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ABSTRACT: The maximum-likelihood classification of remotely sensed data involves considerable computational effort,
in the process calculating a large amount of information on the class membership characteristics for each case (e.g.,
pixel). Little of this information, however, is made available in the conventional output, which consists simply of the
most likely class of membership for each case. More of the information generated in the classification can be output,
specifically the a posteriori probabilities and typicalities of class membership. Each of these measures conveys different
information on the class membership characteristics of a case. They may therefore be used to improve substantially the
value of the classification. They also indicate the quality of the classifier's allocations on a per-case basis, a valuable
supplement to the classification accuracy statement. Two case studies are discussed which show examples of how the
probability measures can enhance the value of a classification. First, for a classification of agricultural crops where the
probability measures can be used to identify potentially misclassified cases. By directing ground surveys to these areas
and, if necessary, modifying the class allocations accordingly, the classification accuracy can be increased. The second
case study focuses on a considerably different environment, heathland. In this case some of the semi-natural heathland
vegetation classes do not exist in relatively discrete classes as do the crops but instead lie along continua. The probability
measures here were related to the composition of the vegetation canopy and couId be used to model more realistically
the manner in which these vegetation classes inter-graded than would be apparent from the conventional maximum­
likelihood classification output.

INTRODUCTION

M AXIMUM-LIKELIHOOD CLASSIFICATION is one of the most
used image processing routines in remote sensing. Con­

siderable research has focused on this method of classification
and the factors that influence its performance and value. For
instance, issues such as the number, size, and location of train­
ing sites (Campbell, 1981; Labovitz, 1986; Foody, 1988), the na­
ture of the discriminating variables (Swain and Davis, 1978), and
the evaluation of classification accuracy (Aronoff, 1982; Congal­
ton et al., 1983; Rosenfield and Fitzpatrick-Lins, 1986) have been
investigated and may influence the actual and perceived quality
of a classification. One issue which often appears to be taken
for granted, however, is the nature of the classification output
which usually comprises only an image depicting the most likely
class of membership for each case. Not only is this inappro­
priate for environments that display gradual changes (Robi­
nove, 1981; Allum and Dreisinger, 1987; Wood and Foody, 1989)
but it is wasteful of information generated within the classifi­
cation (Trodd et al., 1989). This information can be used to cal­
culate two measures related to the strength of class membership
for each case, which will be referred to throughout as proba­
bility measures. These measures are the typicality and a poster­
iori probability. Each of these measures provides different
information on the possible membership of a case to a class.
The aim of this paper is to briefly review these measures and,
with reference to two case studies, illustrate how and when this
information may be exploited to improve the classification from
a user's perspective.
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MAXIMUM-LIKELIHOOD CLASSIFICATION AND THE
DERIVATION OF PROBABILITY MEASURES RELATING TO

CLASS MEMBERSHIP

The Gaussian-based maximum-likelihood classification is based
on an estimated (Gaussian) probability density function for each
of the reference classes under consideration; the class statistics
are obtained from the training data. Assuming equal prior prob­
abilities (Strahler, 1980) this can be expressed as Equation 1:
Le.,

where p(xkII} is the probability density function for a pixel Xk as
a member of class i, n is the number of wavebands, Xk is the
data vector for the pixel in all wavebands, U j is the mean vector
for class i over all pixels, and Vi is the variance-covariance ma­
trix for class i (Thomas et al., 1987). The term (xk - Ui)T Vj·l (xk

- u i ) is the Mahalanobis distance between the pixel and the
centroid of class i which is a measure of how typical the pixel
is of that class; typicality is negatively related to the distance
between the pixel and class centroid. Typicality can be per­
ceived as the tail area probability associated with a case for a
particular class. This is illustrated in Figure 1 which shows the
typicality probabilities associated with a pixel x. for a simple
one-band two-class situation. Typicalities can be derived from
the Mahalanobis distance measurements with reference to an F
distribution although a chi-squared approximation is often used
(McKay and Campbell, 1982; Campbell, 1984).

In the maximum-likelihood classification, pixels are allocated
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FIG. 2. Forced labeling with Gaussian probability density functions for one
waveband to two classes (see text for explanation).

APPLICATIONS

FIG. 1. Frequency histogram illustrating the typicalities of x.. with respect
to classes I and II in a one waveband example.

