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Abstract
The methods and results of using Landsat Thematic Mapper
(rM) doto to classify and estimate the acreage of forest cover
types in northeastern Minnesota are described. Portions of
six TM scenes covering five counties with a total area of
14,679 square miles were classified into six forest and five
nonforest c/osses. The approach involved the integration of
sampling, image processing, and estimation. Using two-stage
sampling, 343 primary samp)ing units (PSu), each BB acres
in size, were photo interpreted and field mapped os d source
of reference data for classifier training and calibration of the
ru data classifications.

Classification accuracies of up to 75 percent were
achieved; most misclassification was between similar or re-
Iated classes. An inverse method of calibration, based on the
error retes obtained from the classifications of the esu plots,
was used to adjust the TM classification proportions for clas-
sification errors. The resulting area estimate for total forest-
land in the five-county area was within 3 percent of the
estimate made independently by the USDa Forest Service.
Area estimates for conifer and hardwood forest types were
within 0.8 and 6.0 percent, respectively, of the Forest Sewice
estimates. A study of the use of multidate tw data for
change detection showed that forest canopy depletion, can-
opy increment, and no change could be identified with
greater than 90 percent accuracy. The project results have
been the basis for the Minnesota Department of Natural Re-
sources and the Forest Service to define and begin to imple-
ment an annual system of forest inventory which utilizes
Landsat ru data to detect changes in forest cover,

Introduction
Forests covering 16.7 million acres, or nearly a third of the
Iand area of Minnesota, are a significant component of the
state's natural resource base and a significant contributor to
its economy. In spite of growing demands for information
about the state's forest resources, statewide inventories are
conducted only at about 1S-year intervals. Although forest
stand growth models have become increasingly important for
updating inventory information and projecting future forest
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conditions (Ek, 1983), such updates are l imited because of
their concentration on existing forested plots. Total forest
area and area by cover type change because of cropland
abandonment, harvesting, and urban development. Such
changes are extremely difficult to model; that is a major rea-
son for wanting to use satellite data to determine forest areas.
Because the mean characteristics of forest strata change rela-
tively little, the major inventory problem is to estimate the
amount and location of the strata.

For many years foresters have effectively utilized aerial
photography as a tool to help monitor and manage forest re-
sources, and aerial photographs are an integral part of most
forest inventory procedures. The launch of Landsat-1 in 7972
added an entirely new dimension to the capability to acquire
Earth resources information, and there has been much inter-
est in the potential of satellite data and computer-aided
analysis techniques to identify and map forest resources. AI-
though it has generally not been possible with Landsat MSS
data to achieve satisfactory classification accuracy for any
but the most general classifications in the Great Lakes States,
a number of studies have shown that the information content
of Landsat Thematic Mapper (rv) data is considerably higher
than that of t'lss data (Price, 1984; DeGloria, 1984), and that
the additional spectral bands and finer spatial and radiomet-
ric resolution of tv data result in significant improvements
in classification accuracy for more specific information
classes describing forest species (Horler and Ahern, 1986;
Moore and Bauer, 1990J and forest stand characteristics (Pe-
terson ef o1., t986; Will iams and Nelson, 19s6). The results
of Moore and Bauer (1s90), which provided much of the im-
petus for this research, showed a 15 to 20 percent increase in
classification accuracy of tv data over trls6 data, with TM ac-
curacies of greater than B0 percent for seven classes.

Objectives
The overall objective of the research was to develop and test
procedures for using multispectral satellite data to inventory
forest resources in the state of Minnesota. Specific objectives
were to

r Develop a methodology to use digital satellite data and com-
puter-aided pattern recognition to classify forest cover types
which will be compatible with and complementary to the
other surveys conducted by the Minnesota Department of
Natural Resources and the U.S. Forest Service;
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. Estimate forest areas and produce digital maps of the state,s
forest resources by species group at County, iegion, and state
levels, and determine the aicuracy and p.Lcisi6n of the forest
area estimates and maps derived from satellite data, com-
pared to traditional forest inventory estimates;

. Investigate alternative innovative approaches to satellite data
classification, sampling, and estimation and determine to
what degree satellite data classifications can be used to ob-
tain additional information such as stand density, size class,
and disturbance; and

. Integrate the satellite data classification, sampling, and esti-
mation designs and procedures into the Forest Resource As-
sessment and Analysis Program of the Minnesota Department
of Natural Resources (nr.rR) and Forest Inventory and-Analysis
(rn) of the U.S. Forest Service,

The goal of the project was to develop and implement a
methodology to provide cover type area estimates of * S per-
cent at the g5 percent confidence level at the state level ind-f 10 percent with 9O percent confidence at the county level,
Other performance goals of the final inventory procedure
were (1J cost $0.01 to $0.02 per forested acre, (2) one year to
acquire and analyze the data, (3) procedures that can be im-
plemented by the DNn with reasonable personnel and capital
costs, and (4) enough flexibility to meet changing conditions
or requirements.

Two important underlying premises of the objectives
and approach tested in the investigation are (1) that the syn-
optic view of Landsat provides the opportunity to obtain for-
e-st inventory information over large areas (i.e., state) and (2),
that_by using _computer data analysis methods to classify pix-
els distributed over counties and unique sampling designi, it
is also possible to make accurate and preciseistimates for
local areas (i.e., counties). This approach offers a means to
improve upon the sampling methods now used for making
area estimates from ground-based, two-phase surveys. At the
same time, the ground data (which are also used to estimate
other parameters such as forest stand characteristics; there-
fore, its collection cannot be abandoned) will be used to re-
move the bias from (i.e., to correct) the satellite-based
estimates. An important consideration in the proposed ap-
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proach-is that improved cover type estimation techniques
would lead to more efficient and timelv forest descripiions
for a variety of purposes,

. Multispectral Landsat TM data, together with ground-
based forest inventory data were usedlo produce in inven-
tory of Minnesota forest lands, along with a methodology for
frequent rFdates. The followilg seclions describe the sihple
design and survey model, satellite data classification methl
ods and results, calibration and evaluation of Landsat area
estimates, change detection using multidate Landsat data,
and, lastly, the use of satellite remote sensing for operational
forest inventories in Minnesota. The emphasls is on describ-
ing new approaches to forest inventory using satellite data.

Background
Study Area
The study area for the project consisted of five forested
counties in northeastern Minnesota (Figure 1), totaling some
9.4 million acres. The region stretches nearly 230 mil6s easV
west and 170 miles north/south. The study irea couesponds
to the USDA Forest Service's Forest Inventory and Analysis
(na) survey unit one, commonly referred to as the nspen/
Birch unit (Miles and Chen, 1992). The study area is Lom-
prised.of a- variety of-forest types, with primiry types being
aspen-birch, spruce-fir, and pine.

