
Long Sequence Time Series Evaluation
Using Standardized Principal Gomponents

Abstract
The potential of using Standardized Principal Components
for the analysis of long time series of spatial envircnmental
data is ossessed using a sertes of 36 monthly AvHRR-derived
Nnvt images for Africa for the years 7986-88 as an illustra-
tion. The first component is found to represent the charac-
teristic NDw rcgardless of the season. The second, third, and
fourth components relate to seasonal changes in Nnw. The
fifth and sixth components uncover a sensor-related drift in
the Nnvt values due to successively later equatorial crossings
of the NOAA-I satellite. The seventh and eighth components
illustrate NDw anomalies related to significant El Ninol
Southern Oscillation (nt'tso) events, primarily in southern
Africa. The technique is shown to be a comprehensive indi-
cator of change events in time series data that is sensitive to
periodic and aperiodic events alike.

Introduction
Principal Components Analysis (pcA) using Unstandardized
Components has long been used in remote sensing as a data
compression tool. The first two components of Standardized
pcA have also been used for land-cover classification, but
with mixed results (Tucker ef o1., 19BE; Townshend et o1.,
1987). However, a recent study has suggested the potential of
using PCA and Standardized Components as a tool for the
analysis of change in spatial time series data (Eastman,
1992a). In that study, a PCA procedure capable of analyzing
up to 12 bands was used to study artificial data sets and 
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monthly AvHnn-derived Normalized Difference Vegetation
Index' (Novt) imagery for Africa over the course of a year
and for the same month over four years. The results showed
that the technique is able to identify both cyclic seasonal ele-
ments of change and isolated change events. In this study, a
modification of the PCA procedure allowing a large number
of bands to be analyzed is used to study tli'e pote'ntial of
Standardized Principal Components for the analysis of long
time series data sets.

Principal Components Analysis undertakes a linear
transformation of a set of image bands to create a new band
set with images that are uncorrelated and are ordered in
terms of the amount of variance explained in the orisinal
data (Johnston, 1980, pp.127-1,5liMather, f SOZ, pplZOO-
218). Most commonly, the technique has been used in re-
mote sensing as a procedure for data compression by dis-
carding minor components with little explanatory vilue.

'The NDVI index is derived by dividing the difference between the
infrared and red images by the sum of the infrared and red images,
i.e., NDvr = 0R - R/OR + R).
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With Unstandardized PCA, the transformation coefficients are
developed by computing the principal eigenvectors of the
variance/covariance matrix. In this way, bands with higher
variability contribute more to the development of the new
component images. With Standardized pcR (Singh and Harri-
son, 1985) the eigenvectors are computed from the correla-
tion matrix. The effect is to force each band to have eoual
weight in the derivation of the new component imagei and is
identical to converting all image values to standard scores
(by subtracting the mean and dividing by the standard devia-
tion) and computing the Unstandardized Principal Compo-
nents of the results.

Eastman (1992a) has shown that, when the image data
set consists of a single variable time series of environmental
data, the first standardized component indicates the charac-
teristic value of that variable while the second and all re-
maining standardized components represent change elements
of successively decreasing magnitude. In addition, both East-
man (1992a) and Fung and LeDrew (1987) indicate that Stan-
dardized PCA appears to be more effective than
Unstandardized pca in the analysis of change in multi-tem-
poral image data sets.

Long Sequence Time Series PCA
In this study, the PCA procedure of the IDRISI software system
(Eastman, 1992b) was modified to allow the computation of
up to 62 components in order to examine the utility of the
approach for the investigation of long time series data. To fa-
cilitate data entry, image file names are entered by means of
a standard IDzuSI time series file-a simple ASCtt file of imaee
names that is used in a variety of time ieries procedures
such as image display sequencing and time profiles. Output
consists of the component images and a set of data tables.
Full tables of the variance/covariance and correlation matri-
ces, eigenvalues and eigenvectors, and component loadings
are provided for the first 12 components. In addition, a data
file consisting of the eigenvalues and the component load-
ings for all components is created in a format suitable for in-
put into a spreadsheet.