The probability measures relating to class membership may
be used in a variety of ways to improve the quality of a classi­
fication. They can, for instance, provide information on the con­
fidence a user can place in the classification - are the a posteriori
probabilities all close to 1.0, or are they only marginally greater

to their most likely class of membership. Given equal a priori
probabilities, this can be achieved by allocating each case to the
class with the highest probability density function, or equiva­
lently, by allocating each pixel to the class with which it has
the highest a posteriori probability of membership. For equal a
priori probabilities, the a posteriori probabilities are assessed as
the probability density of a case for a class relative to the sum
of the densities. The a posteriori probability of a pixel Xk belong­
ing to class i, L(ilxk), may be determined from Equation 2: Le.,

than those for another class?, and are the labeled pixels typical
of the nominal class of allocation or are they spectrally dissim­
ilar? One widely used approach associated with the latter issue
is to modify the display of the classified image to leave unclas­
sified those pixels which have a typicality probability to their
most likely class of membership below a pre-set threshold; many
digital image processors include this function in their maxi­
mum-likelihood classification routines. Additional possibilities
exist once functions which display images depicting typicalities
and a posteriori probabilities are available, as with some image
processing systems. The a posteriori probabilities and/or typi­
calities could be used, for example, to modulate the intensity
of the color guns of an image display (Wallace and Campbell,
1988; Hobbs et al., 1989). This would indicate cases that appear,
for instance, satisfactorily classified (high a posteriori probability
and high typicality to allocated class) and those less satisfactor­
ily classified. The latter could include cases that are spectrally
closest to their allocated class but atypical of that class (high a
posteriori probability, low typicality). This may indicate that the
training sets are inadequate descriptors of the class, that this
particular case has unusual properties (e.g., diseased crop or
lodged crop) or the presence of a mixed pixel, among other
factors. Cases displaying a low typicality to their most likely
class of membership would represent those which are spectrally
distinct from the specified class.

The probability measures may be used in other ways to im­
prove a classification, and two case studies to illustrate potential
applications are given below.

CLASSIFICATION OF AGRICULTURAL CROPS

Crop maps are required for a variety of applications ranging
from general inventory requirements to the enforcement of quota
limits Gewell, 1989). Considerable attention has therefore fo­
cused on the classification of agricultural crops from remotely
sensed data. This section will show how the value of a classi­
fication can be improved by outputting information on the
probabilities associated with class membership in addition to
the most likely class of membership.

STUDY AREA

A 100 km2 area centered approximately on the village of Fel­
twell, Norfolk, U.K. (Figure 3) was selected as the test site. The
predominantly flat land of the test site was used mainly for
arable agriculture with spring barley, sugar beet, and winter
wheat as the main crops grown here with a lesser, but signifi­
cant, proportion of the land planted to crops such as potatoes,
carrots, and spring wheat.

DATA AND METHODS

X-band HH polarized synthetic aperture radar (SAR) data were
acquired on four dates through the 1986 growing season for this
test site as part of the European AgriSAR campaign (Anon, 1986).
The data sets were co-registered and corrected radiometrically

(2)
Pi p(xklz)

t

2: P, p(xklr)
,-]

where i is the class number, t is the total number of classes,
and Pi is the a priori probability of membership of class i. The a
posteriori probabilities sum to 1.0 for each pixel. Knowledge of
the magnitude of the a posteriori probabilities displayed by a
pixel to a group of classes may be of value because they reflect
the confidence a user may place in the allocation. For instance,
in the one-waveband two-class situation illustrated in Figure 2,
the evidence for allocating pixel Xb to class I is stronger than
that for allocating pixel x. to class II; the ratios of the densities
are 4:3 in favor of x. belonging to class II and 5:1 for Xb belonging
to class I. This information, together with that on the similarity
of a pixel to a class conveyed by the typicality, is a valuable
addition to the standard classification output which conveys no
information other than the single most likely class of member­
ship. The standard classification output therefore would ~ot

provide any distinction between a pixel which is spectrally sun­
ilar to a single reference class (e.g., Xb in Figure 2) and one which
displays a high level of similarity with a number of classes (e.g.,
Xc in Figure 2) or even one dissimilar to all reference classes
(e.g., xd in Figure 2). The a posteriori probabilities give the rel­
ative probabilities of a case belonging to each class in tum, on
the assumption that the case belongs to one or the other of the
classes, while the typicality probabilities indicate whether it is
reasonable to assume that a case actually belongs to a class.
These two probability measures encountered in the course of
the maximum-likelihood classification should therefore be able
to convey useful information on the class membership prop­
erties of a pixel to the user.