. Ihr geology of this region is largely the result of glacia-
tion (Wright, 7972), The northeastern portion of the area.
Lake and Cook counties, is marked wiih an abundance of Ca-
nadian Shield lakes, and displays relatively large topo-
graphic variations. The western half of the region, 

-

Koochiching county, is a vast lowland with iitermittent mo-
raines. The centralportion of the region is characterized by a
variety of geologic formations, and is heavily forested. The
99ni1al portion of .St. Louis county is dominited by granite
highland termed the "Iron Range,;' and is home to numerous
mining operations. In southern St. Louis and Carlton coun-
ties, agriculture and other non-forest Iand uses are more
prevalent. Even so, these areas are still predominatelv for-
ested.

Hardware and Sottware Environment
Image processing was performed on SUN Sparcstations and
386 microcomputers, Raster-based image processing and cIS
procedures were completed using worlistalion ERDTS (Earth
Resources Data Andysis System). Vector GIS and data devel-
gp-r{lent procedures were completed using pc ArcAnfo 3.4D.
Additional routines were developed in-h6use using C and
other script languages.

hndsat Data
The image data for the project consisted of portions of six
Landsat TM scenes (Figure 1). Data were collected between
29 May 19BB and 14 June 1988, with scenes along the same
path being collected on the same day. All images 

-were 
vir-

tual]y cloud free, with any clouds oicurring oirtside of the
study area; however, haze was observed over water bodies
withil the path 26, row 26 scene covering the northeast por-
tion of the study area.

All scenes were rectified to the UTM (zone 1S) projection
and coordinate system using a nearest-neighbor resimpling
scheme to preserve the original digital numbers. Rectification
allowed for relatively easybverlay of reference data sets for
training and accuracy assessment. Because of the inherent
problems of working across scenes of differing acquisition

I
I

Figure 1. Location of five-county project study area in
noftheastern Minnesota (FtA aspen-birch unit) and Landsat
TM scenes.
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dates (changes in atmosphere, sun angle, and phenology),
processing was limited to within scene (or path) processing.
Consequently, three separate image datasets were processed;
they were merged only as classified (cts) files.

Relerence Data
Reference data sets were generated using prints (scale
1:9,400) and transparencies of 3S-mm color infrared aerial
photography. Seven Iines of photography were gathered at
equal intervals across the study area (Plate 1A). Interpreta-
tion units were defined as B8-acre (approximately !a- by
112-mile) primary sampling units (PsUs) spaced roughly one
mile apart over the entire length of the flightlines fPlate 1B).
A total of 3+3 psus were stereoscopically interpreted into ap-
proximately 100 cover type, size, and density classes (Table
1). Subsequent to photo interpretation, all psus were visited
on the ground, or viewed from the air if ground access was
limited. Cover type designations and boundaries were veri-
fied or, if necessary, corrected, either for errors in photo
interpretation or for chanses that had occurred between the
Landsat and aerial photog"raphy acquisition. The PSUs were
Iocated on uscs 7.S-minute quadrangles, and the PSU and
cover type boundaries were digitized using pc ArcAnfo. Ref-
erence datasets were then rasterized and linked to attribute
data (i.e., type, size, and density) and registered to the Land-
sat image data.

Suruey Design
Given the emphasis on forest area estimation and satellite
data, there is much potential for gains from refinements in
survey design. Designs using large PSUs have been shown to
be an effective means of collecting forest inventory informa-
tion (Scott ef o1., 1983). In particular, Benesslah (1985) has
shown that such layouts have decided advantages for ground
checking of remotely sensed data. Advantages include ease
of field work, variance reduction, and the provision of area
data as proportions (fractions of area) rather than binary (0-1)
counts, Proportion data facilitate the use of remote sensing
data because it is relatively insensitive to scale problems.
The sampling design used was a single-phase design involv-
ing Landsat classifications of the entire area and ground
checking of a sample of large PSUs. This exploited the synop-
tic coverage of satellite-acquired digital remote sensing data,
with the advantage of using all of the pixels in the popula-
tion for making area estimates.

The psus were photo interpreted, as well as observed on
the ground, to assess forest type. The PSUs might be 10 to
100 or more acres in size; however, the size used here was a
consistent BB acres (equivalent Io 17 by 23 TM pixels). The
ground sampling (field visit) established an accurate type
map for each PSU, i.e., polygons in the PSU were identified
and labeled as to cover type. This meant usage of cover types
and boundaries according to standards of interest to forest
management (Table 1). Psus were distributed systematically
(with a random start) across the survey unit (Piate 1BJ. The
ground sample PSUs were then used to train the classifier,
and subsequently the classifications became the dependent
variables for regression estimates of the population propor-
tion of the PSUs in the various cover types.

The ground PSUs were very inexpensively mapped and
field checked using large-scale color infrared aerial photogra-
phy. Total costs of photography acquistion, photo interpreta-
tion and preliminary cover type of the PSUs, field verification
of cover types and boundaries, and digitizing Psu and cover
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TneLe 1. Hrenancnv or lruroRuertoru Cusses FoR PHoro INTERPRETATIoN AND
CLnssrncmoru oF LANDSAT TM DATA. THE FoREsr Coven Tvpes Wene Funrnen

Sunorvrogo rNTo THREE Cnowr't Ct-osune AND THREE StzE Cusses.

Photo Interpretation Classes Satellite Classes Code

Lowland Hardwoods

A  c n c n / R i r e h

Northern Hardwoods
Upland Conifers

Balsam FirMhite
Spruce

Lowland Confiers

Shrub/Cutover/Grass

a . " i ^ , , 1 r , , " 6

Developed

Water
Marsh

Ash
-E,lm

AsperVBirch
Aspen
Paper Birch
Northern Hardwoods
Upland Conifers
Red Pine
White Pine
/ack Pine
Balsam FirAVhite Spruce
Balsam Fir
White Spruce
Lowland Conifers
Lowland Black Spruce
Tamarack
Northern White Cedar
Cutover Area
Lowland Grass
Upland Grass
Brush
Cropland, Pasture
Urban and Industrial
Recreational Development
Water
Marsh
Muskeg

LH

NB

NH
UC

BF/lVS

LC

S/C/G

Ag
Dev

w
MA4

type boundaries and attribute data were approximately $100
per Psu. The photography was essential for Iocating the Psus
and delineating cover type boundaries. Its use also expedited
the cover type identification.

