspond to 100 "evidence points," and values above a 95
percent Chi-square threshold are assigned 0 points. Spectral
evidence is linearly scaled over this range.

Finally, operations can be included which gauge the quality
of the spectral evidence. Evidence provided by the imagery may
be deficient in several respects. For example, the highest cal­
culated spectral likelihood may be below an acceptable level.
Alternatively, two feature types may both contribute high spec-
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TABLE 2. FEATURE TYPES AND THEME TYPES AND CLASSES USED IN

CLASSIFICATION.

remaining areas were assigned.to the upland topographic po­
sition class.

Landsat TM data were collected on 9 June 1988 and 23 Sep­
tember 1989. Radiometric quality of the 1988 scene appears good
in all non-thermal bands. Degradation due to clouds and haze
ranges from slight to significant over the entire TM scene, al­
though haze and cloud effects are minimal over the study areas.
The 1989 scene was also of high radiometric quality, and is
nearly cloud free.

Field notes, Wisconsin Department of Natural Resources (DNR)
vegetation maps, United States Forest Service (USFS) vegetation
maps, and National High Altitude Aerial Photography (NHAP)
color aerial photographs were assembled in support of the de­
scribed research. These data were used to aid in training set
development and for testing the CLASMOD. Thirteen feature types
were defined in the set of rules (Table 2). These feature classes
correspond approximately to the categorical detail of levels II
and III of the Anderson classification system (Anderson et aI.,
1976). Categories were defined according to a number of con­
siderations, including previous work on type categories for
northern boreal and eastern deciduous forests using current
technologies (Nelson et aI., 1984; Buchheim et aI., 1985; Horler
and Ahern, 1986; Vogelman and Rock, 1986; Hopkins et aI.,
1988).

The developed rule base contained over 200 rules. Rules de­
fined the land-cover classes, the thematic spatial data layers,
thematic classes for each theme, and the sequence of spatial
data operations used during classification. Examples of defined
rules are included in Table 1.

The performance of the classification model was compared to
traditional supervised maximum-likelihood classification meth­
ods for both study areas. This statistical comparison involved a
stratified random sampling of predicted and true feature types
for a number of points in both the human and rule-based clas­
sifications. Classification error rates were then calculated and
compared for the two classification methods. Comparisons were
made for two separate analysts on two image dates. Both the
eastern and western study sites were classified.

First, the rule-based classifier was developed using the June
1988 sub-scene for the western study area. System refinement
over each iteration included classification, evaluation, evidence
value modification, and rule-base modification. Accuracy of the
final classification was determined by comparison of the true
and classified feature type for a number of points in the study

tral evidence. In either case, feature-type assignment may be
based solely on the other non-image data layers. While this may
be desirable in some instances, in others it may not. Rules can
be included to flag low spectral evidence or contradictory clas­
sification results.

SYSTEM APPLICATION AND TESTING

An image classification model using CLASMOD was developed
and tested for forested Lake States conditions of northeastern
Wisconsin (Figure 4). Classification model development in­
cluded generating both the spatial and "rule- base" data. For­
ested Lake States conditions are defined as the major land-cover
types found in the forested regions of northern Minnesota, Wis­
consin, and Michigan, and in the southern portion of Ontario.
Maples, birch, pines, and aspen dominate the forest overstory
in the study area, as is characteristic of northeastern hard­
woods, although species diversity is somewhat reduced com­
pared to other forests of this type, due to the recency of glaciation
(Curtis, 1959). Two study sites were selected (Figure 4), one in
central Vilas County (hereafter referred to as the western study
site) and one in eastern Vilas County (hereafter referred to as
the eastern study site). Each site encompassed a majority of the
range of soils and vegetation types found in much of northern
Wisconsin.