---------------------------- --
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TABLE 1. CLASSIFICATION ERROR MATRIX FOR MAXIMUM-LIKELIHOOD
CLASSIFICATION WITH NO TVPICALITY THRESHOLDS.

magnitudes of the a posteriori probabilities of cases correctly and
incorrectly allocated by the classification, they are sometimes
small and insignificant (Table 2).

The typicalities can, however, be used to improve the clas­
sification. Of the several ways in which they can be used (see,
for example, Campbell (1984) and Mather (1987», the only com­
monly used approach is to set thresholds below which an ob­
servation is left unclassified (Schowengerdt, 1983). While this
can increase classification accuracy, it can also result in large
areas of the imagery being left unclassified. Furthermore, some
cases that would be allocated correctly by the classification, but
displayed a low typicality to their most likely class of member­
ship, would be unclassified. This is illustrated in Table 3 which
gives the results of a classification of the data with a 0.05 typ­
icality probability threshold; cases with a typicality of <0.05 to
their most likely class of membership are left unclassified. The
cause of this is illustrated in Figure 4 which shows that, while
cases are generally more typical of the class to which they be­
long than to other classes, the distributions are not as skewed
as might be desired. Of the 13 cases which exhibited typicalities
below the threshold and were consequently left unclassified,
eight would have been correctly allocated in the absence of the
threshold.

The typicalities may, however, be used to direct field surveys

prior to classification (Foody et al., 1989). Ground data for the
site comprised a crop map, depicting crop type on a per-field
basis, which was compiled from aerial photograph interpreta­
tion and field survey.

The aim of the investigation was to classify on a per-field
basis the three major crops in the region; spring barley, sugar
beet, and winter wheat. Twelve fields of each of these three
crops were selected to train a maximum-likelihood classification
in which the mean tone for each field from each of the four
images was used as the discriminating variable. The latter was
estimated from a sample area of at least 10,000 pixels located in
the central portion of each field to avoid boundary effects. These
data were used to classify a further 90 fields sampled from the
area. These latter fields were used to evaluate the classifi5(ation
accuracy using Cohen's Kappa coefficient of agreement, k (Ro­
senfield and Fitzpatrick-Lins, 1986) expressed as a percentage.

RESULTS AND DISCUSSION

Of the 90 fields flassified, ten were misclassified and the over­
all accuracy was k = 83.33 percent (Table 1). This may be in­
adequate for some applications and also does not indicate
classification quality for individual fields. The classification out­
put could be enhanced by plotting the probability of correct
allocation (Skidmore, 1989). Skidmore and Turner (1988) show
how this can be achieved with a non-parametric classification.
An alternative could be to plot the a posteriori probabilities de­
rived in the maximum-likelihood classification. A problem with
this, however, is that a case can be dissimilar to all classes and
still exhibit a high a posteriori probability of membership to one
of the classes. Furthermore, while there are differences in the Predicted

Spring Sugar
Barley Beet

Winter
Wheat Total

TABLE 3. CLASSIFICATION ERROR MATRIX FOR MAXIMUM-l!KELIHOOD
CLASSIFICATION IN WHICH CASES WITH A TVPICALITY < 0.05 TO THEIR

MOST LIKELV CLASS OF MEMBERSHIP ARE LEFT UNCLASSIFIED.

TABLE 2. VARIATIONS IN THE a posteriori PROBABILITIES OF CLASS
MEMBERSHIP FOR CASES CORRECTLV AND INCORRECTLV ALLOCATED FOR
EACH CLASS (WHERE X = MEAN, (J' = STANDARD DEVIATION, AND MIN =

MINIMUM).

30
30
30
90

27
22
28
77

Total

3
o

25
28

2
o

25
27

Winter
Wheat

27 0
2 28
5 0

34 28

25 0
o 22
3 0

28 22

Predicted
Spring Sugar
Barley Beet

A
Cohen's k x 100 = 83.33%.

A

Cohen's k x 100 = 90.21%.

