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Classification Algorithms
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Abstract

Classification results of remotely sensed data are usually
summarized as confusion matrices, and various classification
algorithms are used to improve results. Confusion matrices
should be normalized to assess classification accuracies of
remotely sensed data, and multiple comparisons are required
to evaluate the classification algorithms. The classical itera-
tive proportional fitting procedure, including eliminating zero
counts, was scrutinized to normalize confusion matrices. The
Tukey multiple comparison method was used for the com-
parison of results from three classification algorithms: mini-
mum distance, maximum likelihood, and an artificial neural
network. Normalized confusion matrices provided uniform
margins and accuracies for each classification category. The
Tukey comparisons of the three algorithms were made simul-
taneously; results provided the overall classification accuracy
for each algorithm and showed no differences among the al-
gorithms at a risk level of 5 percent. Normalized confusion
matrices can be compared entry by entry because of their
uniform margins. Results of this study indicate that classifi-
cation algorithms can be evaluated with the Tukey method,
and the multiple comparisons of the algorithms should be
made based on normalized category accuracies obtained
with the iterative proportional fitting procedure. Normalized
confusion matrices provide a unified measure of producer's
and user's accuracies.

Introduction

Classification results of remotely sensed data are usually
summarized as confusion matrices (contingency tables).
However, the contingency tables are unable to assess classifi-
cation accuracies completely because the tables do not pro-
vide the accuracies for each classification category. Story and
Congalton (1986) studied marginal statistics of a contingency
table and thereby defined the user’s accuracy and producer’s
accuracy for the table. According to the definitions, the
user's accuracy measures commission errors for each classifi-
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cation category, whereas the producer’s accuracy measures
omission errors for each classification category. The user’s
accuracy is the ratio of the number of correctly classified
samples in a category to the total number of samples that
were classified as in that category (row total for the cate-
gory). The producer’s accuracy is the ratio of the number of
correctly classified samples from a category to the total num-
ber of reference samples of that category (column total for
the category). Usually, a user’s accuracy does not equal the
corresponding producer’s accuracy. Based on these defini-
tions, a user’s accuracy or a producer’s accuracy is not the
accuracy for a given classification category.

Congalton ef al. (1983) and Rosenfield and Fitzpatrick-
Lins (1986) measured the agreement of classified data with
reference data using Kappa. Kappa is a measure of agreement
of a contingency table (Cohen, 1960). Congalton (1991) re-
viewed the method for accuracy assessment of classification
results for remotely sensed data. However, both the marginal
and the Kappa statistics do not directly include the effects of
off-diagonal entries on the accuracies of individual classifica-
tion categories and overall classification. Fienberg (1971) de-
veloped an iterative proportional fitting procedure to
normalize a contingency table and include the effects. This
procedure was applied to the accuracy assessment of classifi-
cation results for remotely sensed data (Congalton et al.,
1983; Congalton, 1991). However, the details of the
procedure should be addressed, including eliminating zero
counts in contingency tables.

Although multiple comparisons such as the Tukey mul-
tiple comparison have been studied for many years, they
have not yet been applied to evaluating classification algo-
rithms (classifiers) in the area of remote sensing. However, a
pairwise comparison based on the Kappa statistics was used
to investigate the difference of means between a pair of clas-
sifiers (Congalton et al., 1983; Congalton, 1991). Various new
classifiers have been developed as advanced techniques are
applied to remote sensing. Therefore, multiple comparisons
of results from the new classifiers with those from conven-
tional classifiers are needed.

The objectives of this study were to scrutinize the itera-
tive proportional fitting procedure, including eliminating
zero counts, and to apply the Tukey multiple comparison
method to evaluating classification results obtained with
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maximum-likelihood, minimum-distance, and an artificial
neural network classifier.

Materials and Methods

Data and Classifiers Used

The data used in this study were the classification results of
a Landsat Thematic Mapper scene acquired 29 July 1987,
The scene covered approximately 10.36 km*, including sec-
tions 3, 4, 9, and 10 located in T28N, R5E of Richland town-
ship, Miami County, Indiana. The six categories of land
cover for these sections included corn, soybeans, forest, pas-
ture, bare soil, and river. The scene was classified with the
following classifiers: maximum likelihood, minimum dis-
tance, and an artificial neural network (Tables 1, 2, and 3, re-
spectively). These three classifiers were trained with the
same data set.