Landsat TM Classification Methodology and Results
Although more than 100 land-cover classes resuited from
interpretation of the aerial photography, it was apparent that
such a detailed classification was not possible with the satel-
lite data. In many cases there were not enough pixels in the
reference data for training and classification. In other cases,
initial tests showed no promise in separating certain classes
(e.g., aspen versus birch). The reference (ground) data classes
lvere then condensed into 11 (six forest, five non-forest)
cover types based on spectral and forest management consid-
erations as Iisted in Table 1.

In addition to the six reflective rM bands, a set of six
vegetation indices (vts) were added to form 12 feature sets
used for classification. The vls were chosen to be a repre-
sentative sample of the possible such indices. The first set of
indices consisted of the^first three Tasseled Cap components
- greenness, brightness, and wetness - with coefficients
given by Crist and Cicone (1984). While greenndss is the
most indicative of vegetation cover, brightness is also related
to vegetation cover. Wetness is related to moisture content
and may be useful for wetland delineation and/or upland
versus lowland forest types. The second group of vls were ra-
tios that have been found to intensify forest canopy charac-
teristics. This group consists of rv+/rug, TM4|TM2, and rlts/
TM4 ratios. Jensen (1S83), among others, states that TM4/TM3
provides information with respect to vegetation and canopy
condition and that TM4lTMz may be a promising feature for
wetland identification. The TMs/TM+ ratio has been used in



Plate 1. (A) Mosaic of Landsat TM images with overlays of
aerial photography flightlines (N-S lines) and boundaries of
physiographic strata. (B) Overlays of forest type polygons
on Landsat TM imagery for two sample units (left). Loca-
tions of aerial photography flightlines and sample units are
shown on right hand image.

Plate 2. Final classiflcation of Landsat TM data of five-
county study area.

resented classes. In most cases, less than 50 percent of unsu-
pervised classes could be named, and in no cases could
classes be developed for all target classes.

An alternative to the supervised and unsupervised ap-
proaches is what we have called "guided" clustering. The
procedure makes use of both supervised and unsupervised
techniques, but avoids many of the problems associated with
each individually. The method makes use of analyst defined
training data, in our case, digitized cover type polygons from
the interpreted photo plots (esus), to identify image pixels of
a single class that are clustered into spectrally homogenous
sub-classes. An example of two PSUS with cover type poly-
gons delineated is shown in Plate 2. The processing stream
was follows:

(1) Delineate image pixels for target class A;
(2) Using IsoDATA, cluster class A pixels into sub-classes A1,

42, ..., An;
{3) Repeat Steps 1 and 2 for all 1t target classes;
(4) Perform maxirnum-likelihood classification using all sub-

classes on the entire image;
(5) Collapse (REcoDE) subclasses back to the original 11 target

classesi and
(6) Perform post-processing procedures (e.g., majority filtering).

Guided clustering provided consistently superior results to
any of the other methods tested. The process is highly auto-
mated, so was ideal for large area application. The approach
combines the training and classification approach with sta-
tistical information from the primary sampling units.

The sheer size of the area to be classified created many
obstacles that had to be overcome. It was clear from visua]
assessment of the Landsat imagery that land-cover gradients
efsted within the scenes. In addition, atmospheric and
phenologic differences existed from north to south and, to a
lesser extent, from east to west through the study area. To
compensate for such differences, physiographic regions de-
lineated by Wright (7972) wete used to segment the study
area into eight sub-regions (Plate 1A). TM images for paths 26
and 28 were not segmented into sub-regions because there
was not sufficient training data for all of the physiographic

studies related to conifer canopy structure [Peterson et o.1.,
1986).

A number of classification processing approaches were
evaluated for their utility in large area classification. Both
supervised and unsupervised, and a combination of super-
vised and unsupervised, approaches were examined. Super-
vised techniques were tietermined to be inadequate for a
number of reasons: extreme forest complexity, narrow cover
type spectral separability, and limited potential for auto-
mited processing. Several types of clustering methodologies,
from standard lsooata clustering (ERDAS, 1991) to hierar-
chical strategies defining more than 1,000 classes, were
tested. In all cases, the ability to name the resulting classes
was lirnited by the within-class variability to a few well rep-
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TeeLE 2. DrsrRrBunoN (%) or Coven TypEs FoR Ercx Pnysroompxrc Reeroru ls DerERr.,rtNEo FRoM REFERENCE Drn. See TaaLE 1 ron DescRtmoru or
Coven Tvpe Cooes.

Cover Type Class

Region DNHA/BLH UC BFAVS LC s/G/c Ag w lwM

Agassiz
Border Lakes
Laurentian
Mille Lacs
Iron Range
Tamarack
LS Highlands
Tamarack II

2 .O
0.0
0.0
4.7
1 .0
4,7
1 . 1
2 .7

44.O
22.5
40.4
23.9
41.2
22.2
39.S
39.9

0.0
0.0
0 .7
7.O
1.9
4.O

11.8
1.3

2 .3
29
19.1
0

3.0
2.O
4.3
0.4
2 .6
3 . 7
3 .6
1 .3

1 3 . 3
72.6
26.5
13.3
9 .8

34.5
10.2
19.8

6 .0
1 . 1
5 .3

13.4
8.6

78.2
9.4

12.4

3 .6
0.0
0 .0

25.2
2.8
3 .9
7 .7
2 .9

1.0
o.2
0.0
1.9

18 .8
4.9
5 .1
1 .9

20.3
31.1

1 .5
3 .0
5 .2
0 .1
6.4
t . J

4.5
1 . 1
2 .2
7.8
o .7
4.4
2.4
7 .6

0.0
3.0
3.3

regions falling within each image. The resulting cover type
distributions for the reference data are shown in Table 2. The
distribution of cover tJpes across physiographic regions is
not constant, and is actually quite varied, a good indication
that the segmentation scheme accomplished what we had
hoped. Each physiographic region was classified using the
guided clustering approach described above. The use of the
physiographic stratification prior to classification increased
the overall classification accuracy by 10 to 15 percent. Once
classified, the subregion GIs files were re-assembled into the
county and suwey unit files.

After classification, the images were majority filtered to
remove "salt-and-pepper" artifacts in an attempt to re-create
the forest stand (polygon) structure inhspsa[ in the reference
data. Tests against reference data indicated an optimal win-
dow size between 4 and 5 pixels square. A 5 by 5 window
was chosen for ease of application and to minimize bias.