Allocated Class Pos!.erior Probability
Crop CorrectlIncorrect n x u min

Spring Barley Correct 27 0.925 0.126 0.596
Spring Barley Incorrect 3 0.747 0.110 0.649
Sugar Beet Correct 28 0.994 0.027 0.854
Sugar Beet Incorrect 2 0.991 0.012 0.981
Winter Wheat Correct 25 0.859 0.131 0.552
Winter Wheat Incorrect 5 0.700 0.169 0.547

90

Spring Barley
Sugar Beet

Actual Winter Wheat
--Total

Spring Barley
Sugar Beet

Actual Winter Wheat
--Total

o 5

L!::;::~~~:;=;::::;=;:::;!Milo.r I km
o 9

FIG. 3. Location map of the Feltwell test site.
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ACTUAL CLASS OF MEMBERSHIP

Spring barley Sugar beet Winter wheat
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FIG. 4. Observed typicalities of class membership for all cases to each of the three classes.

to those regions where the classification may be inaccurate. Thus,
cases displaying a low typicality of membership to their most
likely class of membership may be visited in the field to have
their true class membership determined. This does increase
classification accuracy Significantly (Table 4) but at the expense
of an increase in the amount of ground survey required. This
additional effort is, however, focused on those cases that have
a high possibility of being misclassified as they appear atypical
of their most likely class of membership. Larger and more sig­
nificant increases in classification accuracy are observed if some
cases are members of untrained classes (Foody, 1990). The latter
may display high posterior probabilities of class membership

but low typicalities, similar to the situation with pixel Xd in Fig­
ure 2.

MAPPING CONTINUA

The agricultural crops in the previous example can, to a large
extent, be considered to exist in discrete classes. Semi-natural
vegetation, however, display a more complicated spatial distri­
bution because they exhibit continua, often lacking well-defined
inter-class boundaries. Consequently, semi-natural vegetation
classes tend to inter-grade gradually, rather tha:l exist as a mos­
aic of geographically well-defined units as might be found, for
instance, in agricultural regions or forest plantations. Further-
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Woodland Grassland
FIG. 5. The inappropriateness of classification for the representation of
continuous classes (see text for explanation).

TABLE 4. CLASSIFICATION ERROR MATRIX FOR MAXIMUM-LIKELIHOOD
CLASSIFICATION IN WHICH CASES WITH A TYPICALITY <0.05 TO THEIR

MOST LIKELY CLASS OF MEMBERSHIP HAVE THEIR CLASS MEMBERSHIP

DETERMINED BY GROUND SURVEY.

N

r

2 km

Railway

• Study area

.. Military firing range

Ash Ranges,
Pirbright Common

FIG. 6. Location map of the Ash Ranges test site.

of wet and dry heathland that are of national importance (Har­
rison, 1970) and an area for which accurate up-to-date data are
required for environmental monitoring. In regions where burn­
ing has been of suitable frequency and intensity, extensive areas
of Calluna vulgaris and Molinia caerulea heath are found. On the
steeper slopes, dry heath communities with Ulex minor are fre­
quently observed and gulleys often contain flushes of wet heath.
Wet heathlbog communities are found in the lower lying areas
and these tend to be floristically variable in composition. Poor
management and neglect of these areas permits the invasion by
species of Pteridium, Betula, and Pinus and eventually the de­
velopment of scrub woodland (NCC, 1985).

DATA AND METHODS

Airborne thematic mapper (ATM) data were acquired in 11
wavebands within two hours of solar noon with a Daedalus
1268 scanner for the test site in March 1989.

At three periods, near the time of the ATM data acquisition
and apprOXimately one year before and after, ground data were
recorded at the site. Because the latter related only to land cover,
which may be considered intransient at this site and scale, all
the ground data were amalgamated; care was taken to ensure
that areas which had undergone change (e.g., burn regenera­
tion) were excluded from the investigation. Ground data were
acquired for a total of 107 sample sites. At 92 of these only the
land-cover class was recorded because these sites were located
in regions thought to be representative of a single class or end

30
30
30
90

Total

D

2
o

27
29

Winter
Wheat

GRASSLAND

C

28 0
o 30
3 0

31 30

Maximum
::':'::::::::::':::::""':""""'::':':':'}:':':':':':::'::::::::':}'i':}'::"::':':':':'d Ukelihood

Classification

Predicted
Spring Sugar
Barley Beet

B

1\

Cohen's k x 100 = 91.66%.

A

WOODLAND

STUDY AREA

Pirbright Common, part of the Ash Ranges, Surrey, U.K.
(Figure 6), was selected as the test site. It contains communities

more, the zones where classes inter-grade, ecotones, are often
of interest themselves Gohnston and Bonde, 1989). In these cir­
cumstances, application of conventional classification tech­
niques is often less than ideal (Wood and Foody, 1989); however,
such techniques have often been used to provide the user with
a simplified map despite the acknowledged difficulty in placing
a boundary in an image where in reality a gradient of change
exists (Robinove, 1981; Allum and Dreisinger, 1987). Conse­
quently, low classification accuracies are often obtained from
attempts to classify such features. Felix and Binney (1989), for
instance, noted that the continuous nature of the vegetation
types they were mapping was to some extent responsible for
the low accuracy - 37 percent for 13 classes - of their classifi­
cation.