Elimination of Zero Counts in Contingency Tables

Fixed and random zeros are two types of zero counts in a
contingency table. A fixed zero occurs because of a zero
probability, whereas a random zero occurs because of a small
probability. In the contingency tables of classification resulls
for remotely sensed data, random zeros are usually encoun-
tered. The zero counts in Table 1 may differ from one an-
other. Before implementing a normalization, we adjusted the
table to find an estimate for each of these zero counts. Fien-
berg and Holland (1970) developed a method of “smoothing
with pseudo-counts” for eliminating zero counts. Based on
an observation table, the approach used a Bayesian estimator
to produce pseudo-counts and was formulated as

3 N -
Pi = N+ k {)‘ii cd k’\'i}
where X, is an entry in the j-th row and the j-th column of
the table, p, is the Bayesian estimator of p,, and N is the
sum of all entries (N = £X,). According to the Bayesian sta-
i

tistical analysis, an entry probability p, is regarded as a ran-
dom variable and has a prior density, #(p,), proportional to
p. A, is the expectation of p, (A, = E_(p,)), and k is the
number of pseudo-counts to be added to a contingency table.
The joint distribution of {p,} is proportional to [1p, 1.
i
Empirical optimal A, and k are calculated by

XX
A” = I ..|"
N¢

where X, is the i-th row margin and X, is the j-th column
margin, and

N — ZX3
k= ——t—r0.
Z(NA; — X2

Ly

For smoothing a contingency table with pseudo-counts, first
we calculated the “expected value,”” NA,, instead of A, for
the simplicity of computation. Next, k was computed with
the formula given above. Third, the k pseudo-counts were al-
located to the individual entries of the expected value table,
and the entries were multiplied by the ratio k/N. Finally, the
contingency table was added to the table obtained in the
third step entry by entry, and the result was multiplied by
N/(N+k) to preserve the original total of N. The elimination
of zero counts can be done easily within a spreadsheet. Ta-
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bles 1, 2, and 3 were adjusted by using the method of
smoothing with pseudo-counts (Tables 4, 5, and 6).

Normalization of Contingency Tables

With the iterative proportional fitting procedure, a contin-
gency table can be standardized to have uniform margins for
both rows and columns in order to examine the association
or interaction of the table (Fienberg, 1971). After a contin-
gency table was smoothed with pseudo-counts, the iterative
proportional fitting procedure was then applied to the table.
The iterative proportional fitting procedure made the row
and column margins consecutively equal one. To do this, the
first step was to multiply the entries in a row by the ratio of
one over the corresponding row margin. The second step
was to multiply the entries in a column by the ratio of one
over the corresponding column margin. Because each entry
was adjusted during the first step, the column margins were
changed. The first cycle of the iterative proportional fitting
procedure was complete. Because the row margins were no
longer equal to one after the second step, the operation in-
cluding steps 1 and 2 was repeated. The repetition formed
the second cycle of the iterative proportional fitting proce-
dure. The process converged after a finite number of cycles
(Fienberg, 1970). The iterative proportional fitting procedure
is supported by the SAS software (SAS Institute, 1988a).
Specifying the stopping criteria and the maximum iterations
is optional. Tables 4, 5, and 6 were normalized with the iter-
ative proportional fitting procedure (Tables 7, 8, and 9).
These normalized classification results showed uniform mar-
gins and the accuracies (highlighted entries) for individual
classification categories.

Multiple Comparisons

Each classification technique examined in this study had a
contingency table. By extracting the correct percentages of
each classification category in a normalized contingency table,
we developed a summary table of classifier performance (Ta-
ble 10).The summary table represented a two-factor experi-
ment with only one observation per entry. Montgomery (1991)
defined a statistical model to describe the experiment: i.e.,

Vy= U+ o+ B+ (af); + &y (1 = 1,25 = 1,2,...,[ik=1)

(I = the number of classifiers; ] = the number of categories)

where
v, = performance of the classifiers being compared,
i = overall mean of the correct percentages,
«, = the effect of the i-th classifier,
B, = the effect of the j-th category,
(aB), = the effect of the interaction between «, and B

and

g€, = random errors.
The following assumptions were made in this study: (1)
probabilities that individual categories were correctly classi-
fied were inherent for a classifier, (2) classification of pixels
in category A did not depend on classification of pixels in
category B, and (3) classification of pixels with classifier I
did not depend on classification of pixels with classifier II.
Based on these assumptions, columns of a summary table
were independent, entries in each column were approxi-
mately independent, and the standard deviation in each en-

: . ' if 1 - i
try v, was univariable and approximately \/M—‘—Iﬁ"l
) m,

where p, was the underlying true probability (the probability
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Tagle 1. CLASSIFICATION RESULTS OBTAINED WITH THE MinNiMUM DISTANCE ALGORITHM.