The final classifications for the 11 target classes for the
entire study area are shown in Plate 2. Overall classification
accuracies ranged from 64 to B0 percent, with average class
accuracies from 63 to 76 percent (Table 3). The Kappa statis-
tic (Congalton and Mead, 1986), which removes the contribu-
tion of correct classification due to chance, ranged from 0.56
to 0.76. Example enor matrices are given in Tables 4 and 5.
Overall accuracy of classification of forest, nonforest, and
water for these two examples was BO percent for Koochich-
ing County and 85 percent for Lake Superior Highlands. The
overall accuracy of classifying conifer versus hardwood for-
est, along with nonforest land and water, was 79 percent in
Koochiching County and77 percent for the Lake Superior
Highlands. Because of the necessity to use all of the available
reference data for classifier training, all of the reported clas-
sification accuracies are for training data. All pixels within
the primary sampling units werc included in the determina-
tion of classification accuracy.

The majority of classification errors for forest classes oc-
cuned in adjacent classes such as lowland hardwood and as-
pen&irch, lowland conifer and balsam fir/white spruce, and
northern hardwood and aspen/birch. The classes of agricul-
ture, developed, water, and marsh were classified relatively
accurately, generally 75 percent or higher. The shrub/grass-
land/cutover class was the most prone to misclassification; it
was confused with all classes, especially other types of forest
and non-forest vegetation. In general, similar or related
classes were more l&ely to be confused with each other than
with different classes.

Part of the misclassification results from the considera-
ble difficulty in assigning a unique label to each polygon in
the reference data and pixel in the Landsat data. The tradi-
tional concept of a forest stand, which we used in develop-
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ing the reference data, often does not relate to or capture the
variability that is present in satellite imagery. Forest stands
tend to be defined by management considerations, whereas
the multispectral radiances measured by the TM data are de-
termined by the biophysical properties of the cover type(s)
within each pixel.

Two additional observations can be made about classifi-
cation accuracy. First, while satellite imagery is typically re-
ferred to as having low resolution (at least in comparison to
aerial photography), it actually has much higher resolution
than forest cover t1pe maps. The minimum mapping unit for
our reference data was 2.5 acres, compared to the 1/4-acre
pixel size of the wt data. Many inclusions of spatially small
iover types were not mapped in the reference data, and,
even if correctly classified in the TM data, would show up as
classification errors. Second, at the pixel level the accuracy
of the reference data is probably no better than 75 to 80 per-
cent. Therefore, it is impossible to achieve measured classifi-
cation accuracies of more than that. It also can be noted that
large area classification is a more difficult problem, likely to
result in lower classification accuracy, than found in pre-
vious studies which were typically classifications of small
areas.

Calibration of Landsat fuea Estimates
The satellite imagery provided estimates of type acreages for
the area as a whole (Table 6). However, it is probable that
those estimates have a bias associated with them. The
ground survey Psus provided observations on how the satel-
lite data classifications compared to ground classifications

Tnet: 3. NuMaen or Pntuany Snupunc UNns (N) Useo ron CusstnER
Tnerrrr.rc lr.ro Suuulnv Evlumott or Cusstnclttolt Accuucv.

County or
Physiographic Region

Kappa
N Coefficient

Average
Overall Class

Accuracy Accuracy
(%t (%)

Koochiching County
Iake and Cook Counties
Agassiz
Border lakes
Laurentian
Mille lacs
Iron Range
Tamarack
Iake Superior

Highlands
Tamarack II

67
68
43
38
22
19
3 1
26

42
2 7

0.61
0.60
0.62
0.64
0.67
0.76
0.58
0.60

0.64
0.56

73.1
68.2
69.2
72.9
75.8
80.2
67.6
67.5

63.8
68.8
74.6
72.O
74.9
75.9
65.6
68.5

70.3 73.3
64.0 73.7



TeeLE 4. Cl.cssrRilror.l ERnon Mlrnrx FoR KoocHtcHtNG Coumy.

Landsat TM Classes
Ground
Classes WMAgLH BF/1/VS LC S/C/G Water

LH
A/B
BF/'WS
LC
S/C/G
Ag
Dev
Water
MM

lo Cort.

789
747
86
1 6
Z J
, a

6
30
I

69 .9

727
2364
287
626
309
737

b 4

728
85

50.0

80
7LL
801

A O

d I

J V

25
2 5

63.8

138
220
307

7L477

J 5

0

J + Z

87.4

244
332

78
522
8 3 8
169

I
28
26

J / . J

t o
59

1
1 0
4 J

700

1
1

/  o . J

7
1 B

26
188

z

0

78.3 78.7

0
0

5 2
I
0
0
0

5 3 0

89.1

2 7
5 1

1 8
o
0
E

403

Overall accuracy : 73.1%, Average class accuracy =
TeeLE 5. Cr-rssrncerror

63.8%, Kappa coefficient = 0.61.
Ennon Mernx FoR LAKE SupeRroR HrcHr-ruo PnysroeRepnrc Recror.r.

Landsat TM Classes
Ground
Classes NHA/BLH UC BF/1/VS LC S/C/G A o' _ o Dev Water M/M

LH
A/B
NH
UC
BF/\iVS
LC
S/C/G
A o

Dev
Water
lv{/M

%6 Corr.

0
L 5 Z

0
8
2

3 S
c

1
6

844
3 6

7  8 . 7

0
54
0
2
o

1 1
7
0
0

1 9
289

2 2
J J I

1 0 3
2 7
6 1
76

7 2 7
1 3 S
68

0
t o

7 7 2
J

l l

0
0
0
J

0
0
0
0

91 .0

7 7
4329
370
777
238

304
1 r t

76
b 5

64.7

(

r667

86

7 7
J I

0
0

84.1

0
O J

20
J 9 0

0
20
1 8

5
8

68.4

0
L Z b

2 3
I J

2 7
7449

6

0
20

84.5 q o . a

0
25
e o

2
J

0
3 8

1 0 5 0
34
0
0

88.2

0
A J

29
7

1 /

29
J U

1 1 9
:)u/

C J

1 0

J 6 .  / 74 .5

0
70

0
5

404

1 8
l 3

7
0

o t . l

Overall accuracy = 7O.3%, Average class accuracy = 73.3/o,Kappa coef f ic ient ,  = 0.64.

for the same types, with the ground classifications assumed
to be truth. Observations from the pSUs can thus be used to
adjust the satellite-data-based estimates, a procedure we
hope will result in a reduction or elimination of bias. This
adjustment is commonly referred to as calibration.