The tested system employed visible (band 3), near infra-red
(band 4), and a mid-infrared (band 5) image data from the Land­
sat Thematic Mapper (TM), as well as soil and landform thematic
and tabular data. Soils data were used for evidential informa­
tion. Landscape position data (upland, wetland, and water),
also referred to as topographic position, were used as a restric­
tive layer, and TM data were used for both restrictive and evi­
dential information. Source documents were collected and
converted to digital forms as necessary and co-registered for the
study areas used in this investigation. All data were registered
to a Universal Transverse Mercator (UTM) projection. Informa­
tion acquired from interviews of domain experts was a point of
departure for the rule-base. System operation and output were
tested for a number of users, areas, and image acquisition dates.

Original mylar soil boundary maps were obtained for the USDA
Soil Conservation Service. These maps originated from field
data collection and manual photointerpretation of 1:20,000-scale
black-and-white aerial photography. Contact print positives of
original scribe coats were photographically reproduced on sta­
ble-base mylar. Tie points were manually drafted onto the mylar
prints and then manually digitized.

Topographic position data were derived from 12 USGS 7.5­
minute quadrangles. Topographic positions were categorized
into four nominal categories: wetland, upland, water, and road.
These four categories were chosen because they were related
to vegetation distribution and were well represented on avail­
able USGS 7.5-minute quadrangles. Permanent water, road, and
lowland areas were digitized directly from the quadrangles. All
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FIG. 4. Study site locations.

Feature Types:
Northern Hardwoods
Red and White Pine
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Pine / Hardwood
Upland Brush
Lowland Conifer
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Theme Types:
Soil Texture Map Theme Classes:
Sand
Sandy Loam
Fine Sandy Loam
Loamy Fine Sand
Silt Loam

Topographic Position Theme Class:
Upland
Wetland
No Data

Lowland Brush
Lowland Vegetation
Sphagnum
Crop / Pasture
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Aquatic Vegetation
Unclassified
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Wet Sand
Organic
Water
No Data

Water
Urban
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TABLE 3. SUMMARY STATISTICS FOR IMAGE CLASSIFICATIONS.

CLASSIFICATION ACCURACY, COHEN'S KApPA (KHAT), VARIANCE OF

KHAT, AND SIGNIFICANCE OF ACCURACY DIFFERENCES BETWEEN RULE­
BASED (CLASMOD) AND TRADITIONAL (SUPERVISED MAXIMUM

LIKELIHOOD). SIGNIFICANCE IS THE PROBABILITY OF SPURIOUS REJECTION
IN A Two-TAILED Z-TEST.

eral, the CLASMOD method provided more consistent, accurate
classifications for the different combinations of study site and
analysts.

Classification improvements associated with the CLASMOD were
observed for both analysts in both study sites with the 1988 and
1989 imagery. The classification model was on average approx­
imately 15 percent more accurate than the "traditional" ap­
proach for the 1988 data. The CLASMOD approach averaged 89
percent, while the supervised maximum-likelihood approach
averaged 74 percent. For the 1989 data accuracies averaged 57
percent for the traditional method and 70 percent for the rule­
based method. The same general patterns of misclassification
were observed for both classification methods.

Accuracies were lower for the 1989 imagery than correspond­
ing classifications for the 1988 imagery. At least two factors may
have contributed to this reduction. First, spectral training area
locations were defined on 1988 imagery. Training set coordi­
nates were then transformed to the 1989 imagery and used to
extract training samples. These samples were not tailored to the
spectral characteristics of the 1989 imagery.

Second, class accuracies could be lower because of the spec­
tral characteristics of the 1989 imagery. This imagery was col­
lected during late September of a low rainfall year. Although
data from earlier in the growing season were preferred, at­
tempts at collecting imagery for the months of June, July, and
August were unsuccessful due to cloud cover. Leaf senescence
initiated early for some species and this may have resulted in
both greater spectral variability within feature types and greater
similarity among some feature types. This spectral variability
was not present in the 1988 data.