The conventional maximum-likelihood classification of a re­
gion of semi-natural vegetation would provide only the most
likely class of membership for each pixel. No information on
the gradients between classes or the confidence of the class
allocations would be conveyed by this output. A pixel which
came from a large area of a definable end point of a continua
would, for instance, appear the same in the output as another
close to the point where two, or more, classes intergrade. Thus,
in Figure 5 a pixel at A would be as firmly allocated to woodland
as one at B. Furthermore, a pixel at c, which possesses some
woodland characteristics, would be allocated to grassland as
firmly as a pixel at D. Therefore, in a classified scene, the /ixel
at C appears as different to B as D is from A.

The implications of continua on classification have been ex­
amined for an area of semi-natural vegetation. Particular atten­
tion focused on the relative ability of a maximum-likelihood
classification and the probability measures which may be de­
rived from it to model the continuous character of the vegeta­
tion.

Spring Barley
Sugar Beet

Actual Winter Wheat
--Total
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a posteriori probability

Actual

0.92 0.88
0.87 0.87

Correlation coefficient
Wet heathlbog Dry heath

2 3 4 5 6 7 8 9 10 11 12 13 14 15 Sa~1o nurrber

ML Allocation

FIG. 7. A representation of the transect study results. For each of the 15
sites along the transect, the maximum-likelihood (ML) allocation, actual
proportion of dry heath vegetation, and the probability density function
(pdf) associated with dry heath are presented on an arbitrary intensity
scale where black indicates dry heath and white wet heath/bog. Note the
ML allocation is incorrect for sample numbers 7 and 13. (Not to scale).

Typicality probability
A Posteriori probability

Probabilistic measure

TABLE 5. SPEARMAN RANK CORRELATIONS BE1WEEN THE PROPORTION
OF WET HEATH/BOG AND DRY HEATH VEGETATION AT SAMPLE SITES

ALONG THE TRANSECT WITH EACH OF THE PROBABILISTIC MEASURES. ALL
THE CORRELATIONS WERE SIGNIFICANT AT THE 99 PERCENT LEVEL OF

CONFIDENCE.

strongly correlated with canopy composition, modeled the
heathland variations more realistically than the allocation of a
maximum-likelihood classification (Figure 7). This was most ap­
parent where the maximum-likelihood allocations were incor­
rect and near the middle of the transect where a small tract of
dry heath disturbed the general transition from dry heath to
wet heathlbog.

DISCUSSION AND CONCLUSIONS

The maximum-likelihood classification involves considerable
computational effort and generates a substantial amount of in­
formation on the class membership properties of a pixel. The
output of the classification, an image depicting the code of the
most likely class of membership, is, however, wasteful of much
of this information and inappropriate for the representation of
continuous classes. Furthermore, this output does not provide
any information on the confidence a user could place on the
correctness of the classifier's allocation on a per-pixel basis, al­
though the probability measures generated in the course of the
classification provide valuable information on the relative sim­
ilarity of a pixel to the defined classes. Making fuller use of the
probability measures would therefore enable, for example, an
indication of per-pixel classification quality that would be a
valuable supplement to the conventional classification accuracy
statement. The latter normally indicates the overall level of clas­
sification accuracy and cannot be associated reliably with indi­
vidual pixels. This additional information on per-pixel
classification quality may be of particular value if the results of
the classification are to be integrated into a geographical infor­
mation system (GIS) where information on data quality is of
considerable importance (Burrough, 1986; Walsh et aI., 1987).
The main drawback is the increased data storage required, al­
though it would not be essential for all the probabilities derived
in the classification to be incorporated into the GIS in addition
to the conventional classification output. The conventional clas­
sification and its associated accuracy statement could still be
calculated but a user may, for instance, generate probability
maps to represent continuous classes more satisfactorily than a
classified scene. Alternatively, the probability measures may be
employed to identify potentially misclassified cases and exclude
these from further analyses undertaken in the GIS. The proba­
bility measures therefore can provide more meaningful and use­
ful information for users, especially in combination with other

point. In total, four classes were sampled - dry heath, wet heath!
bog, coniferous woodland, and mixed woodland - and the data
were used to assess the spectral separability of the class end
points. The remaining 15 ground data sample points were lo­
cated along a transect that extended from a region of dry heath
to one of wet heathlbog. At these sample sites detailed data on
the species composition of the heathland were acquired from
16m2 quadrats which, for the purpose of this investigation, were
degraded to show the proportion of dry heath and wet heath!
bog species present.