As part of the project, Walsh and Burk (1993) compared
the classical and inverse methods of calibratine satellite clas-
sifications where the ground sampling units w6re pixels.
They found, through extensive simulations, that the inverse
method was superior. The choice of the inverse method of
calibration was based on that orevious result and more theo-
retical reasons. With the inverie method, the satellite classi-
fied proportions in the various types are used as
"independent" fwithout error) variables in the regression-
based calibrator, while the ground classified proportions act
as "dependent" (with error) variables. These are reasonable
roles for these variables as the satellite classified proportions
are fixed once the classifier is trained (results are conditional
on that training) and interest Iies directly in predicting
ground classified proportions (i.e., truth). Studies by the
USDA Statistical Reporting Service substantiate the use of this
regression method over the traditionai direct expansion esti-
mator approach (Hanusch ak et aL, 19s2). Findiirgs by Chhi-
kara ef o/, (1986) strongly support the use of the regression
estimator over the direct expansion or stratified ratio esti-
mators except in cases of very poor classification accuracies
in the ground sample units,

The unit of observation for the calibration problem was
the ground psu. For each psu, we have a vectoi of satellite
data classified proportions and a vector of ground classified
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proportions, with the number of elements of each vector
being the total number of types being classified (each vector
may have several zero elements). The elements of the vectors
are proportions of the total pSU area ciassified as belonging
to a particular type. The smallest population (area) of interest
in our application is the county, with each county having a
number of ground PSus on which classification results were
recorded. The total population of interest, an FIA survey unit,
is a set of counties (five in the present case) that are contig-
uous and of similar forest composition.

Eleven types {classesJ were used in classification. If
there are n, ground PSUS present in county 1, we can specify
an n1 x 1.1. matrix X for the county that contains the satellite
classified proportions for the pSUs located in the county.
This provides a system of L1 equations relating the true
(ground) type classified proportions(Y) to X:

Y , : X P ' * e ,
Y, : XP, * e, 

f1l

Y " : X P " * e "

where Y; : vector with nl elements where the i'h element is
the ground classified proportion of type i in
PSU,;

X : nr X 11 matrix where element X,1 is the satel-
lite classified proportion of type k in psu;;
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TneLe 6. Ur.rceueRerEo Leruosnr ESTMATES or Anen (1ru THousANDs or Acnes) or Srx Fonesr eruo Fve Noru-Fonesr Cusses.

County

Class Carlton Cook Lake St. LouisKoochiching Region Total

Lowland Hardwood
AspenrBirch
Northern Hardwood
Upland Conifer
Balsam FirMhite Spruce
Lowland Conifer
Shrub/Grass/Cutover
Cropland/?asture
Developed./Other
Water
Marsh/\r[uskeg

Total

6 .1
272.4

61.3
6 . 7
5 . 1

65.2
82.O
9.4

13.5
t 1  1

s60.4

0.0
439.8
90.4

140.9

75.O
1 8 . 3
0.0
0 .0

r23 .6
30.6

1 ,033.1

226.5
4 7 2 . 3

0 .0
0 .0

788.7
8 1 1 . 1
728.6
105.6

7 .9
83.9
q a a

2,078.5

0 .0
407.0
47.5

343.8
107.4
274.6

25.9
0 .0
0 .0

207.2
b 5 . z

1 , 4 6 6 . 6

9 3 . 6
7 , 3 7 7 . 9

8 1 . 0
3 6 5 . 5
21.4.7

888.0
399.0
20I .7
767.4
433.4
o c  n

4 , 3 1 6 . 0

326.5
2,843.4

280.2
856.0
629.7

2,726.7
63 7 .0
388.6
784.7
8 5 s . 6
zr rJ . t )

9,394.6

TneLE 7. CauaRAreo Leruosnr Esllaares or Ana (rn Tsousulos or Acnes) oF Srx FoREsr eruo Ftve Noru-Fonesr Cuqsses.

County

Class Carlton Cook Koochiching Lake St. Louis Region Total

Lowland Hardwood
AspenlBirch
Northern Hardwood
Upland Conifer
Balsam FirMhite Spruce
Lowland Conifer
Shrub/Grass/Cutover
CroplandlPasture
Developed/Other
Water
Marsh/\4uskeg

Total

, 1

209.3
50.7
9 .1
2 .7

/  q . J

83 .4
o l , J

1 3 . 1
l o . J

18 .0
560 .4

0 .0
474 .9

67.8
I J J . /

83.9
104.1

L l  , O

0.0
J . D

I  I C . J

30 .1
1 , 0 3 3 . 1

1 3 1 . 6
548.3

0 .0
3 . 8

!44.5
789.6
n a a  n

8 1 . 1
s .3

o J . c

2 7 . 6
2 ,018 .5

0.0
547.5
78.8

269.2
4 4 '

306.4
42.6

0 .0
1 3 . 4

149.3
I J . J

1,466.6

34.3
1 ,667.4

J  O . +

418.6
t 7 2 . 9
7 7  7 . 7
4 1 5 . 1
724.7
202.8
{ J J . J

58 .6
4 , 3 1 6 . 0

169 .0
3 ,447 .4

. J J . /

836.4
388.2

2 ,046.3
778.7
2 8 7 . 1
242.2
799.8
t a J . o

9 , 3  9 4 . 6

F; : vector whose 11 elements are the coefficients
from the regression of ground classified propor-
tions in type i on satellite classified proportions
in all 11 types; and

G1 : vector with n, elements representing the error
in predicting ground classified proportions
from the satellite classified proportions.

This system of equations was fit separately to each of the
five counties in the survey unit. Ordinary Ieast squares was
used. The results showed that 85 percent of the variation, on
average, in the ground classified proportions was explained
by X. With few exceptions, each regression was dominated
by the satellite classified proportion corresponding to the
type being predicted. However, all elements of X were re-
tained in each equation to insure additivity of the predicted
proportions. Individual residual plots gave no indication of
heterogeneous variance within any particular equation.

The system of equations (Equation 1) would appear to be
a seemingly unrelated regressions problem. That is, it seems
likely that errors in predicting the ground classified propor-
tions are correlated (cross-equation correlations), While ordi-
nary Ieast squares provides unbiased estimates of p for
seemingly unrelated regression problems, accounting for
cross-equation correlations can result in a more efficient esti-
mate of p. However, Ericksson (1989, p. 45J has shown that
(1) when X is identical for each equation in the system and
(2) errors within an equation are homogeneous, seemingly
unrelated regressions is equivalent to applying ordinary least
squares to each equation separately. Both these requirements
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are met in this application; thus, ordinary least squares is an
appropriate fitting criterion.

For notational convenience, we stack the system of 11.
equations (Equation 1) for a particular county and write them
as

Y, : X,P, * e, (2)

where the subscript I denotes the county. Here Y, and e, are
vectors with 11n1 elements, X1 is a matrix with blocks of X
along the diagonal, and p' is a vector of length 121 (the coef-
ficients are allowed to vary by county).