Reference categories

Row User's
Classification Corn Soybeans Forest Pasture Bare Soil River Total Accuracy
Categories (pixels) (%)
Corn 722 4 53 0 0 0 779 92.68
Soybeans 0 580 0 43 0 0 623 93.10
Forest 8 0 396 0 ] 1 405 97.78
Pasture 0 1 0 195 105 1 302 64.57
Bare Soil 0 1 0 0 12 0 13 92.31
River 0 0 0 0 0 26 26 100.00
Column
Total (pixels) 730 586 449 238 117 28 2148
Producer's
Accuracy (%) 98.90 98.98 88.20 81.93 10.26 92.86
TasLe 2. CLASSIFICATION RESULTS OBTAINED WITH THE MAXIMUM-LIKELIHOOD ALGORITHM.
Reference categories

Row User's
Classification Corn Sovbeans Forest Pasture Bare Soil River Total Accuracy
Categories (pixels) (%)
Corn 712 0 12 0 0 1] 724 98.34
Soybeans 0 584 2 26 0 0 612 95.42
Forest 18 0 434 0 0 0 452 96.02
Pasture 0 1 0 212 105 0 318 66.67
Bare Soil 0 1 0 0 12 1 14 85.71
River 0 0 1 0 0 27 28 96.42
Column
Total (pixels} 730 586 449 238 117 28 2148
Producer’s
Accuracy (%) 97.53 99.66 96.66 89.08 10.26 96.43

TABLE 3. CLASSIFICATION RESULTS OBTAINED WITH THE NEURAL NETWORK ALGORITHM.
Reference categories

Row User's
Classification Corn Soybeans Forest Pasture Bare Soil River Total Accuracy
Categories (pixels) (%)
Corn 725 8 21 11 1 1 767 94.52
So_\rbeans 1 555 32 13 0 1 602 92.19
Forest 3 4 393 a 0 0 403 97.52
Pasture 0 18 2 211 29 0 260 81.15
Bare Soil 0 1 0 0 87 0 88 98.86
River 1 0 1 0 0 26 28 92.86
Column
Total (pixels) 730 586 449 238 117 28 2148
Producer's
Accuracy (%) 99.32 94.71 87.53 88.66 74.36 92.86

that a given pixel in the i-th category was correctly classified
by the j-th classifier), and m, was the sample size in the i-th
category. Because of one observation per entry, the effects of
the interaction and the errors were confounded. We could
assume no interaction effects between classifiers and classifi-
cation categories (i.e., (aB),=0). But we tested whether the
interaction existed by “isolating” the component with one
degree of freedom from the residual sum of squares because
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the effects of rows and columns were not additive (Tukey,
1949). Montgomery (1991) has documented the detailed pro-
cedure of the isolation. In addition, an effect a, as defined by
computing the difference between the corresponding classi-
fier mean, g, and the average of all classifier means: i.e.,

el
M-
F
1l
v
b
)
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TaBLE 4.  CLASSIFICATION RESULTS ADJUSTED BY THE METHOD OF SMOOTHING WITH PSEUDO-COUNTS. THE ORIGINAL CLASSIFICATION WAS DONE WITH THE MINIMUM-

DISTANCE ALGORITHM.

Reference Categories

Row
Classification Corn Soybeans Forest Pasture Bare Soil River Total
Categories (pixels)
Corn 720.910 4.497 53.262 0.206 0.101 0.024 779
Soybeans 0.505 579.022 0.311 43.062 0.081 0.019 623
Forest 8.309 0.265 395.258 0.107 0.053 1.010 405
Pasture 0.245 1.194 0.007 194,615 104.789 1.007 302
Bare Soil 0.011 1.006 0.007 0.003 11.973 0.003 13
River 0.021 0.017 0.013 0.007 0.003 25.939 26
Column Total (pixels) 730 586 449 238 117 28 2148

TABLE 5. CLASSIFICATION RESULTS ADJUSTED BY THE METHOD OF SMOOTHING WITH PsEUDO-COUNTS. THE ORIGINAL CLASSIFICATION WAS DONE WITH THE MAXIMUM-

LIKELIHOOD ALGORITHM.