Training times are equal for the new approach when com­
pared to a traditional maximum-likelihood classification (Table
4). Training times for analyst 2 using the non-traditional ap­
proach are probably over-estimates, because they include some
time dedicated to familiarization with the new approach. Prior
to this work, analyst 2 was not familiar with the particular pro­
grams described herein. Classification run times for the two
methods are comparable, running approximately 18 percent
longer for the new approach. The slight increase associated with
the rule-based approach can be attributed to additional over­
head such as increased file I/O and to additional operations,

Western Study Site, '88 Imagery, Operator 1
Traditional 83 0.824
Rule-based 94 0.931
Western Study Site, '88 Imagery, Operator 2
Traditional 83 0.815
Rule-based 90 0.887
Western Study Site, '89 Imagery, Operator 1
Traditional 61 0.568
Rule-based 69 0.663
Eastern Study Site, '88 Imagery, Operator 1
Traditional 70 0.664
Rule-based 89 0.872
Eastern Study Site, '88 Imagery, Operator 2
Traditional 61 0.572
Rule-based 82 0.804
Eastern Study Site, '89 Imagery, Operator 1
Traditional 54 0.492
Rule-based 58 0.537

area. The accuracy of a traditional maximum-likelihood classi­
fication of the same area was also determined, and a statistical
comparison performed of the traditional versus rule-based clas­
sification. The traditional and rule-based classifiers were then
applied to the eastern study area using the training data from
the western study area. This work was performed by "Analyst
1." A second analyst (Analyst 2) classified the western study
site using the traditional and rule-based methods. No rules or
evidence weightings were changed, the only difference being
spectral training data developed by the second analyst. The
classification involved training on the western study site, and
applying the spectral training data to the western and eastern
sites.

A series of classifications was performed to gauge the sensi­
tivity of classification results to the relative weights placed on
the different evidence and restriction layers. Thematic evidence
values were based on long-term observations of field experts,
and spectral evidence could be considered well founded, as­
suming representative training. However, appropriate relative
weightings of spectral and thematic evidence were not clearly
defined. Spectral and thematic data provide different informa­
tion, and there is no a priori reason to provide greater strength
to one or the other. The current system weighted them equally
under the assumption that the classification model is robust
with respect to relative weightings. The appropriateness of this
equal weighting was tested employing a series of classifications
of the eastern study site using the 1988 imagery. Before accu­
mulation, evidence values derived from the soil theme and sat­
ellite imagery were pre-multiplied by fractional coefficients W
and 1-W, respectively, where 0 ~ W ~ 1. The coefficients
summed to 1; thus, if the soil evidence was multiplied by 0.2,
spectral evidence for that classification was multiplied by 0.8.
Values of W applied were 0, 0.2, 0.4, 0.6, 0.8, and 1.0. These
sensitivity classifications were performed both with and with­
out the topographic restriction layer.

Approximately 20 to 40 features were ground-identified or
photointerpreted for most feature types. Actual sample size per
category was determined after preliminary visual classification
revealed approximate class distribution (Williams, 1978). Be­
tween 360 and 410 sample points were identified in each of the
eastern and western study areas. These land-cover points were
used as "ground truth," that is, the true feature type for the
ground point sampled. Because of land-cover changes from 1988
to 1989, the same sets of points were not used for both years,
although there was a high degree of overlap among sets. The
ground truth data were used to calculate Cohen's Kappa coef­
ficients of agreement and conditional Kappa (Cohen, 1960).
Pairwise significance tests between the new and traditional ap­
proaches were performed using large sample Kappa and con­
ditional Kappa formulas developed by Fleiss et al. (1969).

RESULTS

Quantitative system assessment was based on two criteria:
accuracy and efficiency. Classification accuracy comparisons are
summarized below. Results from these comparisons are orga­
nized by study site, year of image acquisition, and operator.
Next, the results from the sensitivity tests are provided. Finally,
efficiency observations are reported.