While, overall, the results of fitting Equation 2 were sat-
isfactory, individual equations, where there were few non-
zero observations of ground type in a county, had high stan-
dard errors of prediction, often exceeding 100 percent of the
estimated proportion. As an alternative to calibrating coun-
ties separately, data across counties (within the survey unit)
can be combined to estimate a pooled regression equation.
The assumption needed to justify such an approach is that
the coefficienfs relating ground classified proportions to sat-
ellite classified proportions are similar across counties
within a survey unit (nof that the classified proportions of
the various types are themselves similar across counties).
Under this assumption, the calibration equation becomes

Yr : XrO * vr (3)

where the d are pooled or survey unit wide coefficients. Each
type has a separate set of calibration coefficients, but the

293



Tnele 8. Covpentsott or FIA xlo CeuaRAteo Lenoser TM EsrMArEs (rr.r Txousenos oF AcREs) or CorurreRs, HARDwooDs, eno Tour Fonesr hno.

County

Class Estimate Cook Carlton Koochiching Lake St. Louis Region Total

Conifer

Hardwood

Total Forest

Y / J . ]

93 7 .9

679.9
7 , 7 3 2 . 8
7,677.8

s59.5
61S.8
639.5
626.3

1 ,199.0
7,246.7

7,253.1
1 ,303.2
1 ,970.6
1 , 7 5 8 . 1
3 ,223.7
3 ,061.3

3,244.2
3,270.9
4 ,118.9
3 ,870.1
7 ,363.1
7,I47.7

9IA
TM
FIA
TM
FIA
TM

79.6
86.3

273.7
263.7
352.7
349.4

376.9
323.7
478.O
542.7
854.9
866.4

coefficients for a type are constant across counties. Equation
3 was also fit to the PsU data.

If x, is the vector of satellite classified proportions for
county / (classifying the entire land area in the county), we
have two calibrated estimates of percent land area by type:

l,: xfi,and,y,* : y,$

The two calibrated estimates yr and. y/ can be combined
to produce an estimate that should have lower error than
either of the two individually (Burk and Ek, 1982):

i : w y , + ( 1  -

Bothyl andyl* are additive; the predicted type propor-
tions add to 1. For the combined estimate to be additive re-
quires that w be a constant across types. The optimal raz for a
type is a function of the ratio of the prediction variances of
y1 and y,* (Burk and Ek, 1982). Computation of estimates of
those variances indicated that their ratios were relativelv
constant across t5pe. An average value (0.65) was used io ob-
tain final estimates: this gives weights 0.606 and 0.394 f.or y1
and yy*, respectively. The final calibrated acreages of each
cover type are given in Table 7.

Evaluation of landsat Area Estimates
By aggregating the rn statistics of cover type acreages from
Miles and Chen (1992), we are able to make a rough compar-
ison of estimates from the calibrated Landsat classifications
and the FIA statistics for conifer, hardwood, and total forest-
land at the county and region (survey unit) levels (Table B).
Because of differences in definition of classes in the two in-
ventories, it is difficult to make comparisons of more specific
cover tJpes. The problem is that, on the one hand, the nA
cover t1pe area statistics are typically reported only for com-
mercial forests or "timberland" (defined as forest land capa-
ble of producing 20 cubic feet per acre of industrial wood
crops ...) and, therefore, do not include detailed breakdowns
of the cover types for non-commercial, as well as reserved,
forest land (reserved land includes state parks and the
Boundary Water Canoe Area Wilderness). On the other hand,
the Landsat classifications are for all forest lands.

In comparing the results of the two surveys, we have as-
sumed the same proportions of cover types for unproductive
and reserved lands as for the timberland. However, it is well
understood that much of the unproductive land is in low-
land conifer types such as black spruce. We have, therefore,
restricted the comparison to conifer, hardwood, and total for-
est. At the region ievel, the differences in the two estimates
(with FlA as the standard or base) are *0.8, -6.0, and -3.0
percent for conifer, hardwood, and total forest, respectively.
Differences in total forest area estimates at the county level
range from -5.0 percent to +3.9 percent. The sampling er-
rors for FIA estimates of timberland (not total forestland) for
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the Forest Service FIA estimates range from 0.BS to 2.39 per-
cent at the county level and 0.57 percent at the region level.

There are several sources or causes for differences in the
two estimates. The first is that, in three cases, the available
reference data did not include samples of all rn classes; in
other words n, as reported in Table 3, was too small. A
larger, more fundamental problem is that the forest lands in
northern Minnesota are very complex ecosystems with a
wide range of variability in composition and uniformity.
This heterogeneity limits the acCuracy of the photo intirpre-
tation and field checking and, in turn, the reference data.
This, in turn, affects the accuracy of class labeling. In many
respects we are attempting to classify continuous data into
discrete classes; doing so results in errors in the areas of
transition from one type to another. The Forest Service rec-
ognizes the complexity of the forests and the presence of
mixtures in its definitions of classes. For example, the de-
scription of red pine is, "forests in which red pine comprises
a plurality of the stocking; common associates include east-
ern white pine, jack pine, aspen, birch, and maple."

PSU-Based Estimation of FIA Cover Type Areas
While the satellite data classifications weie limited to six
forest types, forest management needs are often more spe-
cific. However, the Y, need not be constrained to the same
classes used for the image classification; instead, they can be
defined as any ground truth variable. For example, the pSUs
used in this study were originally typed as 14 forest types.
To estimate FIA cover type acreage directly, we define Y;, i
: 1, ..., 14, as the prof6rtion of-a psu in-rrn, type i, The
estimation model is then the same as Equation 1, Again, this
system of equations is additive.

A preliminary trial of the psu-based approach on the
five-county Aspen/Birch FIA survey unit led to comparisons
of total forest area and area by cover type with FrA ;tatistics.
Study estimates for conifer, hardwood, and total forest cover
type aggregations were -8.4, -0.5, and -3.0 percent differ-
ent from FIA values. However, further cover type breakdowns
often showed much larger differences. Inspeclion of results
further suggests differences in definition and procedure for
identifying cover types as a major factor in the lack of agree-
ment. The cover tJpes on pSUs in this study were identified
by photointerpretation followed by field checking. However,
FIA cover types are determined by an algorithm applied to
ground plot tree data (Hansen and Hahn, 1982). Studies by
Jaakko Pdyry Consulting, Inc. (1992) have noted that changes
in the algorithm applied to this plot tree data can lead to ma-
ior changes in estimated acreage. Consequently, the ability to
compare results to the FIA acreage for the 14 cover types is
limited in this case by definitional and procedural faitors.
Analyses to sharpen these comparisons are part of a continu-
ing study.