To test the technique, a 36-month sequence of avrinn-de-
rived wovI data was analyzed for the continent of Africa. The
data were extracted from the NGDC Monthly Generalized
Global Vegetation Index data set within the NOAA-EPA Global
Ecosystems Database (NOAA-EPA, 1992). The data set used
consisted of 10-minute resolution raster data sets of NDVI for
the months of lanuary 1986 through December 1988, scaled
by NOAA to an B-bit integer range. An ocean mask image
from the U.S. Navy Fleet Numerical Oceanographic Center
Global Elevation data set, also within the NOAA-EpA Global
Ecosystems Database (NOAA-EPA, 1992), was used to mask
water areas. Assigning the value zeto to all water areas as-
sures that these regions are forced to show up in the first
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Plate 1' Standardized Principal Component lmages 1 through 8 derived from monthly NDV; data, January 1986 to December
1988"

component, thus removing them from all change compo-
nents,

The 36-Month Africa Time Series Experiment
The interpretation of the results of using standardized pCA
on 36 monthly NDVI images for Africa is based on the exami-
nation of the component images (Plate 1) and the graphs of
the co-mponent loadings (Figure 1). The loading ctiarts illus-
trate the correlation between each of the 36 monthly images

1308

and the component being diagrammed. For example, if a
month shows a strong positive correlation with fspecific
component, it indicates that thai month contains a latent
(i,e., to some extent hidden or unapparent) spatial pattern
that has strong sim',larity to the on-e-depicied in the compo-
nent image. Similarly, a strong negative correlation indicltes
that the monthly image has a Iatent pattern that is the in-
v-erse of that shown (i.e., with positive and negative anom-
alies reversed). To enhance the visualization oT the
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Figure 1. Loadings (y-axis-) of the original monthly images (X-axis) on the first eight standardized principal components. Loadings
can equally be thought of as the correlation between the original images and the derived components,



components in Plate 1, a linear contrast stretch was applied
to the output images of the PcA software program. In the case
of the first component in Plate 1, the minimum and maxi-
mum values were used as the bounds of the stretch. For all
other components, however, stretches were forced to be sym-
metrical about the value 0 (the no change value) with a mild
saturation (1 percent maximum) in the tails," This no change
position has a yellow color while positive and negative
anomalies show up in increasing levels of green or red/
brown respectively, In all cases, water areas were masked to
have a black color.

The first chart in Figure 1 illustrates the Ioadings from
the first two Standardized Principal Components. Compo-
nent 1 (Plate 1 and Figure 1) clearly represents the character-
istic NDVI integrated over all seasons-the loadings are high
and very consistent over the entire period. In effect, this
component indicates that the major element of variabili.ty in
NDVI is that which occurs spatially,

Component 2 illustrates the first change component -
the most prevalent element of variability in tr,uvt that is un-
correlated with the characteristic pattern in Component 1, As
can be seen by the loadings in Figure 1, this component
shows an annual cycle indicating that this second major ele-
ment of variability in wovt in Africa is that caused by the
winter/summer dichotomy, Summer months correlate pos-
itively with the component while winter months correlate
negatively.3 The negative correlation thus indicates that the
winter months tend to have an inverse oattern to the summer
pattern shown.

The second chart in Figure 1 illustrates the loadings
from the third and fourth components. Component 3, like
Component 2, also shows an annual cycle, but this time it
indicates areas that undergo strong changes in the late spring
and autumn periods. In Plate 1, Component 3, quite promi-
nent positive and negative anomalies are seen in the Guinea-
Congolic/Zambesian and Guinea-Congolic/Sudanic vegetative
transition zones (White, 1983), These areas are south and
north of the central equatorial forest region, respectively.
These areas experience maximum vegetation peaks in the
late fall and late spring, respectively, as a result of the coin-
cidence of the sun's latitudinal position and the rainy sea-
son. In addition, the image shows a quite intriguing positive
anomaly across the Sahel and into the Ethiopian highlands.
The pattern in the Ethiopian highlands is easily explained-
the area normally experiences wet and dry periods at these
times. However, the interpretation of the pattern in the Sahel
is not so obvious. The late autumn (the time at which the
positive anomaly is strongest) is normally a time of signifi-
cant decrease in biomass, yet the image for Component 3 in-
dicates that the vegetation index is abnormally high for this
time of year. This is also the time of the Harmattan winds, a
prevailing wind pattern out of the Sahara that leads to signif-
icant amounts of dust in the Sahel, Althoueh further data
would be needed to confirm this, the evideice in the data
suggests that atmospheric dust is leading to a greater NDVI
measurement than anticipated, The greater attenuation of the
shorter red wavelengths compared to the infrared wave-