After smoothing the imagery with a 3 by 3 mean filter to
reduce possible mislocation errors, the pixels corresponding to
the ground data sample sites were idE;!ntified. For the 92 sites
representative of the class end points, the DN in 10 of the 11
ATM wavebands recorded were extracted and used to assess the
spectral separability of the classes; the 1.55- to 1.75-l.l.m wave­
band was excluded from all analyses because of severe radio­
metric distortion in that data set. The DN of the samples
representative of the dry heath and wet heathlbog classes in
the 2.08- to 2.35-l.l.m waveband were also used to define the
spectral responses of these classes in that waveband. These
were used to calculate the probability measures relating to class
membership for the 15 sample sites located on the transect, the
DN of which had also been extracted in the 2.08- to 2.35-l.l.m
waveband. Only the latter waveband was used in this part of
the investigation because it is particularly sensitive to moisture
content, the transect traversed effectively a moisture gradient,
and because this waveband provides a high degree of interclass
separability (Wilks' Lambda, negatively related to class separ­
ability (Klecka, 1980) = 0.079).

RESULTS AND DISCUSSION

To represent the heathland environment more appropriately
than a classification, the output of an analysis should model
the continuous character of the vegetation classes. Probability
mapping aims to achieve this by indicating the spatial variations
in the relative strengths of class membership. This should en­
able the distinction between areas which appear to be repre­
sentative of the class end points and those where the classes
intergrade. It is therefore essential that the analysis discrimi­
nates accurately between the class end points, and that the
probabilities of class membership are related to canopy com­
position. The initial analysis therefore aimed to evaluate the
separability of the class end points. This was achieved with a
maximum-likelihood classification of the DN of the 92 pixels in
the ten ATM bands sampled over the test site encompassing the
four main land-cover classes. All the data were used to both
train and test the analysis. While inter-class separability will be
inflated by this approach (Swain and Davis, 1978), the result ­
100 percent correct allocation - indicated that the end points of
the main heathland classes may be discriminated to a high level
of accuracy from these data.

The extent to which the measures of the probability of class
membership were sensitive to canopy composition was inves­
tigated using the data recorded along the transect. The results
showed that there was a significant relationship between the
probabilistic measures of class membership and canopy com­
position. Table 5 shows the correlation coefficients observed
between the probability of dry heath membership and the pro­
portion of dry heath vegetation for each of the measures of
probability. Because the probabilistic measures are strongly re­
lated to the composition of the canopy, probability mapping
should therefore be an appropriate technique for the represen­
tation of heathland from remotely sensed data (Foody and Trodd,
1990); an example of such a representation which concurs with
field observation can be found in Wood and Foody (1989). Fur­
thermore, a spatial presentation of results illustrates that vari­
ations in the a posteriori probability values, the measure most
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data sets in the GIS, and provide an indication of classification
quality on a per-case basis. The latter can aid the minimization
of error in GIS analyses, a valuable asset, although, as noted
above, it does increase the volume of data to be incorporated
into the system.

In summary, three points have been made in this article:

• While a substantial amount of information on the class member­
ship characteristics of each case is generated in a maximum-like­
lihood classification, very little is usually output. In the classification
two measures relating to class membership are encountered: a
posteriori probability and typicality. Outputting these measures in
addition to the conventional output, most likely (forced) class of
membership labels, provides considerably more information to
users.

• The case studies showed examples of how the probability mea­
sures can be used to improve the value of a classification. In the
case of the crop classification, typicalities were used to identify
cases that were atypical of their most likely class of membership.
This allowed field surveys to be directed to regions where there
was a high possibility of misclassification and the classification
modified accordingly, increasing classification accuracy. For the
semi-natural vegetation, the probabilities were able to model more
realistically the manner in which vegetation classes inter-grade
than did the output of the conventional classification.

• The probability measures provide an indication of classification
quality on a per-case basis. This is a valuable supplement to the
conventional classification accuracy statement which can be at times
only a poor indicator of the overall classification accuracy. Knowl­
edge of the quality of the classification on a per-case basis will
enable, for instance, fuller use of the classification within geo­
graphical information systems, where information on data quality
is paramount to determining the system's value.
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