(4)
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Figure 2. Standard error comparisons for estimates of pro-
portions of 74 nA cover types, plus non-forest category for
163 psus in St. Louis County. n (163) plots, -----
: n x acres of PSU. i : actual Psus.

The approach is described further for St. Louis County.
Figure 2 shows the standard errors of the mean proportions
for 14 standard FIA cover types, plus an other/non-forest cate-
gory, as estimated from the 88-acre PSUs, in comparison with
theoretical standard errors. The theoretical standard errors
were developed in two ways: (1) assuming each Psu location
was instead the location of a standard rn plot (covering ap-
proximately one-acre) and (2) a lower bound assuming the
PSUs were broken up and distributed as n x BB one-acre FIA
plots. The fact that the standard errors for the PSU sample lie
ipproximately midway between the two theoretical cuives
suggests that the PSUs ale far more effective at error reduc-
tion than a sample of n FIA plots and substantially less effec-
tive than the much larger number of plots that might have
been distributed at random had the PSUs been broken up and
checked as one-acre components.

Ultimately, the choice of survey design must be consid-
ered on a cost basis. While the PSUs are clearly less efficient
than an equivalent acreage of random plots, the travel costs
are dramatically reduced (fewer PSUs than plots), and the
cost of a PSU need not be much if any more expensive than
the current rn plots. The latter typically cost $150 to $300
each and involve one to two people and approximately one
day of time, including travel. Of that day, much of the effort
goes into establishing and measuring a ten-point pSU of small
plots on an acre, We propose instead that those small plots
be spread across the Psu and be used to verify the cover type
of the polygons on the Psu. Use of large PSUs is not unlike
what has been done in Scandinavia (Kuusela, 1978; Svenson,
1980) and what was found as an optimal "super PsU" or
cluster plot by Scott et o/. (1984).

A spreadsheet analysis of alternative forest inventory de-
signs is currently being developed, including this Psu design,
the current multiphase FIA procedures, and other designs.
That effort will also consider optimal PSU size. However, the
optimal Psu size will also depend on practical concerns for
being able to locate it and potential data analysis as de-
scribed below. For analysis, precision of this approach will
be developed empirically from these results and additional
PSU sizes to be tested. It is probable that a planning model
useful to inventory design and analysis will express sam-
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pling error (or variance) as a function of the cover type pro-
portion and the area or size of a PSU for any given classifier
and costs.

Additional important aspects of the psu-based design are
its statistical simplicity and its potential utility for monitor-
ing landscape patterns. The simplicity comes from observa-
tion of operational sized land units and the fact that it
requires only single phase estimation and ordinary least-
squares procedures for area estimates, The power of the ap-
proach is that it uses as covariates o1l of the pixels in the
county or area of interest, yet it doesn't necessarily require
high accuracy in the satellite classification. Additionally, one
could improve estimates by the methods described in the
earlier calibration section. Statistically, one may view the
PSU as simply a large number of large image classification
plots. The precision of psus overall will be less than the
same acreage of small plots distributed randomly over the
survey unit. However, the cost of assessing the PsUs on the
ground is modest, and the realism that step adds to classifier
training can provide significant gains for the survey design.

Change Detection Using Multidate Landsat Data
Renewable natural resources such as forests are continually
changing. Some forest cover modifications are human-in-
duced, such as harvest, while others have natural causes,
such as insect or disease damage. The rate of change may be
abrupt (e.g., logging) or subtle/gradual (e.g., growth). The po-
tential of using satellite data to detect and characterize
changes in forest cover depends on the ability to quantify
temporal effects using multitemporal data sets. As a part of
the project research, we investigated the potential of multi-
temporal Landsat TM for forest cover change detection (Cop-
pin,  1991).

rM data, along with detailed ground reference data, for
three different years (19s4, 1986, and 1990) covering a 400
km, (five townships) test site in Beltrami County were ac-
quired. To minimize sensor calibration effects and standard-
ize data acquisition effects, the TM data were calibrated to
exoatmospheric reflectance following the algorithms of Mark-
ham and Barker (1986). After geometric rectification and reg-
istration, an atmospheric correction routine was applied,
combining two major componentst atmospheric normaliza-
tion and transformation to ground reflectance. The normali-
zation consisted of a statistical regression over time, based
on five spatially well defined landscape features with un-
changing spectral-radiometric characteristics. Subsequently, a
dark object subtraction technique for atmospheric scattering

coefficients for all bitemporal band pairs ranged from 0.9884
to 0.9998; an example for tv+ for 1986-90 is shown in Fig-
ure 3.

For each time interval (two, four, and six) years, 14
change features were determined. The change features in-
volved seven vegetation indices and two change detection al-
gorithms (standardized differencing and pairwise principal
components). The best four features for classification were
selected based on J-M distance calculations of the best mini-
mum separability between change signatures. A maximum-
likelihood classifier was used for the final classification.
Classification accuracy and areal correspondence were evalu-
ated from contingency matrices and Kappa coefficients of
agreement.

The results (Figure 4) demonstrated that disturbances



and other changes can be detected very accurately if catego-
rized in classes that relate to their effect on the forest can-
opy, and if their size exceeds one hectare. Pixel-based
classification accuracies are shown in Table g for thematic
classification of pure pixels and for classification of all pix-
els including mixed or boundary pixels. Forest stands as the
classical management units were ascertained to be too spec-
trally heterogeneous to have the change phenomena differen-
tiated at that level. However, for the three classes, canopy
decrease, canopy increase, and no change, the methodology
correctly identified 774 out of 759 stands (94 percent) re-
ported as disturbed over the six-year interval, indicating that
the change event was portrayed in a majority of the stand's
pixels, A detailed analysis of the classifications error struc-
ture at the pixel level, together with a post-classification as-
sessment of a large sample of commission errors and
omission errors, indicated that a large majority of the classi-
fication errors might not have been errors at all, but instead
emanated from the generalization of pixels to the stand level
in the reference data generation. The results show that the
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Figure 3. Example of the relationship between
band-specific scaled reflectances of calibration
sites over time.
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preprocessing sequence summarized above is critical to the
forest cover monitoring; similar preprocessing and calibra-
tion procedures are being used in the large scale application
of this technology by the Minnesota oNR describecl below.