lengths would naturally lead to a larger NDVI measurement
than expected. Figure 2 illustrates a time series profile over
the 36-month sequence of Novt measurements for a repre-
sentative area in this region. As can be seen, the expeited
sjnusoidal shape of the annual NDVr pattern is broken by a
distinct shoulder in the periods from November until March,
the period in which the Harmattan winds are normally expe-
rienced. The suggestion is that this shoulder results from an
abnormally high apparent NDVI as a result of atmospheric
dust. In addition, the pronounced drop in NDVI jusfbefore
the late summer green-up period may relate to the cleansing
of atmospheric dust by early rains. These rains would re-
move dust from the air, but the vegetation would not vet
have had time to respond. Thus, vie see a drop to the mini-
mum NDVI level, followed by an increase as the green-up pe-
riod proceeds,

As can be seen in Figure 1, Component 4 shows a pro-
nounced and consistent semi-annual sequence. Examination
of the component image (Plate 1) clearlyshows that this il-
Iustrates the regions subject to a double precipitation maxi-
mum due to the double crossinq of the Inter-Trooical
Convergence Zone (compare, foi example, to Figure 1B in
WMO (1984) that maps these areas).

Components 5 and 6 are particularly interesting. The
graph of loadings for Component 5 (Figure tl showJ a pro-
gressive trend over the three-year period. The image of Com-
ponent 5 indicates a high positive anomaly in desert areas
(note the Sahara) and the lakes of East Africa, Clearlv this is
illogical because it suggests that desert and water 

".6", "r.increasing in wovt over time. A time series profile for repre-
sentative locations within these regions (Figure 3), however,
confirms this trend in the data. Aiindicated in Tateishi and
Kajiwara (1992), the NOAA-s satell i te experienced a progres-
sive delay in the time of equatorial crossing (from 14:20 in
December 1984 to 16:10 in November 19BB), Ieading to suc-
cessively shallower solar angles and, hence, longer atmos-
pheric paths. Tateishi and Kajiwara (1992) state that the
effect of this is to diminish, through scattering, the shorter
red wavelength reflectances more than the lJnger infrared
wavelength reflectances. As a result, the NDVI iarould ap-

,A 1 percent saturation forces the highest 1 percent of data cells to
take on the brightest color and the lowest 1 percent to become the
darkest color, regardless of actual value. Beciuse the stretch was
forced to be symmetrical about 0 (no change), the stretch was under-
taken using end points such that a maximum of 1 percent would be
saturated in any tail.

3Because Africa spans the equator, seasonal terms (winter, sum-
mer, etc.) for the northern hemisphere have been arbitrarily adopted
throughout this article.
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Figure 2. Time series profile of monthly NDVI for a repre-
sentative site in the Sahel affected by the positive anomaly
in Component 3, January 1986 to December 1988.
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Figure 3. Time series proflles of monthly NDVI for sites in
the central Sahara Desert and Lake Victoria, January 1986
to Decernber 1988.

pear to increase in these areas. Component 5 has thus de-
tected a known and significant false trend in the NDVI
data.a

In addition to the systematic trend in Component 5,
the loadings also show a somewhat irregular semi-annual
cycle such as that found in Component 4. Examination of
the time profi les in Figure 3, however, clearly i l lustrate
that the loading pattern is a composite of the cycles associ-
ated with an annual cvcle in the Sahara and the semi-an-
nual cycle associated iryittr the precipitation maximum of
the lakes of equatorial Africa. Component 6 would also ap-
pear to relate to this sensor effect, As indicated by Tateishi
(personal communication, 1992) this progressive drift in
the NDVI output has the effect of decreasing the range of
NDVI in forested regions. This is i l lustrated by the decreas-
ing amplitude of the cyclic pattern of loadings on Compo-
nent 6. The semi-annual cycle is typical of that associated
with the double precipitation maximum of equatorial forest
areas (such as we see in Component 4), and fhe amplitude
is clearly decreasing, Similarly, the component image
(Plate 1) shows a strong negative anomaly in heavily for-
ested regions of the continent.