Reference Categories

Row
Classification Corn Sovbeans Forest Pasture Bare Soil River Total
Categories (pixels)
Corn 710.964 0.435 12.310 0.178 0.088 0.021 724
Soybeans 0.463 583.072 2.280 26.093 0.074 0.018 612
Forest 18.302 0.274 433.245 0.111 0.055 0.013 452
Pasture 0.240 1.191 0.148 211.607 104.809 0.009 318
Bare Soil 0.011 1.006 0.007 0.005 11.975 0.998 14
River 0.021 0.017 1.011 0.007 0.003 26.941 28
Column Total (pixels) 730 586 449 238 137 28 2148

TABLE B. CLASSIFICATION RESULTS ADJUSTED BY THE METHOD OF SMOOTHING WITH Pseuno-CounTs. THE ORIGINAL CLASSIFICATION WAS DONE WITH THE NEURAL

NETWORK ALGORITHM.

Reference Categories

Row
Classification Corn Soybeans Forest Pasture Bare Soil River Total
Categories [pixels)
Corn 723.856 B8.496 21.343 11.182 1.101 1.022 767
Soybeans 1.502 554.037 32.21 13.132 0.081 1.017 602
Forest 3.330 4.261 392.239 3.103 0.054 0.013 403
Pasture 0.218 18.131 2.129 210.551 28.963 0.008 260
Bare Soil 0.074 1.057 0.045 0.024 86.797 0.003 B8
River 1.021 0.019 1.012 0.008 0.004 25.937 28
Column Total (pixels) 730 586 449 238 117 28 2148

Therefore, it could be reported whether the performance of a
classifier was higher or lower than the average after the com-
putation.

The Tukey multiple comparison method can be applied
to comparisons of classifiers. We made multiple comparisons
by computing the Tukey critical distance (w) (Mendenhall
and Sincich, 1989): i.e.,

w =q,(p. v]\—__s-;

where
q.\p.v] = critical value of the Studentized range
at a given risk level, a;
p = number of classifiers;
430

number of degrees of freedom associ-
ated with MSE;

VMSE (mean square of errors); and
number of observations in each of the p
classifiers.

Any two population means of classifiers were judged to
be different from one another if the difference of the corre-
sponding sample means was greater than the distance, o.

The Tukey multiple comparison method is also sup-
ported by SAS software (SAS Institute, 1988b). The results of
the Tukey multiple comparisons for Table 10 provided the
overall classification accuracy for each classifier and showed
no differences among the three classifiers at a risk level of 5
percent.
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TaBLE 7. NORMALIZED RESULTS FOR THE CLASSIFICATION RESULTS OBTAINED WITH THE MINIMUM-DISTANCE ALGORITHM.

. Reference Categories
Classification vrerene egones Row
Categories Corn Soybeans Forest Pasture Bare Soil River Total
Corn 0.955 0.005 0.039 0.000 0.000 0.000 0.999
Sn_vhuans 0.001 0.865 0.000 0.134 0.000 0.000 1.000
Forest 0.036 0.001 0.955 0.001 0.000 0.007 1.000
Pasture 0.001 0.003 0.000 0.863 0.129 0.004 1.000
Bare Soil 0.002 0.126 0.001 0.001 0.871 0.000 1.001
River 0.001 0.000 0.000 0.001 0.000 0.999 1.000
Column Totals 0.996 1.000 0.995 0.999 1.000 1.010 6.000

TaBLE 8. NORMALIZED RESULTS FOR THE CLASSIFICATION RESULTS OBTAINED WITH THE MAXIMUM-LIKELIHOOD ALGORITHM.

. . Reference Categories
Classification ‘ g Row
Categories Corn Soybeans Forest Pasture Bare Soil River Total
Corn 0.970 0.004 0.021 0.004 0.001 0.000 1.000
50}'b081)s 0.000 0.890 0.001 0.109 0.000 0.000 1.000
Forest 0.032 0.003 0.962 0.003 0.000 0.000 1.000
Pasture 0.000 0.002 0.000 0.875 0.123 0.000 1.000
Bare Soil 0.000 0.094 0.000 0.001 0.871 0.034 1.000
River 0.000 0.002 0.021 0.002 0.000 0.975 1.000
Column Total 1.002 0.995 1.005 0.994 0.995 1.009 6.000

TABLE 9. NORMALIZED RESULTS FOR THE CLASSIFICATION RESULTS OBTAINED WITH THE NEURAL NETWORK ALGORITHM.