Classification accuracy comparisons are summarized in Table
3. Improvements in classification accuracy were observed for
five of the six operator, study area, and imagery combinations.
Differences in Cohen's Kappa between the new and traditional
methods, based on one-tailed z-tests, were statistically signifi­
cant in five cases at the 10 percent level. Overall, pooled clas­
sification accuracies ranged from a low of 54 percent to a high
of 90 percent. Using the CLASMOD and the defined classification
model, classification accuracies averaged 83 percent, while ac­
curacies for the traditional method averaged 69 percent. In gen-

Method %Correct KHAT Significance

<0.05

<0.01

<0.01

<0.01

<0.01

<0.20



970 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1992

1.00.2 0." 0.6 0.8

RELATIVE EVIDENCE WEIGHTS
o

60

LIMITATIONS AND PROSPECTS

Conclusions for the current work are limited to the conditions
of the study. Although a range of conditions was tested, com­
parisons of new to traditional approaches for a broader range
of themes, analysts, feature types, and image types are neces­
sary to establish broad-scale generality of the new approach.
However, the success of the RS/GIS/AI approach under a broader
range of conditions is probable, particularly when a broader
range of spatial data primitives is supported.
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FIG. 5. Results of the sensitivity test classifications in which the relative
weights of the image and thematic spatial data varied from 0 to 1. Clas­
sifications were based on a combination of TM and soils data (without
topographic data) and a combination of TM, soils, and topographic position
data (with topographic data). Overall classification accuracies are for 13
Anderson level II/III classes, based on 382 sample points.

Traditional Rule-Based 90
Analyst Method Method

No. Time (min.) Time (min.)

1 363 432 80

2 402 492
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CONCLUSIONS

TABLE 4. TOTAL TIME REQUIREMENTS FOR BOTH TRAINING AND ACCURACY
CLASSIFICATION USING TRADITIONAL AND NON-TRADITIONAL ApPROACHES. 100 ,,---------------------------,

ALL TIMES ARE IN MINUTES.

such as restriction and evidence accumulation. For this specific
classification model, the topographic restriction and soil evi­
dence accumulation operators incur additional overhead rela­
tive to the traditional maximum-likelihood approach. However,
they also reduced the time spent on computationally expensive
likelihood calculations, in part offsetting the additional com­
putational burden.

While these results provide a rough estimate of the relative
times required for the new and traditional approaches, they do
not reflect peak performance possible in a desktop environment
for either approach. Although reasonable attempts were made
to ensure computational efficiency for both the traditional and
new approaches, neither was developed specifically to optimize
speed of operation. Significant time savings could be realized
in both instances through a number of techniques, including
optimized I/O buffering (Knuth, 1973), table look-up classifica­
tion techniques (Bolstad and Lillesand, 1990), faster clock speeds,
or array processors (Westman, 1989).

Finally, results from the sensitivity tests indicate that the overall
accuracies are robust relative to the relative weightings of the
thematic and satellite image data during classification, at least
with the adopted classification model (Figure 5). Classifications,
both with and without the use of topography-based restrictions,
remained high over a relative evidence weights of 0,2 to 0.8. In
all cases, classification with the topographic restriction was im­
proved over classifications using thematic soil and image data.

The adopted image classification approach has several ad­
vantages in comparison to standard approaches:

• The domain of discourse and control information is provided in
an easily modified and understandable set of rules.

• Specific feature type, thematic variable, and image classification
information can be persistent across different classifications of the
same area, and can be modified for use in other regions or with
different feature types.

• Computationally expensive operations can be avoided using re­
striction operators, without resorting to manual image recoding,
masking, and image recombination.

• The modular rule-based approach allows the integration of evi­
dential and deterministic discrimination techniques, and the in­
cremental addition of new spatial data operators, thematic data,
or knowledge, which aid land-cover classification.

The described rule-based approach illustrates a straightfor­
ward, flexible, unified means of improving classification accu­
racy while incorporating remote sensing, GIS, and AI techniques.
Accuracy was improved in a statistically significant manner for
different study areas, analysts, and image acquisition dates.
This work demonstrates the potential for using AI and GIS tech­
niques to integrate these accuracy improvements directly into
the classification phase. Further, both strategic and descriptive
information are explicitly represented and can be easily changed,
supporting the persistence of knowledge and facilitating incre­
mental improvement in the classifier, flexibility in the incor­
poration of new image processing techniques, and application
of the method to new areas or feature types.
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