Operational Use of Landsat Data for Forest Inventory in
Minnesota
As a result of the research described above, the Minnesota
DNR and the U.S. Forest Service have iointlv undertaken to
develop an Annual Forest Inventory System (nrts) based on
annual sampling of existing Forest Inventory and Analysis
(rn) ground plots in Minnesota (Befort and Heinzen, 1992;
Hahn ef al., 7992). Satellite remote sensing plays an impor-
tan-t role in the .a-r'ts plan, and initial Landsat data analysis is
well under way. Beciuse of its annual schedule, the nirs
pla_n requires current, inexpensive, large-area imagery to-
gether with low-cost, but robust, interpretation methbds for
both stratification and disturbance detection. The research by
Coppin (1991) has indicated that computer analysis of multi-
date Landsat data (summarized abovei offers a cbst-effective
alternative to reliance on aerial photography.

The objective of arIS is to create and maintain a current
and continuously updated rn database. Under the proposed
system, a relatively small proportion of nrR plots will be cho-
sen each year for field remeasurement; information on other
plots will be updated by use of forest growth models. Selec-
tion of plots for measurement is to be based on (1) likelihood
of plot disturbance since the last field measurement, and (2)
requirements of a 2O-year sampling rotation in which all
plots are ultimately field-visited. Satellite remote sensing has
two roles: first, to stratifv a statewide arrav of some 45.000
established FIA plot locaiions as a means io reduce the vari-
ance of area and volume estimates, and second, to estimate
the likelihood of change or disturbance on each plot in order
to prioritize plots for field measurements. Aerial photogra-
plry has been customarily used for both these puiposes-, but
ottaining and interpreting statewide airphoto ioverage on
the schedule required by arIS is impraciicable. The use of
satellite imagery is expected to reduce costs and allow an in-
crease in the frequency of inventory updates,
_ The general remote sensing approach is to move through

the state on a four-year rotation, covering one of the four rna-
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Figure 4. Comparison of Landsat classification of change events between
1984 and 1990 to the reference map of Jones Township.

Reference Map
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TnerE 9. Suvvenv oF SrArsrcs EvrLuntrnc Cnaruce De-recrroru
Cl.lssrRcnttotrt Accunncv.

Thematic Accuracy*
Cartographic
Accuracy* *

Time Interval Overall
(Years) Correct (%)

Overall Kappa
Correct (%J Statistic

*Classification of pure pixels; **areal correspondence of all pixels.

jor forest inventory regions each year, For each region, geo-
referenced Landsat data of the most recent late summer date
is obtained. (Work on the Aspen-Birch {unit 1J region is cur-
rently underway using Landsat data acquired in 19BB and
1992.) After preprocessing, including rectification, radiomet-
ric calibration, and atmospheric normalization, a general
Iand-cover classification (stratification) is performed across
multi-county survey units, Because of the difficulties in
achieving accurate Landsat classifications of forest cover
types, only broad categories (stratal of water, agriculture,
other nonforest (e.g., developed/urban, clouds, etc.), conifer
forest, and hardwood forest will be mapped. The new im-
agery is then registered to that of the previous iteration and
analyzed for change. Based on changes in the vegetation in-
dex (e.g., greenness), a change ranking or probability is gen-
erated for the pixels in the two forest classes. Digitized
Iocations of the rn plots are then queried for stratum iden-
tity and change ranking, These two data elements, together
with area expansion factors for all cover classes, are entered
into the plot database for use in an algorithm that selects
plots for field measurements in the following season or for
projection forward by a forest growth model. Annual field
measurements will serve as a check on image processing ac-
curacy.

Summary and Conclusions
The objective of this research was to develop and test the use
of multispectral satellite data together with improved classi-
fication and sampling designs to inventory the forest re-
sources of northeastern Minnesota. Two design alternatives
were considered: one based on PSU sampling concepts and a
second that considered disturbance classification as the basis
for stratified, two-phase sampling. Classification accuracies
of up to 75 percent for six forest classes and five nonforest
classes were achieved. Misclassification tended to be be-
tween similar-related classes. A major contributing factor to
the difficulty in classification is the fact that the majority of
forest stands are complex mixtures of two or more species
which may also differ in size, density, crown closure, and
a8e'

An inverse method of calibration was used to adjust the
classifications for classification bias. At the survey unit level,
the resulting estimates of forest land area were 3 percent less
than comparable Forest Service estimates. Agreement be-
tween the two surveys at the county level ranged from -5.0
to *3.9 percent. The difference in estimates is attributed to
differences in definitions and approaches used in the two
surveys, as well as to the complexity and variability of the
forest landscape. Aithough the forest cover type estimates
were somewhat less accurate than hoped for, the Landsat TM
classifications have the advantage of providing information
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on the geographicai distribution of the cover types that is not
available from the conventional FIA survey. On the other
hand, the FIA survey provides information on timber volume
which was not obtained at least with this classification of
Landsat data, Thus, the two approaches to inventory are
complimentary, with each providing information not avail-
able from the other.

A trial of estimating the areas of t+ traditional forest
cover types as determined from sample B8-acre PSUS as a
function of the six Landsat forest classes using a system of
additive linear equations was also conducted. The results in-
dicated that the PSU-based approach can provide gains in
precision, but comparisons with FIA statistics were hindered
by differences in definition of cover types by the FIA and this
siudy. This type of psu-based estimation is potentially very
cost-effective and provides data of increasing interest to the
assessment of cover type and land use patterns over land-
scaDes.^ 

Change detection or disturbance classification involving
multidate imagery resulted in overall classification accura-
cies of greater than 90 percent for the time intervals of two,
four, and six years for the classes canopy decrease, canopy
increase, and no change. The success rate for the detection of
stand-based canopy change events over the six year interval
was 94 percent, The key to obtaining these results was a rig-
orous approach to reflectance calibration and normaiization
for atmospheric effects.

The project results have provided the basis for the Min-
nesota Deoartment of Natural Resources and the USDA Forest
Service to define and begin to implement an annually up-
dated statewide inventory system which utilizes multidate
Landsat TM data to detect changes in forest cover. Landsat
TM imagery acquired at four-year intervals will be used to
detect major changes in forest inventory plot characteristics.
The likelihood of change as determined from the satellite
data will be used to determine which plots should be revis-
ited for field measurement, The Seneral approach will be to
classify one of the four major forest inventory regions of the
state each year. Forest growth models will be used to project
the growth of plots which are not measured in a given year.
Satellite-acquired data are an integral part of the system,
along with model predictions, sampling, and datebase tech-
niques. We believe that Minnesota is the first state to incor-
porate satellite remote sensing into its forest inventory
system; if successful, the techniques could easily be modi-
fied for implementation in other states.
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