The analysis thus shows that, after the general geograph-
ical and major seasonal effects, the next major agent of varia-
bility in the vovt data over the three-year period was system-
related variability in the output of the AvHRR-derived index
itself. It should be noted that, once a change component has
been created, the effects of that component are then held
constant as subsequent components-are calculated (Johnston,
1980, pp. 739-747), To the extent that Components E and 6
are able to describe these sensor system effects, later compo-
nents would thus be free of their influence.

Components 7 and 8 (Plate 1 and Figure 1) are also of
considerable interest, Both would appear to relate to El-Niflo/
Southern Oscillation (rNsO) events spanning the 1986-88 pe-

riod. Late 1986 and 1987 experienced a pronounced ENSO
warm phase, followed in 19BB by a sharp transition to an
eruSo cold phase (WMO, 19Bg). ENSO warm phases are typi-
cally associated with drought in southern Africa and en-
hanced precipitation in equatorial East Africa (WMO, 1984;
1987; 19Sg). The southern Africa ENSo pattern is clearly visi-
ble in the images of Components 7 and B in Plate 1. Simi-
larly, the loading charts for these components showpositive
correlations with 1987 and negative correlations with 1986
and 1988. It would appear that the two components show
the spatial progression of the drought. For example, in Com-
ponent 7, with a peak correlation in early 1987, the area
most strongly affected in southern Africa is Botswana' How-
ever, in Component B, with a peak correlation in late 1987,
the area most strongly affected has moved towards the east
coast. As noted in WMO (1989), the pattern for equatorial
east Africa did not show a typical ENSo pattern during this
particular ENSo episode. We see this in the more typical
moist pattern for east Africa in Component 7, giving way to a
drier pattern in Component B.

The procedure developed for this analysis is capable of
producing as many component images as there are original
bands in the data. However, examination of Components 9
through 12 did not show any significant regional effects.
Rather, more localized changes appear to be brought out. As
a result, the analysis was stopped after the eighth compo-
nent. It is worth noting, however, that no clear guidelines ex-
ist for when to stop an analysis. In PCA, the strength of a
component (as reflected both in the eigenvalue and in the
range of loadings on that component) will be determined by
both the magnitude of the variability it explains and the area
over which that variability occurs. Thus, change elements in
time series analysis will be area weighted. Small magnitude
changes may come out in early components if they affect
large areas. Conversely, large effects may come out in later
components if they occupy only a small portion of the area
analyzed. Thus, it would not be unreasonable to examine mi-
nor components (such as those beyond component B in this
analysis) if very localized effects were of interest.

Conclusions
It would appear from the above illustration that the ability of
Standardized Principal Components to uncover significant
change events over long time series is very strong. The ENSo-
related precipitation patterns represent the most significant
anomalies to take place over Africa during the 1986-88 pe-
riod. Not surprisingly, these were lower in magnitude than
the effects attributable to seasonal changes. It is also interest-
ing that the procedure picked up significant anomalies in the
output of the sensor system itself, and that these were also
seen to be of greater magnitude than the ENso events. How-
ever, as noted above, components are effectively area
weighted. The sensor drift effect is in fact quite small but af-
fects broad areas of the image (particularly the Sahara). The
ENSO effects occupy substantially less area but have a dra-
matic effect on natural ecosystems,

Standardized Principal Components Analysis would
thus appear to be a remarkably comprehensive tool for the
analysis of anomalies and trends in Iong time series data. It
is clearly very effective in isolating periodic seasonal effects,
However, it is equally effective in isolating trends in value
and variability (as with the sensor drift problem) and iso-
Iated anomalous events. Given our general lack of techniques
for the abstraction of significant change events in Iong time
series image data, the technique should prove to be a major
tool in the areas of remote sensing and cts.

{It is interesting to note the drop at the end of the sequence back
to approximately the zero correlation level. The majority of the No-
vember 1988 data and all of the December 1988 data were actualiv
derived from NoAA-rr, not NoAA-e.
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