,, Reference Categories
Classification ( 2 Row
Categories Corn Soybeans Forest Pasture Bare Soil River Total
Corn 0.957 0.007 0.012 0.018 0.000 0.005 0.999
Suyl_mans 0.004 0.911 0.034 0.041 0.000 0.010 1.000
Forest 0.019 0.016 0.942 0.022 0.000 0.000 0.999
Pasture 0.001 0.042 0.003 0.918 0.035 0.000 0.999
Bare Soil 0.002 0.022 0.001 0.001 0.973 0.000 0.999
River 0.010 0.000 0.004 0.000 0.000 0.986 1.000
Column Total 0.993 0.998 0.996 1.000 1.008 1.001 5.996

Discussion

As shown in Tables 4, 5, and 6, the pseudo-counts were allo-
cated to the individual entries in Tables 1, 2, and 3, and the
“zeros” were different from one another. We adjusted Tables
1, 2, and 3 without changing the original margins, This is the
advantage of eliminating zero counts with the method of
pseudo-count smoothing. Other methods such as adding 1.
1/2, or 1/4 pseudo-counts to all entries cannot preserve the
original margins, although they preserve the total number of
entries (Fienberg and Holland, 1970).

After implementation of the iterative proportional fitting
procedure, the original contingency tables were normalized
and fitted with uniform margins each equal to one. The com-
putation precision of the computer caused the column totals
in Tables 7, 8, and 9 not to equal exactly one. The normal-
ized tables can be compared to one after another entry by en-
try because of the uniform margins. The iterative
proportional fitting procedure included the effects of the off-
diagonal entries in Tables 1, 2, and 3 on the accuracies of in-
dividual classification categories and overall classification.
Therefore, the diagonal entries in Tables 7, 8, and 9 were not
the ratios (producer’s accuracies) of the diagonal entries in
Tables 1, 2, and 3 over the corresponding column margins,
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indicating that a conclusion based on the original classifica-
tion results could be biased. After implementing the proce-
dure, we can assess the accuracy of a classification based on
the normalized category accuracies. However, if we apply
the method of the producer’s accuracy and the user’s accu-
racy to a contingency table, we must interpret the table in
both row and column directions because of the definitions of
the accuracies. Because the iterative proportional fitting pro-
cedure produces uniform margins and accuracies for each

TagLe 10. PERFORMANCE SUMMARY OF THE MiNIMUM-DISTANCE, THE MAXIMUM-
LIKELIHOOD, AND THE NEURAL NETWORK CLASSIFIERS.

Classifiers
Classification Minimum Maximum Neural
Categories Distance Likelihood Network
Corn 0.955 0.970 0.975
Sﬂ_\-’b(—!ﬁlls 0.865 0.890 0.911
Forest 0.955 0.962 0.942
Pasture 0.863 0.875 0.918
Bare Soil 0.871 0.871 0.973
River 0.999 0.975 0.986
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TagLe 11, SAS OuTtPUT FROM THE MULTIPLE COMPARISONS OF THE MINIMUM-
DistancE, THE MAXIMUM-LIKELIHOOD, AND THE NEURAL NETWORK CLASSIFIERS.

General Linear Models Procedure

Tukey's Studentized Range (HsD) Test for variable: ¥

NOTE: This test controls the type I experimentwise error rate,
but generally has a higher type Il error rate than REGWQ.

« = 0.05 df= 9 MSE= 0.0004

q.lp. v) = 3.948

w = 0.033
Means with the same letter are not significantly different.
Tukey Grouping Means N Classifiers
A 0.948 6 Neural Network
A
A 0.924 6 Maximum Likelihood
A
A 0.918 6 Minimum Distance
average 0.930
Classifier Relative
Classifiers Effects Classifier Effects*
Minimum Distance -0.012 -1.3%
Maximum Likelihood ~0.006 —0.7%
Neural Network 0.018 2.0%

*classifier affect/average

classification category, we can average the category accura-
cies to obtain an overall classification accuracy.

The major advantage of Tukey multiple comparisons is
that the comparisons can be done all at once. However, if we
apply pairwise comparisons to n classifiers, we need n(n—1)/
2 pairwise comparisons. Another advantage is that the risk
level, @, can be modified until the significant classifier differ-
ences are examined. We have to apply the modification to
every pair of comparisons if we use pairwise comparisons.
Pairwise comparisons are made according to the Kappa sta-
tistics. Kappa only provides an overall accuracy for a classifi-
cation rather than accuracies for each classification category.
As for the results of the Tukey multiple comparisons, not
only were the classifiers evaluated, but the overall classifica-
tion accuracy for each classifier was also provided. The re-
sults shown in Table 11 illustrated multiple Tukey
comparisons could be made, and the performance of each
classifier versus the average performance of all classifiers
used could be estimated.
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